

Preprint 65/2010
Efficient long time computations of time-domain boundary integrals for 2D and dissipative wave equation
Lehel Banjai and Volker Gruhne
Contact the author: Please use for correspondence this email.
Submission date: 29. Oct. 2010
Pages: 20
published in: Journal of computational and applied mathematics, 235 (2011) 14, p. 4207-4220
DOI number (of the published article): 10.1016/j.cam.2011.03.015
Bibtex
MSC-Numbers: 65M38, 35L05
Keywords and phrases: boundary element method, convolution quadrature, wave equation
Download full preprint: PDF (352 kB)
Abstract:
Linear hyperbolic partial differential equations in a
homogeneous medium,
e.g., the wave equation describing the
propagation and scattering of acoustic waves,
can be rewritten as a time-domain boundary integral equation.
We propose an efficient implementation of a numerical
discretization of such equations when the strong Huygens' principle
does not hold.
For the numerical discretization, we make use of convolution quadrature
in time and standard
boundary element method in space.
The quadrature in time results in a discrete convolution of weights
with the boundary density evaluated at equally spaced time
points. If the strong Huygens' principle holds,
converge
to 0 exponentially quickly for large enough j.
If the strong Huygens' principle does not
hold, e.g., in even space dimensions or when some damping is present,
the weights are never zero, thereby presenting a difficulty for efficient
numerical computation.
In this paper we prove that the kernels of the convolution weights approximate in a certain sense the time domain fundamental solution and that the same holds if both are differentiated in space. The tails of the fundamental solution being very smooth, this implies that the tails of the weights are smooth and can efficiently be interpolated. We discuss the efficient implementation of the whole numerical scheme and present numerical experiments.