

Preprint 40/2008
Multigrid Accelerated Tensor Approximation of Function Related Multi-dimensional Arrays
Boris N. Khoromskij and Venera Khoromskaia
Contact the author: Please use for correspondence this email.
Submission date: 28. Apr. 2008 (revised version: November 2009)
Pages: 27
published in: SIAM journal on scientific computing, 31 (2009) 4, p. 3002-3026
DOI number (of the published article): 10.1137/080730408
Bibtex
MSC-Numbers: 65F30, 65F50, 65N35
Keywords and phrases: Orthogonal Tucker tensor decomposition, discrete convolution, multigrid acceleration
Download full preprint: PDF (777 kB)
Abstract:
In this paper, we describe and analyse a novel tensor approximation
method for discretized multi-dimensional functions
and operators in , based on the idea of
multigrid acceleration.
The approach stands on successive reiterations of the orthogonal
Tucker tensor approximation on a sequence of nested refined grids.
On the one hand, it provides a good initial guess for the nonlinear
iterations to find
the approximating subspaces on finer grids, on the other hand,
it allows to transfer from
the coarse-to-fine grids the important data structure information on
location of the so-called most
important fibers in directional unfolding matrices. The method
indicates linear complexity with respect to the size of data
representing the input tensor.
In particular, if the target tensor is given by using the rank-R canonical
model, then our approximation method is proved to have
linear scaling in the univariate
grid size n, and in the input rank R.
The method is tested by 3D electronic structure calculations.
For the multigrid accelerated low Tucker-rank approximation
of the all electron densities having strong nuclear cusps,
we obtain high resolution of their 3D convolution product with
the Newton
potential. The accuracy of order in max-norm is achieved
on large
grids up to
, with the
time scale in several minutes.