

Preprint 27/2006
Piecewise rigidity
Antonin Chambolle, Alessandro Giacomini, and Marcello Ponsiglione
Contact the author: Please use for correspondence this email.
Submission date: 14. Mar. 2006
Pages: 19
published in: Journal of functional analysis, 244 (2007) 1, p. 134-153
DOI number (of the published article): 10.1016/j.jfa.2006.11.006
Bibtex
Download full preprint: PDF (1154 kB)
Abstract:
In this paper we provide a Liouville type theorem in the framework of
fracture mechanics, and more precisely in the theory of SBV deformations for
cracked bodies.
We prove the following rigidity result: if is a deformation of
whose associated crack
has finite energy in the sense of
Griffith's theory (i.e.,
),
and whose approximate gradient
is almost everywhere a rotation, then u is a collection of an at most countable family of rigid motions.
In other words, the cracked body does not store elastic energy if and only if all its connected components are deformed through rigid motions.
In particular, global
rigidity can fail only if the crack disconnects the body.