

Preprint 90/2013
Black-Box Hartree-Fock Solver by the Tensor Numerical Methods
Venera Khoromskaia
Contact the author: Please use for correspondence this email.
Submission date: 19. Aug. 2013 (revised version: November 2013)
Pages: 26
published in: Computational methods in applied mathematics, 14 (2014) 1, p. 89-111
DOI number (of the published article): 10.1515/cmam-2013-0023
Bibtex
with the following different title: Black-box Hartree-Fock solver by tensor numerical methods
MSC-Numbers: 65F30, 65F50, 65N35, 65F10
Keywords and phrases: Hartree-Fock equation, Hartree-Fock solver, tensor-structured numerical methods, Fock operator, 3D grid-based tensor approximation, Two-electron integrals, core Hamiltonian, quantized tensor approximation
Download full preprint: PDF (2499 kB)
Abstract:
The Hartree-Fock eigenvalue problem governed by the 3D integro-differential operator
is the basic model in ab initio electronic structure calculations.
Several years ago the idea to solve the Hartree-Fock equation by
fully 3D grid based numerical approach seemed to be a fantazy, and
the tensor-structured methods did not exist.
In fact, these methods evolved during the work on this challenging problem.
In this paper, our recent results on the topic are outlined
and the black-box Hartee-Fock solver by the tensor numerical methods is presented.
The approach is based on the rank-structured calculation of the
core hamiltonian and of the two-electron integrals
using the problem adapted basis functions discretized on n × n × n 3D Cartesian
grids. The arising 3D convolution transforms with the Newton kernel are
replaced by a combination of 1D convolutions and 1D Hadamard and scalar products.
The approach allows huge spatial grids, with n3 ≃ 1015,
yielding high resolution at low cost.
The two-electron integrals are computed via multiple factorizations.
The Laplacian Galerkin matrix can be computed ”on-the-fly“, using the quantized
tensor approximation of O(log n) complexity.
The performance of the black-box solver in Matlab implementation is compatible with the benchmark
packages based on the analytical (pre)evaluation of the multidimensional convolution integrals.
We present ab initio Hartree-Fock calculations of the ground state energy
for the amino acid molecules, and of the ”energy bands” for the model examples
of extended (quasi-periodic) systems.