

Preprint 59/2009
Extrinsically Immersed Symplectic Symmetric Spaces
Tom Krantz and Lorenz J. Schwachhöfer
Contact the author: Please use for correspondence this email.
Submission date: 29. Sep. 2009
Pages: 17
published in: Annals of global analysis and geometry, 37 (2010) 4, p. 379-391
DOI number (of the published article): 10.1007/s10455-009-9192-6
Bibtex
Download full preprint: PDF (209 kB)
Abstract:
Let be a symplectic vector space and let
be a symplectic immersion.
We show that
is (locally) an extrinsic symplectic symmetric space (e.s.s.s.)
in the sense of [Preprint 59/2009] if and only if the second fundamental form of
is parallel.
Furthermore, we show that any symmetric space which admits an immersion as an e.s.s.s. also
admits a full such immersion, i.e., such that is not contained in a proper affine
subspace of V, and this immersion is unique up to affine equivalence.
Moreover, we show that any extrinsic symplectic immersion of M factors through to the full one by a symplectic reduction of the ambient space. In particular, this shows that the full immersion is characterized by having an ambient space V of minimal dimension.