

Preprint 75/2006
Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems
Markos Katsoulakis, Petr Plechac, Luc Rey-Bellet, and Dimitrios Tsagkarogiannis
Contact the author: Please use for correspondence this email.
Submission date: 19. Aug. 2006
Pages: 40
published in: ESAIM / Mathematical modelling and numerical analysis, 41 (2007) 3, p. 627-660
DOI number (of the published article): 10.1051/m2an:2007032
Bibtex
MSC-Numbers: 65C05, 65C20, 82B20, 82B80, 82-08
Keywords and phrases: coarse-graining, a posteriori error estimate, relative entropy, renormalization group map
Download full preprint: PDF (3161 kB)
Abstract:
The primary objective of this work is to develop coarse-graining
schemes for stochastic many-body microscopic models and quantify their
effectiveness in terms of a priori and a posteriori error analysis. In
this paper we focus on stochastic lattice systems of
interacting particles at equilibrium.
The proposed algorithms are derived from an initial coarse-grained
approximation that is directly computable by Monte Carlo simulations,
and the corresponding numerical error
is calculated using the specific relative entropy between the exact
and approximate coarse-grained equilibrium measures. Subsequently
we carry out a cluster
expansion around this first--and often inadequate--approximation and
obtain more accurate coarse-graining schemes.
The cluster expansions yield also sharp a posteriori error estimates for
the coarse-grained approximations that can be used for the construction of
adaptive coarse-graining methods.
We present
a number of numerical examples that demonstrate that the
coarse-graining schemes developed here allow for
accurate predictions of phase transitions and hysteresis in systems with
intermediate and long range interactions. We also present
examples where they substantially improve
predictions of earlier coarse-graining schemes for short-range
interactions.