

Preprint 12/2005
Gene network inference from incomplete expression data: transcriptional control of hemopoietic commitment
Kristin Missal, Michael A. Cross, and Dirk Drasdo
Contact the author: Please use for correspondence this email.
Submission date: 18. Feb. 2005
published in: Bioinformatics, 22 (2006) 6, p. 731-738
DOI number (of the published article): 10.1093/bioinformatics/bti820
Bibtex
with the following different title: Gene network inference from incomplete expression data: transcriptional control of hematopoietic commitment
Abstract:
Motivation:
The identification of the topology and function of gene
regulation networks remains a challenge. A frequently used
strategy is to reconstruct gene regulatory networks from time
series of gene expression levels from data pooled from cell
populations.
However, this strategy causes problems if the gene expression
in different cells of the population is not synchronous, as is expected to
be the case in the transcription factor network that controls lineage commitment in haematopoietic stem cells.
Here, a promising alternative may be to measure
the gene expression levels in single cells individually.
The inference of a network requires knowledge of the gene expression levels
at successive time points, at least before and after a network transition.
However, due to experimental limitations a complete determination of the precursor state is not possible.
Results:
We investigate a strategy for the inference of gene regulatory networks
from incomplete expression data based on dynamic Bayesian networks
that permits prediction of the number of experiments necessary for
network inference depending on noise in the data, prior knowledge,
limited attainability of initial states and other inference parameters.
Our inference strategy combines a gradual ''Partial Learning'' strategy only
based on true experimental observations
for the network topology with expectation maximization for the network parameters.
We illustrate our strategy by extensive computer simulations in a high-dimensional
parameter space on the network inference in simulated single-cell-based
experiments during haematopoietic stem cell commitment.
We find for example that the feasibility of network inferences increases
significantly with the experimental ability to force the system into