

Preprint 80/2014
Diffusion in randomly perturbed dissipative dynamics
Christian S. Rodrigues, Aleksei V. Chechkin, Alessandro P.S. de Moura, Celso Grebogi, and Rainer Klages
Contact the author: Please use for correspondence this email.
Submission date: 19. Aug. 2014
published in: epl, 108 (2014) 4, art-no. 40002
DOI number (of the published article): 10.1209/0295-5075/108/40002
Bibtex
PACS-Numbers: 05.40.-a, 05.60.-k, 05.45.-a
Abstract:
Dynamical systems having many coexisting attractors present
interesting properties from both fundamental theoretical and
modelling points of view. When such dynamics is under bounded random
perturbations, the basins of attraction are no longer invariant and
there is the possibility of transport among them. Here we introduce
a basic theoretical setting which enables us to study this hopping
process from the perspective of anomalous transport using the
concept of a random dynamical system with holes. We apply it to a
simple model by investigating the role of hyperbolicity for the
transport among basins. We show numerically that our system exhibits
non-Gaussian position distributions, power-law escape times, and
subdiffusion. Our simulation results are reproduced consistently
from stochastic Continuous Time Random Walk Theory.