Preprint 43/2004

How cellular movement determines the collective force generated by the {\em Dictyostelium discoideum} slug

John Dallon and Hans Othmer

Contact the author: Please use for correspondence this email.
Submission date: 25. Jun. 2004
Pages: 29
published in: Journal of theoretical biology, 231 (2004) 2, p. 203-222 
DOI number (of the published article): 10.1016/j.jtbi.2004.06.015
MSC-Numbers: 35Q80, 92B05
Keywords and phrases: dictyostelium discoideum, cell movement, motive force, call based model, visco-elastic elements, migrating slug
Download full preprint: PDF (1013 kB), PS ziped (878 kB)

How the collective motion of cells in a biological tissue originates in the behavior of a collection of individuals, each of which responds to the chemical and mechanical signals it receives from neighbors, is still poorly understood. Here we study this question for a particular system, the slug stage of the cellular slime mold Dictyostelium discoideum. We investigate how cells in the interior of a migrating slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force. Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational results shed light on experimental results concerning the total force exerted by a migrating slug. The model predicts that only cells in contact with the substrate contribute to the translational motion of the slug. Since the model is not based specifically on the mechanical properties of Dictyostelium discoideum cells, the results suggest that this behavior will be found in many developing systems.

03.07.2017, 01:41