

Preprint 86/2008
Higher Bers Maps
Guy Buss
Contact the author: Please use for correspondence this email.
Submission date: 01. Dec. 2008
Pages: 35
published in: The Asian journal of mathematics, 16 (2012) 1, p. 103-140
DOI number (of the published article): 10.4310/AJM.2012.v16.n1.a4
Bibtex
MSC-Numbers: 30F30, 30F35, 30F60, 32N10, 32G15, 46G20
Keywords and phrases: Teichmüller spaces, Fuchsian groups, (higher) Schwarzian, Bers Embedding
Download full preprint: PDF (392 kB)
Abstract:
The Bers embebbing realizes the Teichmüller space of a Fuchsian group G as a open, bounded and contractible subset of the complex Banach space of bounded quadratic differentials for G. It utilizes the schlicht model of Teichmüller space, where each point is represented by an injective holomorphic function on the disc, and the map is constructed via the Schwarzian differential operator.
In this paper we prove that a certain class of differential operators acting on functions of the disc induce holomorphic mappings of Teichmüller spaces, and we also obtain a general formula for the differential of the induced mappings at the origin. The main focus of this work, however, is on two particular series of such mappings, dubbed higher Bers maps, because they are induced by so-called higher Schwarzians - generalizations of the classical Schwarzian operator. For these maps, we prove several further results.
The last section contains a discussion of possible applications, open questions and speculations.