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Chapter 1

Examples and basic
concepts

1.1 An example

We begin with an example of a game. We have two players, Alice (abbreviated
as A and referred to by the pronoun “she”) and Bob (B, “he”) each of which
has the choice between two actions. For the choice ai of A and bj of B, the (i, j)
entry in the table lists the pay-off of A before, and the one of B after the comma.

b1 b2
a1 3,2 1,3
a2 2,1 0,0

(1.1.1)

So, how should the two players reason and act in order to maximize their pay-
off, assuming that both know the structure of the game and the pay-off matrix?
We assume at this point that the two players play simultaneously.
The first observation is that for player A, given an action of B, the first row is
always better than the second. One says that action a1 dominates a2. So, let
us reason that therefore she should disregard action a2 and play a1 in any case.
When B realizes this, he should play b2. Thus, A will get the pay-off 1, whereas
B gets 3. This represents a so-called Nash equilibrium, meaning that neither
player can unilaterally change her/his action without reducing her/his pay-off.
If A changed from a1 to a2, but B keeps b2, her pay-off would be reduced from
1 to 0. If B switched from b2 to b1, while A continues to play a1, his pay-off
would be reduced from 3 to 2.

Obviously, this equilibrium leaves B better off than A. If the game were
played sequentially instead of simultaneously, with A playing first, she should
choose a2 in place of a1, even though that action is dominated in the simulta-
neous game, as this would force B to play b1, giving A the pay-off 2 which is
higher than 1 as achieved in the Nash equilibrium.

5
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•A

••B •B

•
(2,1)

•
(0,0)

•
(3,2)

•
(1,3)

............................................................................................................................................
...
............

a1

............................................................................................................................................... .........
...

a2

................................................................................................................
....
............

b1

............................................................................................................................................... .........
...

b2

............................................................................................................................................
...
............

b1

.................................................................................................................... ........
....

b2 (1.1.2)

This observation reveals a problem with the dominance argument that A should
disregard a2 in the simultaneous game. After all, if she can make it plausible
to B that she will play a2, this would force him to play b1. The dominance
argument compares the outcome of each action against the same action of the
opponent. The opponent, however, will react differently to the different actions
of A. He will play b2 against a1, but b1 against a2, and the latter is better for
A.

When, however, B can move first, he should play b2, forcing A to play a1,
which is the above Nash equilibrium which is optimal for B.
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We now consider the situation where A can move first, but B cannot observe
A’s move, as indicated by the dashed line in the following diagram,
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B might reason that A had played a2 in order to force him to play b1, and he
should correspondingly do so. Now, however, A could think that because of
this reasoning, B will play b1 anyway, and he could therefore decide to play a2

to maximize her pay-off. When then, in turn, B anticipates that reasoning, he
could then play b2. However, whenever A believes B to play b2, she should play
a1. And hence the consistent beliefs repeat themselves. Whenever B believes
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A to play a1, he should play b2, and whenever A expects that B will play b2,
she should play a1. And since any chain of consistent higher order beliefs will
eventually arrive at that point, it seems that (a1, b2) will be the only equilib-
rium. We need a formal definition of an equilibrium here, however, in order to
substantiate that claim.
Incidentally, in this example, it helps B to be ignorant about A’s move, as oth-
erwise A could have forced him to play b1 which leads to a worse pay-off for
him. Thus, in such games, it can be disadvantageous to acquire more informa-
tion about the opponent. – One should be careful with the interpretation of
this finding, however. What harms B is not that he has the information, but
the fact that A knows that he has that information. That is, A also possesses
some additional information. If A did not know that B knows her move, then
B would not be at a disadvantage. – Conversely, A should try to transmit the
information about her move to B, but when B cannot verify the correctness of
that information, we are again in a situation to which the preceding analysis
applies.
We can gain further insight by modifying the pay-off matrix. For instance, when
we consider

b1 b2
a1 1,2 1,3
a2 2,1 0,0

(1.1.5)

that is, we lower the pay-off for A when playing a1 against b1, then it is prefectly
reasonable for A to play a2 to which B should react with b1. Thus, when we
remove the temptation for A to play a1 instead of a2 against b1, we improve her
position.

1.2 Formalization and further examples

The basic model is a simple game where two or more agents perform certain
actions and receive a pay-off as a result of their own and their opponent’s action.
Each player wishes to maximize her pay-off, knowing that her opponent is trying
to do the same. In particular, both players know each other’s pay-offs.
We now introduce the basic formalism for finite games in normal form. In
this and the following section, we discuss the case of two players only. This
case already exhibits most of the pertinent phenomena while avoiding certain
technical complications. The general case will then be treated in Section 1.4.

In order to better make formal use of the symmetry between the two players,
we now label the players by i = 1, 2 (in order to make contact with the notation
above, let 1 stand for A (Alice), 2 for B (Bob)). For a player i, we denote by
−i the other player, her opponent. Each player can perform a finite number
of actions, or strategies as they are usually called. Thus, she has a finite set
Si = {1, . . . ,mi} of pure strategies. S := S1 × S2 is called the set of pure-
strategy profiles, or the pure-strategy space. We then have the pay-off function
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πi : S → R (1.2.1)

that assigns to player i her pay-off πi(s) for s = (s1, s2) ∈ S, that is, when i
plays si and the opponent plays s−i. We also consider π = (π1, π2) : S → R2.
Thus, a game between two players is given by the pair (S, π). This is also called
the representation of the game in extensive form. The key point is that player
can only determine her own strategy si while her pay-off also depends on the
strategy s−i of her opponent.
It is also convenient to write the pay-offs in matrix form. The pay-off matrix
of player 1 is usually denoted by A = (π1(α, β))α=1,...,m1,β=1,...,m2 , the one
of player 2 by B = (π2(α, β))α=1,...,m1,β=1,...,m2 . Thus, player 1 is the “row-
player”, player 2 the “column-player”. The game is symmetric iff B = At.
It is also convenient to combine the two matrices into the single pay-off matrix

Π = (π1(α, β)|π2(α, β))α=1,...,m1,β=1,...,m2 . (1.2.2)

We now discuss some further
Examples:

1. We consider the following complementarity game: Each player can con-
tribute 0,1,2 or 3 (units). When the sum of the two contributions is at
least 3, each player receives 3 minus her own contribution, else both receive
0. The pay-off matrix then is

0,0 0,0 0,0 3,0
0,0 0,0 2,1 2,0
0,0 1,2 1,1 1,0
0,3 0,2 0,1 0,0

. (1.2.3)

We can already make a simple, but important, observation here: There
is no point for player 1 to play the last strategy, that is, contribute 3,
because her pay-off for any other strategy is always at least as high as
the one for 3, and in several cases higher. The same applies for player
2, of course, as this game is symmetric. Therefore, player i can assume
that player −i will never play 3. Therefore, we only need to consider the
reduced pay-off matrix

0,0 0,0 0,0
0,0 0,0 2,1
0,0 1,2 1,1

. (1.2.4)

Applying the same reasoning to this new pay-off matrix, it then will pay
for neither player to play the first strategy, that is, contribute 0. Thus,
we can reduce the pay-off matrix once more to arrive at

0,0 2,1
1,2 1,1

.
(1.2.5)
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Thus, each player would contribute 1 or 2. For each player, the best
situation is if she herself contributes 1 while the other one contributes 2.
When she knows, however, that the other one will contribute only 1, then
she has no choice but to contribute 2 if she is to maximize her pay-off.
That is, this represents a situation where neither player can change her
strategy unilaterally without decreasing her pay-off.

2. We consider a game, the so-called matching pennies game, where each
player has only two strategies, and player 1 gets a pay-off of 1 when both
play the same, −1 when they play different strategies. For player 2, the
situation is the opposite, that is, she gains 1 when the two play different
strategies and looses 1 when they play the same. In particular, this is a
zero-sum game, meaning that for each strategy profile, the pay-offs of the
two players sum to 0. Thus, the pay-off matrix is

1,-1 -1,1
-1,1 1,-1

.
(1.2.6)

In this game, whatever the actual strategy profile is, it is always advan-
tageous for precisely one of the two players to change her strategy. In
particular, if the game were to be played repeatedly, it would be disad-
vantageous for either player to always play the same strategy because the
other one could then choose a winning strategy. More generally, it would
be disadvantageous for either player to play in a manner that is predictable
for her opponent. Thus, in this game, the best option for either player
would be to play the two strategies randomly with probability 1/2 each.
At least, if both of them played that way, then for neither of them it
would carry an advantage to unilaterally change her strategy because the
opponent would respond correspondingly.

3. This game is sometimes called the battle-of-the-sexes game. A girl (player
1) and her boy friend (player 2) would like to spend their time together,
but each of them prefers a different activity. The girl likes to attend a
heavy weight boxing fight (action 1) whereas the boy prefers to go to the
fashion show (action 2) (I may have gotten the story wrong, but never
mind). The pay-off matrix is

4,2 1,1
0,0 2,4

.
(1.2.7)

For this game, either way of attending the same activity is an equilibrium
where neither of them would benefit from changing her/his action unilat-
erally.
As represented, this game is non-symmetric, but there is an equivalent
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symmetric form. Either player could insist on her/his preferred activ-
ity or yield to the preference of the partner. When insisting is action 1,
yielding action 2, the pay-off matrix becomes

1,1 4,2
2,4 0,0

(1.2.8)

which is symmetric. In fact, the situation is now the same as in Example
1.

4. The next game has the structure of the so-called prisoner’s dilemma.

4,4 2,6
6,2 3,3

.
(1.2.9)

Even though it is better for both of them if they both play their first strat-
egy (“cooperate”) than when they both play the second one (“defect”),
each player has an incentive to switch to defecting when the other player
cooperates. The cooperating player would then be put at a disadvantage
and should also switch to defecting to avoid that. Therefore, the only
equilibrium is where they both defect and get only 3 each. This outcome
looks somewhat paradoxical because it seems perfectly possible that they
agreed to cooperate and received the pay-off of 4.

After having analyzed these examples in detail, let us once more emphasize the
key point. Player i can only choose her own strategy, but her pay-off also de-
pends on the strategy of her opponent s−i. She should therefore select her own
strategy si in such a way that the opponent strategy s−i that is the opponent’s
best reply to si leaves i with the highest pay-off among all her possible strat-
egy choices. In other words, i wants to be best off under the assumption that
her opponent chooses her – the opponent’s – best response. And the opponent
applies the same reasoning.

Keeping these examples and observations in mind, we now develop some gen-
eral concepts. In particular, the examples may have created the impression
that even though a 2 × 2 game is completely described by 8 numbers, there is
a bewildering multitude of possible phenomena. The question therefore arises
whether any kind of classification is possible.
First of all, we observe that, so far, only pay-off differences were relevant while
their absolute values did not matter. Also, in our analysis of Example 3, we have
seen that relabelling the strategies simply interchanges some rows or columns,
but does not change the game.In that way, many (but not all) games can be
transformed into a symmetric form.
Classification of symmetric 2 × 2 games: We consider a symmetric 2 × 2
game with pay-off matrix

A =
(
π11 π12

π21 π22

)
. (1.2.10)
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We observe that we obtain an equivalent game, in the sense of ranking of strate-
gies when we subtract fixed numbers from each column. More precisely, it does
not make any difference for the choice of strategies of the player i when her
pay-off to a particular strategy of her opponent is changed by a fixed amount
that does not depend on her own strategy. Thus, we may subtract π21 from the
first and π12 from the second column, to obtain the diagonal pay-off matrix

A′ =
(
a1 0
0 a2

)
(1.2.11)

with a1 := π11 − π21, a2 := π22 − π12. Thus, any symmetric 2 × 2 game is
represented by the pair (a1, a2) ∈ R2. The classification is then in terms of the
signs of a1 and a2. Category I consists of those games with a1 < 0, a2 > 0. Here,
strategy 2 strictly dominates strategy 1 (a concept to be defined shortly, but
probably already intuitively plausible). Thus, both players will play 2. This
category includes the prisoner’s dilemma as the reader will easily check. Of
course, after this rearrangement, the paradox discussed above is gone. Category
IV where a1 > 0, a2 < 0 is of course equivalent to this one by relabelling the
two strategies. Category II means a1 > 0, a2 > 0. Here, for neither player it is
advantageous to unilaterally deviate from strategy α if her opponent plays that
strategy. Finally, Category III comprises the games with a1 < 0, a2 < 0. Here,
playing different strategies is the best option from which no unilateral deviation
pays off. Example 1 belongs to this category.

1.3 Mixed strategies and Nash equilibria

Except at the end of Example 2, we have considered pure strategies, that is,
elements of the finite set Si for player i. A mixed strategy of player i then
is a probability distribution on Si. It can be represented by a vector pi =
(p1
i , . . . , p

mi
i ) ∈ Rmi with pαi ≥ 0 for all α and

∑
α p

α
i = 1. The support of such

a mixed strategy is defined as the set of those α with pαi > 0. A pure strategy
can then be considered as a mixed strategy whose support contains one single
element of Si. Because of the normalization

∑
α p

α
i = 1, the space of mixed

strategies for player i is the (mi − 1)-dimensional simplex

Σi := {pi ∈ Rmi+ :
mi∑
α=1

pαi = 1}. (1.3.1)

The vertices eαi = (0, . . . , 0, 1, 0 . . . , 0) where the 1 is at the αth position corre-
spond to the pure strategies, and Σi is the convex hull of these vertices. The
strategies in the interior of Σi are precisely those whose support is all of Si.
A mixed-strategy profile then is a pair p := (p1, p2) ∈ Σ1×Σ2 =: Σ, the space of
mixed-strategy profiles. For such a mixed-strategy profile p, the pure-strategy
profile s = (s1, s2) is then played with probability

p(s) = ps11 p
s2
2 , (1.3.2)
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and the expected value of the pay-off of player i is

πi(p) :=
∑
s∈S

p(s)πi(s). (1.3.3)

We observe for later purposes that πi(p) is continuous as a function of p.
We can rewrite (1.3.3) as

πi(p) =
mj∑
α=1

pαj πi(e
α
j , p−j), for j = 1, 2, (1.3.4)

that is, as a weighted sum of the pay-offs when j plays the pure strategy α. We
may also write1

πi(p) =
m1∑
α=1

m2∑
β=1

pα1 πi(α, β)pβ2 , (1.3.5)

or in matrix notation,

π1(p) = p1Ap2, π2(p) = p1Bp2 = p2B
tp1. (1.3.6)

The pair (Σ, π) is called the representation of the game in strategic form, as op-
posed to the extensive-form representation (S, π) introduced earlier. Of course,
this represents one and the same game, in terms of its rules, but in the strategic-
form representation, the players are also allowed to play mixed strategies.
Let us consider Example 3, as given by (1.3.1), with mixed strategies. When
player 2 plays strategy 1 with probability q and correspondingly 2 with proba-
bility 1− q, then the expected pay-off for strategy 1 of player 1 is 4q + (1− q),
and the expected pay-off for strategy 2 is 0 + 2(1 − q). For q < 1

5 , the ex-
pected pay-off for strategy 2 is higher while for q > 1

5 , strategy 1 is better. For
q = 1

5 , both strategies yield the same expected pay-off, and therefore, instead
of playing a pure strategy, she could as well play any mixed strategy. Likewise,
when player 1 plays strategy 1 with probability q′, the expected pay-offs for the
strategies 1 and 2 of player 2 are 2q′ + 0 and q′ + 4(1− q′), resp. Here, the two
expected pay-offs are the same for q′ = 4

5 , in which case player 2 is indifferent.
In particular, when player 1 plays the mixture with q′ = 4

5 , and 2 with q = 1
5 ,

then neither of them can improve her pay-off by unilaterally changing strategy.
Thus, this represents another equilibrium, in addition to the two given by the-
diagonal elements of (1.3.1).
Before addressing the general question of the existence of equilibria, we first
turn to the elimination of non-optimal strategies.

Definition 1.3.1. We say that the (mixed) strategy qi ∈ Σi of player i strictly
dominates pi if

πi(qi, r−i) > πi(pi, r−i) for any r−i ∈ Σ−i. (1.3.7)

1Note that πi(α, β) = πi(e
α
j , e

β
−j), just as a piece of alternative notations employed.
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We say that qi weakly dominates pi if

πi(qi, r−i) ≥ πi(pi, r−i) for any r−i ∈ Σ−i, (1.3.8)

with strict equality for at least one r−i.
pi is said to be undominated if it is not weakly dominated by any other strategy.

As we have already seen in our analysis of Example 1, weakly dominated
pure strategies can be eliminated from consideration, until arriving at a reduced
version of the game without weakly dominated pure strategies. We should note
that this reduction makes crucial use of the rationality assumption, that is, no
player will choose strategies that leave her unconditionally worse off than others,
and that each player knows that her opponent is behaving that way.There is one
sublety here: When we first eliminate strongly dominated strategies, then some
other strategies may cease to be weakly dominated, because the r−i where we
have the strict inequality in (1.3.8) may belong to a strongly dominated, hence
eliminated, strategy of the opponent.

We now come to the concept of a Nash equilibrium.

Definition 1.3.2. A pure-strategy profile s∗ = (s∗1, s
∗
2) is called a Nash equi-

librium if for both i = 1, 2

πi(s∗) ≥ πi(si, s∗−i) for all si ∈ Si. (1.3.9)

This means that no player can do better by changing her strategy when the
other one keeps her strategy. In other words, no player can gain from a unilateral
move. Thus, unless the players would or could make some coordinated move –
which, however, is not allowed by the rules of the game –, they should stick to
their strategy. In this sense, this represents an equilibrium.
As we have seen from Example 2, however, such a Nash equilibrium in pure
strategies need not exist. Therefore, Definition 1.3.2 is generalized to

Definition 1.3.3. A mixed-strategy profile σ∗ = (σ∗1 , σ
∗
2) is called a Nash

equilibrium if for both i = 1, 2

πi(σ∗) ≥ πi(σi, σ∗−i) for all σi ∈ Σi. (1.3.10)

Epistemically, the concept might look somewhat strange. In fact, for a Nash
equilibrium, every player assumes that he is the only one that makes a change of
strategy while all the others keep their strategies fixed. And, they all simultane-
ously assume that, that is, they all assume that they make some move while the
others don’t. So, this looks contradictory. However, since everybody assumes
that the others don’t move and consequently he cannot improve his pay-off,
nobody moves, indeed, at a Nash equilibrium. Thus, an assumption that is
contradictory outside the equilibrium is mutually confirmed at the equilibrium.
In particular, the rational reasoning of the players leading to the equilibrium
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needs to be consistent only at the equilibrium itself, but not outside it.

The fundamental theorem of Nash tells us that such an equilibrium does
exist, indeed. In order to prepare that result, we now develop an approach via
best responses. For each player, we have the best-response correspondance given
by all the best responses to each possible strategy of her opponent:

ρi : Σ−i ⇒ Σi
σ−i 7→ {σi ∈ Σi : πi(σi, σ−i) ≥ πi(τi, σ−i) for all τi ∈ Σi}.(1.3.11)

Here, the symbol ⇒ indicates that the image of an element σ−i ∈ Σ−i is in
general a subset, in place of a single element, of Σi, because the best response
need not be unique. We then have the best-response correspondance

ρ := ρ1 × ρ2 : Σ2 × Σ1 ⇒ Σ1 × Σ2, (1.3.12)

which, by changing factors, we may consider as a correspondance

ρ : Σ ⇒ Σ. (1.3.13)

We then observe

Lemma 1.3.1. A profile σ∗ = (σ∗1 , σ
∗
2) is a Nash equilibrium iff

σ∗ ∈ ρ(σ∗), (1.3.14)

that is, iff for each player, her strategy is a best response to her opponent’s.

The proof is obvious. The advantage of (1.3.14) is that it characterizes a
Nash equilibrium as a fixed point of the correspondance ρ. This suggests to
invoke a fixed-point theorem to obtain the existence of a Nash equilibrium.

Theorem 1.3.1. (Nash): Every finite game in strategic form possesses a Nash
equilibrium.

Proof. The idea of the proof is to reduce the result to a general fixed-point
theorem (which we shall not prove here, but which is an extension of Brouwer’s
fixed point theorem and can be proved along similar lines as the latter, see e.g.
[25]),

Theorem 1.3.2. (Kakutani): Let K ⊂ Rd be compact, convex, 6= ∅. Let
ρ : K ⇒ K be a correspondance for which, for all x ∈ K, ρ(x) is convex and
6= ∅, and which satisfies:

If limn→∞ xn = x0 for some x0 ∈ K and some sequence (xn) ⊂ K,
then every sequence (yn) ⊂ K with yn ∈ ρ(xn) for all n

has some limit y0 with y0 ∈ ρ(x0). (1.3.15)

(This property is called upper hemi-continuity. It is equivalent to the requirement
that the graph of ρ be closed as a set.)
Then ρ has a fixed point, i.e., there exists some x∗ ∈ K with x∗ ∈ ρ(x∗).
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Most of the assumptions of the Kakutani fixed-point theorem are obviously
satisfied for finite games in strategic form. The simplex product Σ which we take
as the K in the theorem is compact, convex, non-empty. By construction, the
pay-off function πi is continuous and therefore, πi(., σ−i) attains its maximum
in the compact set Σi, for every σ−i. Therefore, for every σ ∈ Σ, ρ(σ) 6= ∅. Also,
since πi(., σ−i) is linear for every σ−i, convex combinations of best responses are
again best responses, which implies the convexity of the image ρ(σ) for all σ. It
remains to verify the continuity property (1.3.15). It suffices to check this for
every component ρi : Σ−i ⇒ Σi. Let (ξn) ⊂ Σ−i converge to ξ0. Let ηn ∈ ρi(ξn)
for every n. This means that

πi(ηn, ξn) ≥ πi(η, ξn) for every η ∈ Σi. (1.3.16)

By the compactness of Σi, after taking a subsequence, limn→∞ ηn = η0 exists.
(1.3.16) and the continuity of πi imply

πi(η0, ξ0) ≥ π(η, ξ0) for every η ∈ Σi. (1.3.17)

This means that η0 ∈ ρi(ξ0) which is the required continuity property in Kaku-
tani’s theorem. Thus, we may apply that theorem to deduce the Theorem of
Nash.

Remark: Many fixed-point theorems are proved by simply iterating a map
or a correspondance and obtaining the fixed point in the limit. As Example 2
shows, however, in the situation of games as considered here, such an iteration
need not converge, but may oscillate forever.

Some references for this section and the subsequent on iterated games are
[6, 5, 9, 20, 24, 21].

1.4 Several players: The Brouwer fixed point
theorem and the Nash equilibrium theorem

As already explained, the Nash theorem is an easy consequence of variants of
the Brouwer fixed point theorem. In this subsection, we provide a complete
treatment, using the references [25, 2]. The starting point is combinatorial
lemma of Sperner. We consider the n-dimensional simplex Σn with vertices
p1, . . . , pn+1. It can be iteratively constructed from its subsimplices or faces.
This goes as follows. If we take two of its vertices, pi, pj , i 6= j, their convex
hull is a 1-dimensional simplex pij , an edge of Σn. Likewise, the convex hull of
three vertices is a triangle, and so on. For each p ∈ Σn, we let σ(p) denote the
unique subsimplex of smallest dimension containing p.
A simplicial decomposition of a simplex Σ is the representation of Σ as a finite
union of simplices of the same dimension any two of which are either disjoint or
intersect in one common face.
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Lemma 1.4.1. (Sperner): Let Σn =
⋃
k Σk be a simplicial decomposition. To

every vertex p of every Σk, we assign some number i ∈ {1, . . . , n + 1} in such
a manner that the vertex pi of Σn is contained in σ(p). Then there exists a
Sperner simplex among the Σk, that is, a simplex whose vertices cover all the
labels 1, . . . , n+ 1.

Proof. The proof procedes by induction on n to show that the number of Sperner
simplices is odd, and therefore 6= 0. The case n = 0 is trivial. n = 1 is an easy
exercise. We present here the case n = 2 which gives a reasonable idea of
the general, combinatorially more complicated proof. We call an edge of a 2-
dimensional simplex Σk distinguished if its vertices carry the labels 1, 2. The
distinguished edges in the interior occur in pairs whereas their number on the
boundary is odd, by the step for n = 1. Thus, their total number is odd. Since
each 2-dimensional simplex carries either one or zero or two distinguished sides,
there must exist one such simplex with precisely one distinguished side. The
third vertex of that simplex then has to carry the label 3, and therefore, we
have found a Sperner simplex. Also, since the number of distinguished edges is
odd, the number of simplices carrying precisely one of them in their boundary
is odd as well.

We now derive the lemma of Knaster, Kuratowski and Mazurkiewicz which
is the essential ingredient of the proofs of the fixed point theorems. Let V be
a topological vector space. (That is, V carries both a linear structure, so that
we can take convex combinations, and a topology, so that we can speak about
closed or compact subsets.) For x1, . . . , xm ∈ V , we define their convex hull as

C(x1, . . . , xm) := {x =
m∑
µ=1

λµxµ : λµ ≥ 0 for all µ,
m∑
µ=1

λµ = 1}. (1.4.1)

Lemma 1.4.2. (Knaster, Kuratowski, Mazurkiewicz): Let X be a nonempty
subset of V . Suppose that to each x ∈ X, there is assigned a nonempty compact
subset ψ(x) of V , such that for every finite subset {x1, . . . , xm} of X

C(x1, . . . , xm) ⊂
m⋃
µ=1

ψ(xµ). (1.4.2)

Then ⋂
x∈X

ψ(x) 6= ∅. (1.4.3)

In particular, (1.4.2) entails

x ∈ ψ(x) for all x ∈ X, (1.4.4)

and this may be helpful to understand the subsequent applications of Lemma
1.4.2.
Remark: In fact, it suffices that one of the sets ψ(x) be compact and the
others closed. This follows because one can then replace ψ(x) by the compact
set ψ(x) ∩ ψ(x0) which is nonempty as a consequence of (1.4.2).
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Proof. It suffices to treat the case where X is finite. The reason is the following
general property of compact sets: When K is compact and Aj , j ∈ N, are closed
and when every intersection of finitely many sets Aν with K is nonempty, then
also

⋂
ν∈N Aν ∩K 6= ∅. (This follows simply by taking a sequence (yj)j∈N such

that yj ∈
⋂j
ν=1Aν ∩K. Since K is compact, a subsequence of (yj) converges to

some y ∈ K which then by construction is contained in every Aν , because these
sets are closed.)
By a small perturbation, if necessary, we may then assume that the finitely
many points x1, . . . , xn+1 of X are linearly independent, that is, they span a
topological n-simplex Σ in V . For k = 1, 2 . . . , we then consider simplicial
decompositions of Σ such that the diameter of all simplices goes to zero as
k → ∞. Because of (1.4.2), we may label the vertices of the simplices in each
decomposition in such a manner that a vertex with label i is contained in ψ(xi).
By Lemma 1.4.1, we then find a Sperner simplex, that is, one with all n + 1
labels. By construction, this means that each of the sets ψ(xi) contains at least
one of the vertices pk1 , . . . , p

k
n+1 of that simplex. When we let k → ∞, after

selection of a subsequence, the vertices pk1 , . . . , p
k
n+1 converge to a single point

p because the diameter of the simplex goes to 0. Since the ψ(xi) are closed, p
then is contained in all of them. Therefore, their intersection is nonempty.

Even though we shall not need the statement itself in the sequel, we now
state and derive the famous Brouwer fixed point theorem.

Theorem 1.4.1. (Brouwer): Every continuous map f : M → M of a topo-
logical space homeomorphic to the n-dimensional simplex Σn has a fixed point.

Proof. It suffices to treat the case where M is the simplex Σn. We ket X be
the set of the vertices of Σn, denoted by x1, . . . , xn+1. Every x ∈ Σn then can
be represented uniquely as a convex combination of these vertices

x =
n+1∑
µ=1

λµ(x)xµ with λµ(x) ≥ 0 for all µ and
n+1∑
µ=1

λµ(x) = 1. (1.4.5)

We put
ψ(xµ) := {x ∈ Σn : λµ(f(x)) ≤ λµ(x)}. (1.4.6)

These sets are closed, by continuity of f(x) and the λµ(x) and bounded, hence
compact. They also satisfy (1.4.2), because as 0 ≤ λµ(x), λµ(f(x)) ≤ 1 and∑
λµ(x) = 1 =

∑
λµ(f(x)), at least one of the λµ(f(x)) must be ≤ λµ(x).

Therefore, we may apply Lemma 1.4.2 to obtain some x ∈
⋂n+1
µ=1 ψ(xµ). This

means that
λµ(f(x)) ≤ λµ(x) for all µ. (1.4.7)

Since these coefficients sum to 1 on both sides of (1.4.7), they then must all
be equal, λµ(f(x)) = λµ(x) for all µ. This, however, implies f(x) = x, by the
uniqueness of the representation (1.4.5). Thus, x is the desired fixed point.
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Theorem 1.3.2 can also be proved along these lines; we leave out the de-
tails. In fact, there are many results that are all equivalent to Brouwer’s fixed
point theorem, and we now turn to another such result, the inequality of Fan.
Subsequently, we shall derive the Nash equilibrium theorem from that result.

Theorem 1.4.2. (Fan): Let X be a compact, convex, nonempty subset of a
topological vector space. Let f : X ×X → R satisfy:

1. Concavity in the first argument:

f(
m∑
µ=1

λµxµ, y) ≥
m∑
µ=1

λµf(xµ, y) for all λµ ≥ 0 with
m∑
µ=1

λµ = 1 (1.4.8)

for all xµ, y ∈ X.

2. Lower semicontinuity in the second argument:

f(x, y) ≤ lim inf
n→∞

f(x, yn) (1.4.9)

whenever the yn converge to y ∈ X.

Then
min
y∈X

sup
x∈X

f(x, y) ≤ sup f(x, x). (1.4.10)

Proof. We put M := supx∈X f(x, x) and

ψ(x) := {y ∈ X : f(x, y) ≤M}. (1.4.11)

ψ(x) is closed by Assumption 2, hence compact, because contained in the com-
pact set X. We now claim

C(x1, . . . , xm) ⊂
m⋃
µ=1

ψ(xµ) (1.4.12)

for any x1, . . . , xm ∈ X. If not, there exists some convex combination x =∑m
µ=1 λµxµ with x /∈

⋃m
µ=1 ψ(xµ). This means that f(xµ, x) > M for all µ.

Assumption 1 then implies f(x, x) > M , contradicting the definition of M ,
however. Therefore, (1.4.12) holds. We may then apply Lemma 1.4.2 to find
some y ∈

⋂
x ψ(x), that is, f(x, y) ≤M = supx f(x, x) which is (1.4.10).

We can now prove the Nash Equilibrium Theorem 1.3.1, in fact in a setting
that is more general than that discussed in Section 1.3. We have n players
(instead of 2), and the strategy space of each player is some compact, convex,
nonempty set Ki in some topological vector space (instead of being simply a
simplex Σi). The pay-off function

πi : K1 × · · · ×Kn → R (1.4.13)
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of the ith player is only required to be continuous in all variables and concave
in the strategies of i, that is,

πi(x1, . . . , xi−1,
∑
µ

λµξµ, xi+1, . . . , xn) ≥
m∑
µ=1

λµπi(x1, . . . , xi−1, ξµ, xi+1, . . . , xn)

(1.4.14)
for all ξµ ∈ Ki. In (1.3.3), we had, more restrictively, required the extension of
the utility function to mixtures to be a linear extension of that on pure actions.
Here, in contrast, the utility derived from a mixture of pure actions could be
higher than the corresponding convex combinations of the utilities of those pure
actions.

Theorem 1.4.3. (Nash): Under the assumptions just specified, there exists a
Nash equilibrium, that is, some x∗ with x∗i ∈ Ki for every i that satisfies

πi(x∗1, . . . , x
∗
n) = max

xi∈Ki
πi(x∗1, . . . , x

∗
i−1, xi, x

∗
i+1, . . . , x

∗
n). (1.4.15)

Proof. For x, y ∈ X := K1 × · · · ×Kn, we put

f(x, y) :=
n∑
i=1

(πi(y1, . . . , yi−1, xi, yi+1, . . . , yn)− πi(y)). (1.4.16)

f then is concave in the first and continuous in the second argument and satifies
f(x, x) = 0. By Theorem 1.4.2, there exists some x∗ ∈ X with

f(x, x∗) ≤ 0 for all x ∈ X. (1.4.17)

This means, when applying it to x = (x∗1, . . . , x
∗
i−1, xi, x

∗
i+1, . . . , x

∗
n)

πi(x∗1, . . . , x
∗
n) ≥ πi(x∗1, . . . , x∗i−1, xi, x

∗
i+1, . . . , x

∗
n) for all i, (1.4.18)

because for that particular choice of x, all terms in (1.4.16) with j 6= i are zero.
(1.4.18) is (1.4.15).

1.5 Quantal response equilibria and another proof
of the Nash equilibrium theorem

In fact, the topological aspects behind the Nash equilibrium theorem are simpler
than the preceding may suggest and a geometrically more intuitive proof can be
found. In order to understand the topological situation, let us again look at the
case of two players. This case already reveals the geometric picture, and what
we shall describe in this simplest situation readily generalizes to the general
case.

If the response correspondance from (1.3.1), here recalled as

ρi : Σ−i ⇒ Σi
σ−i 7→ {σi ∈ Σi : πi(σi, σ−i) ≥ πi(τi, σ−i) for all τi ∈ Σi}, (1.5.1)
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were single-valued, it could just be depicted as a graph on Σ−i with values in
Σi. Likewise, the corresponding map ρ−i for −i would then be a graph over
Σi with values in Σ−i. It then seems geometrically clear that any two such
graphs need to intersect somewhere. Just consider the case where each players
has only two pure strategies. Then Σi and Σ−i both reduce to the unit interval
[0, 1]. And the product Σ = Σi × Σ−i then is the unit square [0, 1] × [0, 1]. ρi
then is a map from the second to the first factor, whereas ρ−i maps the first
to the second factor. And clearly, their graphs then have to intersect. Such an
intersection point of the graphs, however, is a fixed point for the best-response
map ρ of (1.3.12), hence a Nash equilibrium, by Lemma 1.3.1. This principle
holds in any dimension. A graph from Σ−i to Σi and one from Σi to Σ−i need
to intersect. And the principle also generalizes to more than two players. For
a player i, −i then stands for the collection of all her opponents, that is, the
set of all other players in the game. Likewise, Σ−i then is the product of the
strategy simplices of those players, i.e.,

Σ−i :=
∏
j 6=i

Σj . (1.5.2)

The best response correspondance, or as we assume for the moment, map, then is
defined as before in (1.5.1). It simply gives the best response to the combination
of the strategies of all the opponents. When there are n players, we have the
total strategy space

Σ :=
n∏
j=1

Σj (1.5.3)

of dimension
∑
j(mj − 1) (where mj is the number of pure actions of j), and

for each i, we have the best response map ρi : Σ−i → Σi. The graph of ρi has
dimension equal to the dimension of its domain Σ−i, that is,

∑
j 6=i(mj − 1). Its

codimension is therefore simply mi−1. Since the sum of all these codimensions
equals the dimension of Σ, these graphs should then intersect in finitely many
points. This is a general principle in algebraic topology, see e.g. [19]. Of course,
we have to make sure that this finite number of intersection points is not 0. In
this section, we shall provide a homotopy argument to see this. This argument
will at the same time address the slight technical problem that in general, in
the Nash situation, the ρi are only correspondances, but not maps, because the
best response need not be unique. The argument will consist in approximating
such a correspondance by a genuine map.

This approximation will be of independent interest. In fact, the idea is to
abandon the requirement of strict rationality. Players will no longer be able to
play deterministically, but only stochastically. Therefore, they can make errors,
but it is assumed that the probability of a choice of strategy should depend on
the utility it yields. Strategies yielding higher utilities should be chosen with
higher probability.

When the concept of rationality of game theory is abandoned or at least
relaxed, we need some other rule for transforming the utilities of the players
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into action choices. Here, we shall utilize a particular rule for determining
the probabilities of i from her utility values, the concept of a quantal response
equilibrium (QRE) as introduced by McKelvey and Palfrey in [14]. As the
discerning reader will realize, only certain continuity properties and limiting
behaviors of this rule will be needed in the sequel, but it may be helpful to work
with some definite rule, and the QRE is particularly simple. The QRE rule,
then, stipulates that

pαi = Pαi (pγ
−i;λ) :=

1
Zi(λ)

exp(λ
∑
γ

πi(α,γ)pγ
−i) (1.5.4)

for each player i, where γ stands for the collection of strategies of all the oppo-
nents. 0 ≤ λ ≤ ∞ is a parameter, to be utilized below, and

Zi(λ) :=
∑
δ

exp(λ
∑
γ

πi(δ,γ)pγ
−i) (1.5.5)

is the normalization factor that ensures
∑
α p

α
i = 1 for each i. Because of this

normalization, the range from which player i can choose her probabilities is the
(mi − 1)-dimensional simplex Σi.
We note that, for λ < ∞, the probabilities in (1.5.4) are all strictly positive,
that is,

Pαi (pγ
−i;λ) > 0 for all i, α,γ. (1.5.6)

Thus, any strategy will be chosen with some positive probability. When λ is
large, suboptimal strategies will only be chosen with rather small probabilities,
however. λ may be taken to reflect the degree of rationality of the players. In
fact, we could even give each player i an individual such parameter λi.

In any case, this means that the map

Pαi (.;λ); Σ−i → Σi (1.5.7)

always maps Σ−i to the interior of Σi.
An equilibrium is achieved when (1.5.4) holds for all players i simultaneously.
Geometrically, this means that we look for a point of intersection of the graphs
of the functions Pαi (pγ

−i), i = 1, . . . , n. Since each such graph is of codimension
mi−1 in the space Σ of (1.5.3) of dimension

∑
j(mj−1), these graphs generically

intersect in a finite collection of points. Here is a simple intuitive argument to
see this: Each such graph comes from a function defined on the unit quadrant
in some subvector space of dimension mi − 1 in the vector space of dimension∑
j(mj − 1). These subvector space intersect in a single point, the coordinate

origin. Then also a collection of graphs over those subvector spaces should
typically intersect in one or several points.
At this point, however, this collection of intersection points is possibly empty.
We shall show that the algebraic intersection number is always 1, for each value
of λ, so that there always has to be at least one intersection point. Moreover, we
shall show that for λ→∞, such intersection points converge to Nash equilibria
of the original game, thereby showing the existence of such Nash equilibria.
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We make the following observations. For elementary properties of algebraic
intersection numbers, we refer to [19] or any other good textbook on algebraic
topology.

1. For λ = 0, (1.5.4) becomes

pαi =
1
mi

for all i, α. (1.5.8)

Therefore, with orientations appropriately chosen, the algebraic intersec-
tion number for the graphs at λ = 0 is 1.

2. For 0 ≤ λ <∞, an intersection cannot take place at any boundary point
of Σ, as observed above as a consequence of (1.5.6), the Pi do not map to
boundary points.

3. Since the graphs of Pαi (pγ
−i;λ) depend continuously on λ and since by

2., no intersection point can disappear at the boundary, the algebraic
intersection number of the graphs is 1 for all 0 ≤ λ < ∞. In particular,
there is always at least one intersection point of those graphs in the interior
of Σ.

Thus, we have shown that for any λ <∞, there always exists a QRE. We now
consider the limits of the QRE graphs (1.5.4) and their intersection points for
λ → ∞, in order to see that these QREs always have limits which are Nash
equilibria.

4. If for a given collection pγ
−i, there is a unique α0 with

α0 = argmaxα
∑
γ

πi(α,γ)pγ
−i, (1.5.9)

then

lim
λ→∞

Pα0
i (pγ

−i;λ) = 1 and lim
λ→∞

P βi (pγ
−i;λ) = 0 for β 6= α0. (1.5.10)

This follows directly from (1.5.4), (1.5.5).

5. The set of tuples (pγ
−i) for which there exists more than one α′ with

α′ = argmaxα
∑
γ

πi(α,γ)pγ
−i (1.5.11)

is a union of hyperplanes in Σ−i because the functions
∑

γ πi(α,γ)pγ
−i are

linear wr.t. the pγ
−i. In fact, if there exist two such maximizing values

α1, α2, then we have the equation
∑

γ(πi(α1,γ)− πi(α2,γ))pγ
−i = 0, and

if we ignore the trivial case where this is satisfied for all pγ
−i, the solution

set is of codimension 1, that is, a hyperplane. We call these hyperplanes
singular. When crossing such a singular hyperplane, the maximizing α′



1.5. QUANTAL RESPONSE EQUILIBRIA AND ANOTHER PROOF OF THE NASH EQUILIBRIUM THEOREM23

in (1.5.11) changes, because the expression
∑

γ(πi(α1,γ) − πi(α2,γ))pγ
−i

changes its sign upon crossing. In particular, on the two sides of such a
hyperplane, the maximizing α0 in (1.5.9) is different. Thus, also the α0

with (1.5.10) changes.
On such a singular hyperplane, that is when the opponents play a singular
pγ
−i, player i is indifferent between the different α′ satisfying (1.5.11) as

they all yield the same utility.

6. In particular, when we restrict the functions Pαi to a line L (a one-
dimensional subspace) in Σ−i that is transversal to all the singular hy-
perplanes, we find some α0 for which limλ→∞ Pα0

i (pγ
−i;λ) jumps from 0

to 1 at the intersection π of L with such a singular hyperplane.

7. Therefore, the entire line (π, 0 ≤ pα0
i ≤ 1) is contained in the pointwise

limit set of the graphs of the functions Pα0
i (pγ

−i;λ) for λ→∞.

8. Thus, the limit set of the graphs of the Pαi (pγ
−i;λ) for λ → ∞ consists

either solely of the set Σ−i×(pαi = 0) or of Σ−i×(pαi = 1) or of some regions
where pαi = 0 and some where pαi = 1 connected by pieces of hyperplanes
in Σ−i times sets 0 ≤ pαi ≤ 1 for those α for which the probabilities jump
across the hyperplane.

9. Intersection points of the graphs of the functions Pα0
i (pγ

−i;λ) for the dif-
ferent players i converge to intersection points of their pointwise limit sets.
Some or all of these limit intersection points may lie in the boundary of Σ.
It is also possible, however, that some of them lie in the connected pieces
described in 8. where some or all of the pαi are undetermined.

We now see the proof of the Nash theorem: By 8., the limits of the QRE graphs
yield the best response sets for the players. By 9., the intersection of these
best response sets is not empty. Since by definition, an intersection point of the
best response sets of all players is a Nash equilibrium, the existence of such an
equilibrium follows.

Let us consider some examples in details, to make the idea of the preceding
topological argument clear.

1. We start with a simple version of the battle-of-the-sexes game,

2,1 0,0
0,0 1,2

,
(1.5.12)

i being the row and −i being the column player. The first move of each
player, that is, up for i and left for −i, will be denoted by +, the second
on, down for i and right for −i, by −. An appropriately indexed p will
again stand for the corresponding probabilities.
We note that this game is symmetric in the sense that it remains invariant
if we simultaneously interchange the two players and the labels of the
move, as the pay-off of i for some combination of moves equals the pay-off
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of −i when the opposite moves are selected. This symmetry will then
extend to the QRE situation.
The Nash equilibria can be easily understood in the following geometric
manner. In general, the expected pay-offs of i and −i are given by

(πi(x+
i , x

+
−i)p

+
−i+πi(x

+
i , x

−
−i)p

−
−i)p

+
i +(πi(x−i , x

+
−i)p

+
−i+πi(x

−
i , x

−
−i)p

−
−i)p

−
i

(1.5.13)
and

(π−i(x+
−i, x

+
i )p+

i +π−i(x+
−i, x

−
i )p−i )p+

−i+(π−i(x−−i, x
+
i )p+

i +π−i(x−−i, x
−
i )p−i )p−−i.

(1.5.14)
Since p−i = 1 − p+

i , for each fixed probabilities of her opponent, the ex-
pected pay-off of i is a linear function of her p+

i which is constrained to
the unit interval [0, 1]. When this linear function has a negative slope, the
maximum is achieved for p+

i = 0, when the slope is positive, at p+
i = 1,

and when the slope is 0, she is indifferent. In the present example, the
slope is positive for p+

−i > 1/3, negative for p+
−i < 1/3, and 0 for p+

−i = 1/3.
Since the game is symmetric, the corresponding holds for −i. Therefore,
the Nash equilibria are given by

p+
i = 1 = p+

−i, the right endpoints of two lines with positive slope

p+
i = 0 = p+

−i, the left endpoints of two lines with negative slope

p+
i = 2/3, p+

−i = 1/3, the intersection of the two lines with 0 slope.
(1.5.15)

At the mixed equilibrium, the expected pay-off for each player is 2/3,
according to (1.5.13), which is smaller than the pay-offs at the pure equi-
libria which are 2|1 and 1|2.
We consider p+

i and p+
−i as coordinates, ranging from 0 to 1, of course. By

(1.5.13), noting p−i = 1− p+
i and p−−i = 1− p+

−i, for each value of p+
−i, we

find either a single value of p+
i or the line 0 ≤ p+

i ≤ 1 of those values that
maximize the pay-off of i. The collection of these maximizing sets when
p+
−i ranges from 0 to 1 is a connected set that connects the line p+

−i = 0
with the line p+

−i = 1. Similarly, the collection of the maximizing values
of p+

−i when p+
i ranges from 0 to 1 connects the line p+

i = 0 with the line
p+
i = 0. Therefore these two maximizing sets need to meet at a boundary

point or intersect at least once. Since the intersections correspond to the
Nash equilibria, this geometrically demonstrates the existence of a Nash
equilibria.
The same kind of reasoning also works for QRE equilibria. For each value
of p+

−i, we find the optimal p+
i , and therefore, when p+

−i varies, this col-
lection of optimal values of p+

i connects the line p+
−i = 0 with the line

p+
−i = 1, and analogously for −i, and the intersections of these curves

(or their higher dimensional analogues in the general case) then yield the
QREs. In fact, when the rationality parameter λ goes to 0, the limiting
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response curves are the lines p+
i = 1

2 and p+
−i = 1

2 , resp., which intersect at
the common value 1

2 . From this, the existence of intersections for positive
parameter values can then also be deduced from a homotopy argument.
This is the basic idea of the proof of the Nash theorem as presented in
this section.
According to (1.5.4), (1.5.5), the QRE is given by

p+
i =

exp(λ2p+−i)

exp(λ2p+−i)+exp(λ(1−p+−i))
=: fi(p+

−i) (1.5.16)

p+
−i = exp(λp+i )

exp(λ2(1−p+i ))+exp(λp+i )
=: f−i(p+

i ). (1.5.17)

The function fi is the QRE analogue of the best response correspondance
ρi. We note that both these functions, fi and f−i, are strictly increasing.
We have the symmetry

fi(p) + f−i(1− p) = 1 for all p. (1.5.18)

Inserting one of the equations of (1.5.16) into the other then yields a fixed
point equation for p+

i or p+
−i. Equivalently, we look for the intersections

of the two graphs resulting from (1.5.16), that is for p+
i as a function of

p+
−i and for p+

−i as a function of p+
i .

For large enough λ, the two graphs then intersect thrice. One intersection
point is symmetric, that is, p+

−i = 1 − p+
i and unstable, whereas the two

other ones are nonsymmetric and stable, but symmetric to each other;
one of them is near (1, 1), the other near (0, 0) for large λ. In contrast,
for small λ, we have the same situation as for λ = 0, that is, a single
intersection. In fact, it is not hard to show that a pitchfork bifurcation
creates three from one intersection points as λ increases.

2. We now consider the game with pay-off table

1,1 2,1
1,2 0,0

.
(1.5.19)

Here, i prefers the first move, +, except when −i plays +, in which case
she is indifferent. Likewise, −i prefers +, except if i plays +, in which
case she is indifferent. Thus, since both of them prefer their first move,
there is a tendency to end up at (1, 1) even though this is not Pareto
optimal, in the sense that one player could get more without the other
losing anything. This effect will now become clearer when we analyze the
QREs.
For finite λ, analogously as in (1.5.16), (1.5.18), we put

p+
i =

exp(λ(2−p+−i))
exp(λ(2−p+−i))+exp(λp+−i)

=: fλi (p+
−i) (1.5.20)

p+
−i = exp(λ(2−p+i ))

exp(λ(2−p+i ))+exp(λp+i )
=: fλ−i(p

+
i ). (1.5.21)
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Then fi(p) is a decreasing function with

fλi (1) =
1
2
, fλi (0) >

1
2
, (1.5.22)

and the same holds for fλ−i. In fact,

lim
λ→∞

fλi (s) = 1 for 0 ≤ s < 1. (1.5.23)

Therefore, the intersection of their graphs, that is, the QRE, has to be
contained in the upper quadrant, that is, it has to occur for

1
2
< p+

i < 1,
1
2
< p+
−i < 1. (1.5.24)

This then also constrains the possible limits of QREs for λ → ∞ to that
region. In particular, those two Nash equilibria that are strict for at least
one of the players, that is +,− and −,+ are not limits of QREs. In
particular, from (1.5.23), we see that the limit is +,+ which is not strict
as either player could increase the other’s pay-off while keeping her/his
own. Of course, the reason why the equilibria +,− or −,+ do not occur
as limits of QREs is that at such a equilibrium, in contrast to +,+, the
player playing − bears the risk that the opponent might make a mistake
and also play − in place of +. Now, in the QRE situation, for finite λ,
the players are not completely rational and play the wrong move − with a
certain positive probability. Thus, they do make mistakes with a certain
nonvanishing probability, and therefore, players should guard themselves
against mistakes of their opponents and play + with a higher probability
than −, and in fact with probability going to 1 as λ tends to infinity.
This example thus shows that not all Nash equilibria have to be limits of
QREs.

3. We now wish to analyze the dependence on the value of the parameter λ
more closely.

We recall the matching pennies game (1.2.6)

1,-1 -1,1
-1,1 1,-1

.
(1.5.25)

According to (1.5.4), (1.5.5), as in (1.5.16), (1.5.18), the QRE is given by

p+
i =

exp(λp+−i−λ(1−p+−i))
exp(λp+−i−λ(1−p+−i))+exp(λ(1−p+−i)−λp

+
−i)

=: fi(p+
−i) (1.5.26)

p+
−i = exp(λ(1−p+i )−λp+i )

exp(λ(1−p+i )−λp+i )+exp(λp+i −λ(1−p+i ))
=: f−i(p+

i ). (1.5.27)

With
φλ(p) := exp(λ(2p− 1)), (1.5.28)
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this can be written as

p+
i =

φ2
λ(p+−i)

φ2
λ(p+−i)+1

(1.5.29)

p+
−i = 1

φ2
λ(p+i )+1

. (1.5.30)

The unique QRE is then given by

p+
i = p+

−i =
1
2
. (1.5.31)

This is the unique fixed point of the iteration of (1.5.26), (1.5.27). That
is, we start with some value of p+

−i, say, insert this value into (1.5.26)
to get the corresponding p+

i = fi(p+
−i), then in turn insert that value

into (1.5.27) to compute the next iteration value of p+
−i, and so on, then

the only stationary pair of values of this iteration is given by (1.5.31).
Equivalently, this is a fixed point of both f−i ◦ fi and fi ◦ f−i.
In order to check for stability, we compute the derivatives of fi(p+

−i) and
f−i(p+

i ) at this fixed point; they are

f ′i(p
+
−i) = 2λφ2

λ

(φ2
λ+1)2

=
λ

2

f ′−i(p
+
i ) = − 2λφ2

λ

(φ2
λ+1)2

= −λ
2

at p+
i = p+

−i =
1
2
.

These derivatives are smaller than 1 in absolute value for λ < 2, but larger
for λ > 2. At λ = 2, they become 1 and −1, resp. Therefore (see [10]
for an explanation of the basic bifurcation phenomena), at this value of λ,
the fixed point loses its stability, and for λ > 2, we obtain a stable orbit of
period 2 for the iteration. That is, exploiting also the symmetry between
the two players, there are values p1 < 1

2 , p
2 > 1

2 such that

fi(p1) = p1, f−i(p1) = p2, fi(p2) = p2, f−i(p2) = p1. (1.5.32)

For λ→∞, p1 tends to 0, p2 to 1. This simply reflects the fact that when
−i chooses the first move, so should i, but when i chooses the first move,
−i should use the second one, whereas i should respond to the second
move of −i by her second move, but in turn i should respond to i’s second
move by his first move. For λ < 2, however, the fixed point is stable, and
both players would happily converge to that fixed point under iteration.
While the preceding analysis only establishes the local stability of the fixed
point under small perturbations, in fact, in this example, it is not hard to
check that it is globally stable, that is, the claim of the preceding sentence
is justified.

4. When we change the game to the symmetric

1,1 -1,-1
-1,-1 1,1

,
(1.5.33)
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a coordination game like the battle of sexes, we have instead for the QRE

p+
i =

exp(λp+−i−λ(1−p+−i))
exp(λp+−i−λ(1−p+−i))+exp(λ(1−p+−i)−λp

+
−i)

=: fi(p+
−i) (1.5.34)

p+
−i = exp(λp+i −λ(1−p+i ))

exp(λp+i −λ(1−p+i ))+exp(λ(1−p+i )−λp+i )
=: f−i(p+

i ), (1.5.35)

that is, the two response functions are identical. Again

p+
i = p+

−i =
1
2

(1.5.36)

is a fixed point. With (1.5.28), we then have

f ′i(p
+
−i) = 2λφ2

λ

(φ2
λ+1)2

=
λ

2

f ′−i(p
+
i ) = 2λφ2

λ

(φ2
λ+1)2

=
λ

2
at p+

i = p+
−i =

1
2
.

Now, for λ = 2, both derivatives become 1 at this fixed point. The fixed
point again loses its stability, but this time through a pitchfork bifurcation.
That means that for λ > 2, two further fixed points p1 < 1

2 , p
2 > 1

2 emerge
which are both stable, while the fixed point at 1

2 is unstable. Thus, for an
iteration as in the preceding example, when the starting value is < 1

2 , an
iteration as in the preceding example will converge to p1, and when it is
> 1

2 to p2. For λ→∞, these two stable fixed points converge to the two
pure Nash equilibria where both players take the same move. This is, of
course, the same phenomenon as in the first example.

We now turn to the game theoretical interpretation of the concept of a QRE
and the mathematical findings of our examples.

We recall that game theory models agents that can choose between different
options or moves by taking into account the effects of the moves of the other
players in a fully rational manner. A Nash equilibrium (NE) )in such a game
is a selection of players’ moves in such a manner that neither of them can in-
crease their pay-offs by unilateral deviation from that choice of moves. In a
pure NE, each player plays a single move, whereas in a mixed NE, players can
play random mixtures of moves with fixed probabilities. As we have seen, each
game possesses at least one NE, and generically only finitely many. Players are
assumed fully rational in the sense that they can determine their best moves in
mutual anticipation of their opponents’ actions. This leads to the question of
how to model the empirically observed deviations from full rationality of real
humans in game theoretic situations. In fact, there are several different reasons
why the behavior of humans in such situations may not be or may not seem or
appear to be completely rational.
The concept of a quantal response equilibrium (QRE) of McKelvey and Palfrey[14]
represents an attempt to address this issue within a formal model. Here, player



1.5. QUANTAL RESPONSE EQUILIBRIA AND ANOTHER PROOF OF THE NASH EQUILIBRIUM THEOREM29

i selects her move probabilities according to (1.5.4) on the basis of the expected
pay-offs given the move probabilities of her opponents. The distribution occur-
ring in (1.5.4) is called a Gibbs distribution in statistical mechanics, and the
parameter λ would correspond to an inverse temperature in the jargon of that
field. (Of course, such an interpretation makes no sense in our context, but we
nevertheless will use that terminology.)

Her opponents do the same, and when the resulting probabilities match, in
the sense that her move probabilities induce precisely those move probabilities
for her opponents that enter into the Gibbs distribution that determines hers,
and this is true for all players, then they are at a QRE.

Of course, this is analogous to the concept of a NE which requires that a
player’s move leads to precisely those opponent moves against which it is a
best response. Therefore, as we have formally shown, when the parameter λ
of the Gibbs distributions that can be interpreted as expressing the degree of
rationality of the players tends to infinity the situation approaches the one of
the original rational game, and the QREs converge to NEs.
Both empirically and theoretically, there are different sources of non-rationality
of players, and in fact, different interpretations of the deviations from rationality
in such quantal response games have been offered in [14, 15]. Let us list some
possible interpretations:

1. Players are irrational in the sense that they do not make optimal choices
of their actions given their pay-offs, but with the resulting probability
distribution of their moves depending on the pay-offs, in the sense that
very bad mistakes (in terms of pay-offs) are less probable than milder
ones. This has some basis in mathematical psychology, under the label
“probabilistic choice”. This is the original interpretation of [14].

2. The model is not about individual players, but about collections of players.
Each individual player may well be fully rational, but fluctuations in the
pay-offs lead to a distribution of moves. An external observer then has
to accept the resulting probability distribution as the basis of his models.
This is the situation of econometrics as treated, for instance, by McFadden
[13].

3. The players face stochastic perturbations of their pay-offs (with noise of a
certain type, assumed in standard econometrics and leading to the partic-
ular form of the quantal response functions discussed here). They know
their own pay-off distributions exactly, but do not have the precise infor-
mation about the pay-off distributions of the other players. This interpre-
tation is proposed in [15].

There also arises the question about the meaning and the interpretation of
the iterations discussed in the last examples for the stability of the fixed points.
We could have

1. An iterated game. That is, the two players take turns in selecting their
moves on the basis of the previous round of the game. The meaning of
the probabilities involved then is not so clear, however; we could have
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(a) Subjective probabilities, that is, beliefs of each player about the prob-
abilities employed by her opponent, or

(b) Relative frequencies of moves from all the previous rounds. In that
case, however, the iteration should proceed somewhat differently.
Each player plays a concrete move according to his current prob-
ability distribution, and on this basis, his relative move frequencies
are updated. This, however, would lead to a different iteration than
that considered above. A similar type of stability analysis neverthe-
less applies.

2. A population game. That is, each index i represents a population of
players, and for each instance of the game, one representative of each
population is chosen for playing. The game is played in parallel with
many such instances so that each individual has the opportunity to play.
In each round, the players are newly assembled from their populations so
that each individual usually plays against different opponents in different
rounds. The probabilities involved then are the relative frequencies for the
moves within each population. These frequencies will then change from
round to round, and the adaptation rule (1.5.4) concerns these frequencies
in the population.

3. A cognitive process. That is, player i thinks that the opponent will play
with his probabilities p1

−i, and she then selects her move probabilities
p0
i = fi(p1

−i) according to (1.5.4). Iteration then means that she assumes
that the opponent had chosen his probabilities in turn via p1

−i = f−i(p2
i )

for some putative probability p2
i of hers which in turn would have been

the response fi(p3
−i) to some putative probability p3

−i of −i, and so on.

This section is based on joint work with Nils Bertschinger, Eckehard Olbrich
and David Wolpert. The proof of the Nash theorem presented in this section is
taken from the unpublished manuscript [3]. For applications of these ideas, see
[23].



Chapter 2

Epistemic aspects

2.1 Cycles

We consider once more the matching-pennies game (1.2.6),
b1 b2

a1 1,-1 -1,1
a2 -1,1 1,-1

. (2.1.1)

Here, when B knows that A plays a1, he would play b2, in which case,
however, A would switch to a2 which would induce B to play b1 which would
let A play a1, and then the cycle would repeat itself. We represent this by the
diagram

1,-1 -1,1

-1,1 1,-1

............................................................................................................ ............

..............................................................................................................
...
.........
...

........................................................................................................................

........

........

........

........
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........

........

........

.................

............

, (2.1.2)

or in terms of strategy combinations,

a1, b1 a1, b2

a2, b1 a2, b2

............................................................................................. ............

..............................................................................................................
...
.........
...

.........................................................................................................

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

. (2.1.3)

These diagrams represent the reactions of the players to the actions of their
opponents. We may, however, also carry out an epistemic analysis. Thus, A
would play a1 if she believed that B played b1 which, assuming that B is rational,
must be caused by B believing that A played a2 which in turn must come from
A’s belief, at this stage of the belief iteration, that B played b2 which in turn

31
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comes from B’s belief that A played a1, and the cycle repeats itself. That is,
epistemically, the arrows should go in the opposite directions,

a1, b1 a1, b2

a2, b1 a2, b2

.........................................................................................................

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

............................................................................................. ............

..............................................................................................................
...
.........
...

. (2.1.4)

2.2 Spaces of probability measures

We need to recall some mathematical concepts. While we shall try to explain the
meaning of those concepts, we do not provide all the technical proofs, referring
to [11] or [1] instead. The main result of interest for us is Theorem 2.2.1, and
readers familiar with the mathematical concepts can directly turn there.

Definition 2.2.1. A topological space (X,O(X)) is defined by a collection
O(X) of subsets, called open, of some set X satisfying

(i) ∅, X ∈ O(X).

(ii) If A,B ∈ O(X), then also A ∩B ∈ O(X).

(iii) For any collection (Ai)i∈I ⊂ O(X), also
⋃
i∈I Ai ∈ O(X).

The complements of open sets are called closed.

We shall often simply write X instead of (X,O(X)) for a topological space.
Of course, one could take for O(X) simply the collection of all subsets of

X. However, in most cases of interest, the open sets should be distinguished by
particular properties in order to make the concept useful. Likewise, the opposite
case where one lets O(X) solely consist of X itself and ∅ is typically not of
much interest or use. The next concept will provide us with better examples of
topological spaces.

Definition 2.2.2. A metric space (X, d) is a set X with a function d : X×X →
R+ satisfying for all x, y, z ∈ X

(i) d(x, y) > 0 iff x 6= y (positive definiteness)

(ii) d(x, y) = d(y, x) (symmetry)

(iii) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

We say that a sequence (xn)n∈N in a metric space (X, d) converges to the point
x ∈ X, in symbols xn → x, if

d(xn, x)→ 0 for n→∞. (2.2.5)
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Such a point x is then called the limit of the sequence (xn), x = limn→∞ xn.
(Observe that such a limit is necessarily unique.)
We say that the metric space (X, d) is complete if every Cauchy sequence (xn)
(that is, for every ε > 0, there exists some N ∈ N with d(xm, xn) < ε whenever
m,n > N) possesses a limit.
We say that the metric space (X, d) is compact if every sequence posseses a
convergent subsequence.
(X, d) is separable if it carries a dense subsequence xn, that is, for every x ∈
X, ε > 0, there exists some n ∈ N with d(x, xn) < ε.

We shall often simply write X instead of (X, d) for a metric space.
A metric d defines a topology on a set X by calling the distance balls

U(x, r) := {y ∈ X : d(x, y) < r} (2.2.6)

for all x ∈ X, r ≥ 0 open and letting O(X) consisting of all finite intersections
and arbitrary unions of such balls. (We also say that the open balls generate
the topology.)
Subsequently, we shall also need the closed balls

B(x, r) := {y ∈ X : d(x, y) ≤ r}. (2.2.7)

Of course, one needs to verify that the sets B(x, r) are closed, indeed, but this
is not too hard. We observe that a set consisting of a single point x is closed,
as it is given by the ball B(x, 0).

Definition 2.2.3. A topological space (X,O(X)) is called metrizable if there
exists a metric on X that generates the topology, that is, the open balls of d
generate the collection O(X) of open sets. It is called completely metrizable if
its topology can be generated by a complete metric.
A Polish shace is a completely metrizable, separable, topological space.

For instance, on the real line R, we have the Euclidean metric d(x, y) =
|x− y|, and this generates its standard topology.
We note that a metric generating a given topology in general is not unique.
Nevertheless, when we shall work with a metrizable space, we shall usually im-
plicitly choose some metric generating its topology, so long as our constructions
and results will not depend on that particular choice. Put differently, the reason
is that metric spaces enjoy stronger properties than general topological spaces,
and therefore, when a space is metrizable, we can appeal to those properties of
metric spaces.

When the metrizable topological space X is separable, for instance Polish,
with a dense sequence (xn), then the balls U(xn, r) with rational r already
generate the topology. Such a space whose topology is generated by a countable
family of open sets is called second countable.

Definition 2.2.4. A function f : X → R on a topological space (X,O(X)) is
called continuous if the preimage of any open subset of R is an open subset of
X.
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It is easy to check that a function f : X → R on a metric space (X, d) is
continuous iff for every x ∈ X, ε > 0 there exists some δ > 0 with |f(x)−f(y)| <
ε whenever d(x, y) < δ.

Definition 2.2.5. We denote by Cb(X) the space of bounded continuous func-
tion on the topological space (X,O(X)). We provide this space with the norm

‖f‖∞ := sup
x∈X
|f(x)|. (2.2.8)

The sequence (fn)n∈N ⊂ Cb(X) converges uniformly to f ∈ Cb(X) iff

lim
n→∞

‖fn − f‖∞ = 0. (2.2.9)

There also exists amother, weaker, notion of convergence. (fn) converges
pointwise to the function f iff

lim
n→∞

fn(x) = f(x) for all x ∈ X. (2.2.10)

Whereas the uniform limit of a sequence of continuous functions is continuous
again, this need not be so for pointwise limits. In fact, for instance, we may
consider characteristic functions of sets B,

χB(y) :=

{
1 if y ∈ B
0 if y /∈ B.

(2.2.11)

Such functions are usually not continuous, as they jump from 0 to 1 at the
boundary of B. The characteristic function of a closed ball χB(x,r) then is the
decreasing (pointwise) limit of a sequence of continuous functions,

fn(y) :=


1 if y ∈ B(x, r)
1− nd(y,B(x, r)) if d(y,B(x, r)) ≤ 1

n

0 else.
(2.2.12)

Similarly, the characteristic function of an open ball is the increasing limit of
a sequence of continuous functions. This offers the advantage that it often
suffices to check certain properties for continuous functions and then pass to a
pointwise limit to extend them to characteristic functions of open or closed balls,
and then more generally to open or closed sets in a metric space, as those sets
are generated by the balls. And when we can handle characteristic functions,
we can also handle step functions, that is, functions, that assume only finitely
many values, each of them on some measurable subset of our space, as defined
in the next definition. This is the basis of Lebesgue integration theory.
In particular, we can use a construction as in (2.2.12) to show that for any
two points x1, x2 in a metric space X, there exists a continuous function with
f(x1) = 1, f(x2) = 0. From this, we can derive
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Lemma 2.2.1. In a metric space X, a sequence (xn) converges to a point x iff

f(xn)→ f(x) for all continuous functions f. (2.2.13)

Definition 2.2.6. A measurable space (X,B) is a set X equipped with a σ-
algebra B, a set of subsets of X satisfying:

(i) X ∈ B.

(ii) If B ∈ B, then so is X\B.

(iii) If Bn ∈ B for all n ∈ N, then so is
⋃
n∈N

Bn.

The members of B then are called measurable sets.

The preceding properties imply:

(iv) ∅ ∈ B.

(v) If B1, ..., Bm ∈ B, then so is
m⋂
j=1

Bj .

In order to obtain a σ-algebra, we can start with any collection of subsets of
X and close it up under complements and countable unions. For a topologi-
cal space (X,O(X)), the collection of open sets in general is not closed under
complements, but we can thus take the smallest σ-algebra containing all open
subsets of X. The sets in this σ-algebra are called Borel sets. Since the closed
sets are the complements of the open ones, this Borel sigma algebra then con-
tains both the open and the closed sets. And since this Borel sigma algebra is
generated by either the open or the closed sets, it suffices to check properties on
one of those subclasses of sets, for instance when we shall consider probability
measures below.
So far, however, one might be naturally inclined to simply use the entire Boolean
algebra of all subsets of X as a σ-algebra. The reason why one works with
smaller σ-algebras than that one is that when the σ-algebra is too large, it be-
comes too restrictive to satisfy the properties in the next definition, the really
important one.

Definition 2.2.7. A probability measure on (X,B) is a function

µ : B → [0, 1]

satisfying:

(i) µ(
⋃
n∈N

Bn) =
∑
n∈N

µ(Bn), if Bi ∩Bj = ∅ for all i 6= j, i.e., if the sets Bn are

pairwise disjoint,

(ii) µ(X) = 1.

A triple (X,B, µ) with the preceding properties is called a probability measure
space. When B is the Borel σ-algebra, we speak of a Borel probability measure.
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One important point is that the additivity in (i) is required only for countable
families whereas in (iii) of Def. 2.2.1, arbitrary families were considered. This
may lead to certain technical difficulties. These difficulties, however, are avoided
for second countable spaces, that is, spaces with a countable basis of their
topology, like separable metric spaces as observed above, after Def. 2.2.3. For
instance,

Lemma 2.2.2. Any measure µ on a second countable topological space X pos-
sesses a unique support, that is, a closed set suppµ ⊂ X such that

(i) µ(X\suppµ) = 0,

(ii) µ(U) > 0 whenever U is open with U ∩ suppµ 6= ∅.

Proof. Let
V :=

⋃
{U open, µ(U) = 0}, (2.2.14)

which, since X is second countable, is a countable union of open sets of measure
0, hence by (i) of Def. 2.2.7,

µ(V ) = 0. (2.2.15)

We put M := X\V . Then M is closed, and for any open U with

U ∩M 6= ∅, (2.2.16)

we have µ(U) > 0, as otherwise by (2.2.14), U ⊂ V , contradicting (2.2.15),
(2.2.16). Thus, M = suppµ. (In fact, we have µ(U ∩ suppµ) > 0, as U =
(U ∩ suppµ) ∪ (U ∩ V ), and the second component has measure 0.)

More generally, we could consider (Borel) measures µ, that is, µ : B →
R+ ∪ ∞, dropping the requirement µ(X) = 1. On a (probability) measure
space, we can develop an integration theory. First, one defines the integral of a
step function χ (i.e., for a collection of disjoint measurable sets Bi, i = 1, . . . , n
with X =

⋃
iBi, χ ≡ ci is constant on each Bi), one defines the integral in the

obvious way, ∫
χdµ :=

∑
i

ciµ(Bi). (2.2.17)

One then looks at the class of functions f that can be approximated by a se-
quence of step functions in such a way that the corresponding integrals converge
to a value that then is defined as the integral

∫
fdµ. We omit the details, re-

ferring to, e.g., [11]. In particular, for a Borel probability measure on a metric
space, all continuous functions are integrable.

As in [1], we now consider a metrizable topological space X and the set
P(X) of all Borel probability measures on it.

Definition 2.2.8. A sequence (µn)n∈N of Borel probability measures on X
converges in the weak?-sense to µ ∈ P(X), in symbols

µn
?
⇀ µ, or simply µn ⇀ µ,
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iff for every f ∈ Cb(X), ∫
fdµn →

∫
fdµ for n→∞. (2.2.18)

We have

Lemma 2.2.3.
µn

?
⇀ µ (2.2.19)

iff
lim sup

n
µn(A) ≤ µ(A) for every closed A, (2.2.20)

or equivalently,

lim inf
n
µn(U) ≥ µ(U) for every open U. (2.2.21)

We sketch the

Proof. As usual, for verifying (2.2.20) or (2.2.21) – which are clearly equivalent,
it suffices to consider distance balls. As we have seen above, the characteristic
function χA of a closed distance ball is a decreasing limit of continuous functions
fν . Apply on one hand (2.2.19) to each fν to get∫

fνdµ = lim
n→∞

∫
fνdµn ≥ lim supµn(A)

and use on the other hand Lebesgue’s dominated convergence theorem to get

µ(A) =
∫
χAdµ = lim

ν→∞

∫
fνdµ,

hence (2.2.20).
For the other direction, approximate a continuous function by step functions

of closed sets to obtain
∫
fdµ ≥ lim supn

∫
fdµn, and apply this then also to

−f to get equality in (2.2.19).

Corollary 2.2.1. If, for a sequence of Borel probability measures µn,

µn
?
⇀ µ, (2.2.22)

then µ is again a Borel probability measure. In other words, P(X) is closed
under weak ?- convergence.

Proof. From (2.2.20), (2.2.21), it follows that µ(X) = 1 as the µn satisfy this
property. Thus, µ is a probability measure.
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There is an obvious class of probability measures, the Dirac measures δx, x ∈
X. They are also called point masses. Such a measure is characterized by the
property

δx(A) =

{
1 if x ∈ A
0 if x /∈ A

(2.2.23)

or equivalently,

δx(f) =
∫
fdδx = f(x) for all f ∈ Cb(X). (2.2.24)

Therefore,
δxn ⇀ δx (2.2.25)

iff
f(xn)→ f(x) for all f ∈ Cb(X). (2.2.26)

Now, for a metric space, the latter is equivalent to

xn → x, (2.2.27)

as one readily checks, for instance by considering continuous functions fν,x, ν ∈
N, of the form

fν,x(y) =

{
1− νd(x, y) if νd(x, y) ≤ 1
0 else.

(2.2.28)

Therefore,

X → P(X)
x 7→ δx (2.2.29)

identifies X with a topological subspace of P(X).

Lemma 2.2.4. When X is separable, X is closed as a topological subspace of
P(X).

Proof. Let
δxn ⇀ µ ∈ P(X). (2.2.30)

We need to show that µ = δx for some x ∈ X. By Lemma 2.2.2, µ has a
support suppµ, and since µ(X) = 1, this support is nonempty. By utilizing the
above functions fν,x (2.2.28), however, it is easy to see that when x ∈ suppµ,
then xn → x. Hence, as we have observed that this is equivalent to (2.2.25),
µ = δx.

We wish to utilize this embedding of X into P(X) in order to better under-
stand the structure of the latter space. We first observe
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Lemma 2.2.5. P(X) is convex, and the δx, x ∈ X are extreme points of this
convex space, that is, they cannot be represented as nontrivial convex combina-
tions of other probability measures.

Proof. Obviously, when µ, ν ∈ P(X) and 0 ≤ t ≤ 1, then also tµ + (1 − t)ν ∈
P(X). Thus, P(X) is convex. Also, it is clear that the δx are extreme points.

Lemma 2.2.6. When X is a separable metrizable topological space, then con-
versely every extreme point of P(X) is of the form δx for some x ∈ X.

We sketch the

Proof. Let µ be extreme in P(X). Again, we use Lemma 2.2.2, that is, the
existence of suppµ. When, argueing by contradiction, suppµ should contain
more than one point, say x and y, then one represents µ as a convex combination
of two measures one of which contains x in its support, and the other y.

We may then also consider the convex hull of X in P(X), that is, the set
of all finite convex combinations of Dirac measures δx. This is nothing but the
set of all probability measures with finite support, as any such measure can be
written as a convex combination of Dirac measures. With the help of the Hahn-
Banach Theorem, one may show that this convex hull of the Dirac measures is
dense in P(X). Thus, curiously, while we have seen in Lemma 2.2.4 that X is
closed in P(X), its convex hull is not closed, unless X is finite, because there
exist probability measure that do not have finite support. P(X) itself is closed
again under weak ? - convergence by Corollary 2.2.1.

We can now formulate the result that is of main interest for our purposes.

Theorem 2.2.1. The metrizable topological space X is compact iff P(X) is
compact and metrizable. Also, X is a Polish space, i.e., completely metrizable
and separable, iff P(X) is.

That is, the set of Borel probability measures on a compact X is again
compact. Therefore, we can iterate the construction and consider P(P(X)) etc
and obtain a family of compact metrizable spaces.

In some sense, this is a surprising result because P(X) is a much larger space
than X. For instance, when X is finite, for instance X = {x1, x2}, then X is
no longer finite, but a finite dimensional space, P(X) = {tδx1 + (1− t)δx2 , 0 ≤
t ≤ 1} = [0, 1] in this example. P(P(X)) then already is an infinite dimensional
space. The reason why these iterated spaces will nevertheless all stay compact
is that weak ? - convergence is, as the name indicates, a rather weak form
of convergence. That is, for a sequence it is quite easy to converge weakly;
essentially, this convergence behaves as in the finite dimensional situation even
if P(X) is infinite dimensional.

We cannot provide a complete proof of Theorem 2.2.1 here. We only describe
some of the main points and refer to [1] for details. It might be helpful to identify
the key steps.
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1. By Lemma 2.2.1, P(X) is weak ? - closed. Thus, when below, we construct
weak ? - limits of probability measures, these limits will be automatically
contained in P(X).

2. For the compactness of P(X), the key result is the Theorem of Banach-
Alaoglu. In order to understand its formulation, we need to introduce the
norm

‖µ‖ := sup{µ(f) : f ∈ Cb(X), ‖f‖∞ ≤ 1}. (2.2.31)

For every µ ∈ P(X), we then have ‖µ‖ = µ(1) = 1, where 1 is the function
that is identically 1 on all of X.

Theorem 2.2.2. Any sequence νn of (not necessarily probability) mea-
sures with uniformly bounded norms, i.e., ‖νn‖ ≤ K for some constant K
and all n contains a weak ? - convergent subsequence. In other words, any
weak ? - closed and norm-bounded set of measures is weak ? - compact.

This result by itself does not refer to any particular structure of X. What
it needs is only that Cb(X) is a vector space with a norm.

3. When X is compact, the situation simplifies, however. In that case, all
continuous functions are automatically bounded, and we can work simply
with the space C(X) of continuous functions on X.

4. Also, when X is in addition metrizable, then C(X) is separable. This
follows from the Stone-Weierstrass Theorem. The latter result says that
an algebra of real-valued continuous functions on a compact topological
space X is dense in C(X) if it contains the constant function 1 and sep-
arates the points of X, that is, for any two distinct points x, y ∈ X, we
can find a continuous function f with f(x) 6= f(y). When X is metrizable
and separable, we can take a dense sequence (xm)m∈N and the functions
f0(x) = 1 and fm(x) := d(x, xm) for m ∈ N. These functions then sep-
arate the points, and we can apply the Stone-Weierstrass theorem to the
algebra generated by finite products of such functions. This then implies,
in particular, that C(X) is separable.

5. When C(X) is separable, Theorem 2.2.2 is due to Banach and can be
proved by a diagonal sequence argument. That is, we take a dense se-
quence (gk)k∈N of continuous functions. We then first find a subsequence
(ν1,n)n∈N of νn for which the sequence ν1,n(g1) of bounded real numbers
converges. Having iteratively found a sequence νk,n for which νk,n(gj)
converges for j = 1, . . . , k as n→∞, we find a subsequence νk+1,n of νk,n
for which in addition νk+1,n(gk+1) converges. For the diagonal sequence
νn,n, then νn,n(gk) converges for every k as n → ∞. Since gk is dense in
C(X), therefore νn,n(g) converges for every g ∈ C(X), and we obtain a
weak ? - limit ν. This sketches the proof of Theorem 2.2.2 in the separable
case.
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6. Next, when C(X) is separable, we take a dense sequence (gk) as before
and define a metric on P(X) via

d(µ, ν) :=
∑
k

1
2k
|µ(gk)− ν(gk)|. (2.2.32)

One then checks that the identity map is continuous as a map from P(X)
with its weak ? - topology to the metric space (P(X), d). Since P(X)
is weak ? - compact by Theorem 2.2.2, the identity then has to be a
homeomorphism. Therefore, the metric d induces the weak ? - topology.
Thus, P(X) is metrizable. (The metric (2.2.32) itself is not very useful; it
only serves the auxiliary role of showing the metrizability of P(X).)

7. Summarizing the preceding steps, whenX is compact and metrizable, then
C(X) is separable, and then P(X) with its weak ? - topology is compact
and metrizable.

8. In turn, these conditions on X are also necessary. Indeed, when P(X) is
compact and metrizable, hence also separable, then first, by the embedding
(2.2.29), X is a topological subspace of P(X), hence in particular separable
itself. By Lemma 2.2.4, it is then closed in P(X), hence also compact and
metrizable because the latter is.

9. Thus, we have handled the first part of Theorem 2.2.1. This is the impor-
tant part for our applications in game theory. For the second part, which
is more technical, we refer to [1].

2.3 Some examples

We start with some examples inspired by [17]. We have two companies, A and
B (where these might be acronyms for their CEOs, Alice and Bob) that are
contemplating to invest into one of three possible markets, m1,m2 or m3. In
Game 1, when only one company invests into market mi, it will get a return of
i. When both of them invest into the same market, however, either of them will
get a return of 0, as the market is too small to accommodate two competitors.
In Game 2, the pay-off of a single investor is the same as in Game 1, but when
both of them go into the same market, they both face a loss of −2. Finally,
in Game 3, A is an innovator, but B is a copier. That is, A develops a new
product, and with that product, it can develop a new market, m1,m2 or m3,
but its production costs are relatively high. B, in contrast, does not invent,
but specializing in the cheap production of products it copies from A. Thus,
in Game 3, for A the pay-offs are as in Game 1, but for B, the pay-off is 4
when it can go into the same market as A, because it can then benefit from the
marketing efforts of A in that market.

In tabular form, the pay-offs for both A and B in Game 1 are
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m3 m2 m1 both in same market
3 2 1 0 . (2.3.1)

In Game 2, the pay-offs for both A and B are

m3 m2 m1 both in same market
3 2 1 −2 . (2.3.2)

In Game 3, the pay-offs for A are as in Game 1, i.e.,

m3 m2 m1 both in same market
3 2 1 0 , (2.3.3)

whereas those for B are

m3 m2 m1 both in same market
3 2 1 4 . (2.3.4)

In each of these games, neither company knows what the other will do, but
it will try to anticipate the action of the competitor so as to avoid being in the
same market, except for B in Game 3 which in contrast will try to copy A.

So, let’s try to figure out how the players might think and act in a rational
manner. Obviously, in Game 1, when either company believes that the com-
petitor will go into m3 or m2, it should go into the opposite market. Moreover,
in this game, for neither player it will be rational to go into m1. Here “not ra-
tional” is informally understood in the sense that there will be a strategy with
a higher expected pay-off. Indeed, let us assume, for instance, that A thinsk
that B will go into m3 with probability p3 and into m2 with probability p2,
with p3 + p2 ≤ 1. Then A’s expected pay-off from going into m1 is ≤ 1 (= 1 if
p3 + p2 = 1), whereas the expected pay-off for m3 or m2 is

0p3 + 3(1− p3) or 0p2 + 2(1− p2), (2.3.5)

and since p3 + p2 ≤ 1, at least one of these numbers is > 1. Thus, A always
has a better strategy than m1. This is no longer so for Game 2. Here, the
corresponding pay-offs would be

−2p3 + 3(1− p3) = 3− 5p3 or − 2p2 + 2(1− p2) = 2− 4p2, (2.3.6)

and for p3 > 2/5, the former is < 1, while for p2 > 1/4, the latter becomes < 1.
Thus, if A for instance believes that with probability .7, B will go into m3 and
with probability .3 into m2, A should choose m1.
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However, so far, this analysis is clearly incomplete because A does not yet
take into account what B believes. Let us return to Game 1. We assign to
A two possible types, t1A, t

2
A, and likewise t1B , t

2
B to B. t1A (t2A) means that A

believes that B will play m3 (m2) and is of type t2B (t1B). Analogously, t1B (t2B)
means that B believes that A will play m3 (m2) and is of type t2A (t1A). Thus,
the type t1A means that A believes that B, being of type t2B , will play m2 and
in turn believes that A will play m3 and that in turn that A, being of type t1A
according to B’s belief at this stage, believes that B will play m2, and so on.
And all this is completely rational in the sense that at each stage, either player
plays the best response against the putative action of the competitor.

In Game 3, these types would no longer correspond to rational behavior.
Here, we might introduce rational types as follows. τ1

A (τ2
A) means that A

believes that B will play m3 (m2) and is of type τ1
B (τ2

B). And τ1
B (τ2

B) means
that B believes that A will play m3 (m2) and is of type τ2

A (τ1
A). Thus, the type

τ1
A means that A believes that B, being of type τ1

B , will play m3 and in turn
believes that A will play m3 and that in turn that A, being of type t2A according
to B’s belief at this stage, believes that B will play m2, and so on. And again,
all this is completely rational in the sense that at each stage, either player plays
the best response against the putative action of the competitor.

For Game 2, we keep the same types as in Game 1, but add the type t3A,
incorporating A’s belief that with probability .7, B will play m3 and is of type
t2B , whereas with probability .3, B will choose m2 and is of type t1B . Thus, with
probability .7, A will also think that B thinks that A will play m2, and we then
get into the same cycle as before. We can also represent this in a table for the
types of A

m3, t
2
B m2, t

1
B

t1A 1 0
t2A 0 1
t3A .7 .3

, (2.3.7)

whereas for B, we have

m3, t
2
A m2, t

1
A

t1B 1 0
t2B 0 1

. (2.3.8)

By alternating between these two tables, we can then reconstruct the iterated
beliefs of the two players.

Of course, according to this scheme, we can introduce further types for A
and B and check their rationality. For instance, we could introduce the type
t4B that believes that A will play m3 and is of type t1A. In that case, B would
believe that A is not rational as A should not play m3 when believing that B
would also play m3.
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2.4 Types (Belief hierarchies)

In this section, we present the theory of types and belief hierarchies, as developed
by Brandenburger-Dekel [4] and others in the framework proposed by Harsanyi
[8]. Other sources of the theory that have been useful for our presentation can
be found in [18, 17, 12], for instance.

We shall work with two players, i and −i. i will be referred to by the
pronoun “she”, −i by “he”, even though the situation is entirely symmetric
between them.

The players form beliefs about each other, but this then needs to iterated,
that is, each player then also has to form beliefs about the beliefs of the op-
ponent, and so on. Thus, there are two aspects, the possible contents of those
beliefs, and the iterative aspect. For the content, we introduce the uncertainty
domains Si and S−i; S−i contains what i is uncertain about regarding −i. One
may assume, as is frequently done, that Si = S−i =: S, i.e., that there is a
common domain of uncertainty, even though the two players may be uncertain
about different aspects, parts, or elements of S. The iterative part will be cap-
tured by the notion of a type. Putting it succinctly and somewhat paradoxically,
a type will be a probability distribution over types of the opponent. And to add
the content, it will also involve a probability distribution over the opponent’s
domain of uncertainty. In order to make the iterative construction possible, we
assume either that all spaces involved, the Si already introduced and the Ti
to come, are compact metrizable, or that they are Polish spaces. By Theorem
2.2.1, then, all spaces of probability distributions to be iteratively introduced
will then be of the same class.

Definition 2.4.1. For i, we assume to have a type space Ti together with a
map

pi : Ti → P(S−i × T−i). (2.4.1)

A type ti ∈ Ti then associates to i a probability distribution pi(·, ·|ti) (often
written as pi(ti) in shorthand notation) over the domain of uncertainty and the
type space of the opponent.

The tupels (Ti, pi) will be restricted in the sequel to satisfy certain consis-
tency and rationality conditions.

More precisely, for every ti, we have a probability distribution

pi(·, ·|ti) ∈ P(S−i × T−i)
(s−i, t−i) 7→ pi(s−i, t−i|ti) for every s−i ∈ S−i, t−i ∈ T−i. (2.4.2)

I hope that the shorthand notation employed in the Definition and subsequently
will not give rise to problems.
pi as a probability distribution on S−i × T−i by marginalization gives rise to a
probability distribution on S−i

qi := pi,S−i (2.4.3)
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by integrating out the variable t−i ∈ T−i for every s−i, ti. (Formally, we have
qi(s−i|ti) =

∫
pi(s−i, t−i|ti)dt−i, that is, we integrate out t−i w.r.t. the proba-

bility measure pi(s−i, ·|ti).) qi(·|ti) represents that belief that type ti entertains
about the distributions of the values in the uncertainty domain S−i. This is the
first order belief of ti.

Similarly, we can marginalize on the type space T−i to obtain

πi := pi,T−i . (2.4.4)

We can now iterate the types and construct belief hierarchies. In order to
obtain i’s second order beliefs, that is, what the type ti of i believes that −i
believes about i’s actions, we have∫

q−i(si|τ−i)πi(τ−i|ti))dτ−i. (2.4.5)

In words: ti entertains a belief πi(·|ti) about the distribution of types τ−i of −i,
and each such type τ−i in turn has a distribution q−i(·|τ−i) over the possible
states si of i. By integrating out the types τ−i, we then get the second order
belief distribution of i about si.

Similarly, we obtain the third order belief distribution, what type ti believes
that −i believes that i believes about the actions of −i, as∫ ∫

qi(s−i|τi)π−i(τi|τ−i)πi(τ−i|ti))dτidτ−i. (2.4.6)

Thus, we are also integrating out the types τi of i for which each type τ−i has
a distribution π−i(·|τ−i).

It turns out that the structure will become clearer when we go to a higher
level of abstraction and generality. More precisely, we shall consider the space of
all possible types and also that of all possible belief hierarchies. Here, the belief
hierarchy induced by a type ti should encode all the beliefs of ti of all orders k
simultaneously. We shall follow the presentation in [12]. In particular, we shall
assume that Si = S−i =: S. Since we might have replaced Si and S−i by their
product Si × S−i, this does not restrict the generality of our considerations.

Definition 2.4.2. The space of belief hierarchies of player i of order k is in-
ductively defined via

X1
−i := P(S) and for k ≥ 2 (2.4.7)

Xk
−i := Xk−1

−i × P(S ×Xk−1
i ) (2.4.8)

= X1
−i × P(S ×X1

i )× P(S ×X2
i )× . . .P(S ×Xk−1

i )

= P(S)× P(S ×X1
i )× . . .P(S ×Xk−1

i ) by (2.4.7) (2.4.9)

Xk
−i is the space of kth order beliefs of player i about both the states in S and

the opponent −i.
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Note that Xk−1
i , the space of (k− 1)st order beliefs of player −i contains as

a factor Xk−2
−i , the space of (k − 2)nd order beliefs of player i, and so on. This

means that player i entertains first a belief about the states in S, then about
S ×X1

i , that is, what −i believes about the states and the first-order beliefs of
i, then about the states and the beliefs of −i concerning what i believes about
the states and the beliefs of −i, and so on. Or more plainly, you ask first about
the probabilities of the states, then what she thinks about those probabilities,
then what she thinks what I think about those probabilities, and so on.
Importantly, an element of P(S × Xk

i ) need not be a product distribution.
For instance, i may believe that −i knows the true state in S. As a concrete
example, S = {0, 1} might just consist of two possible states, and i might assign
probability .4 to the combination of 0 and the belief of −i that i believes in
either possibility with probability .5, and i might assign probability .6 to the
possibility that the state is 1 and that −i believes that i thinks that the state
is 0.
In fact, since we have convinced ourselves that we may assume that Si = S−i =
S, the situation for the two players is symmetric, and we may drop the indices
i and −i of the Xk. Thus, we now simply consider

X1 := P(S) and for k ≥ 2 (2.4.10)
Xk := Xk−1 × P(S ×Xk−1) (2.4.11)

= X1 × P(S ×X1)× P(S ×X2)× . . .P(S ×Xk−1)
= P(S)× P(S ×X1)× . . .P(S ×Xk−1) by (2.4.10) (2.4.12)

as the common belief spaces of the two players. Of course, the beliefs of the two
players will in general be different from each other, that is, the two players will
choose different elements from these belief spaces.

With this simplification, it is also natural to formulate belief sequences over
external events. Let us consider an example. We have two states, 0 meaning
that the stock will crash within the next month, 1 that it won’t. Let i believe
with probability .8 that it will crash and that −i believes with probability .5
that it will, and believe with probability .2 that it won’t, but that −i believes
with probability .6 that it will. From, this we can infer that i believes with
probability .8 that a crash will come and with probability .8× .5 + .2× .6 = .52
that −i believes that the market will crash. In order to go further, we must
also assign to i beliefs about the beliefs of −i concerning i’s beliefs. Thus, let
us assume now that i believes with probability .8 that it will crash and that
−i believes with probability .5 that it will and that i will believe in the crash
with probability .2. And let i believe with probability .2 that it won’t, but that
−i believes with probability .6 that it will and that −i furthermore is certain,
according to this particular belief of i, that i believes in a crash. Then, in
addition to the preceding, i believes with probability .8× .2 + .2× 1 = .36 that
−i believes that she will believe in a crash. And we can iterate this now, that
is, assign to −i also proabilities for i’s beliefs about his belief in a crash, and
then compute the probability that i believes that −i believes that she believes
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that he will believe in a crash. Instead of such iterations, we can again obtain
a shortcut by considering types. For instance, i may have the types t1i , where
she believes with probability .8 in the crash and with probability .5 that −i is
of type t1−i and with probability .5 of type t2−i, or t2i , where she believes with
probability 1 in the crash and that −i is of type t1−i. And in turn, let t1−i mean
that −i believes with probability .6 in the crash and with probability 1 that i is
of type t1i , and let t2−i mean that −i believes with probability .2 in the crash and
that with probability .5, i is of type t1i . Then, when i is of type t1i , she believes
with probability .8 in the crash, with probability .5 × .6 + .5 × .2 = .4 that −i
believes in the crash, with probability .5× 1× .8 + .5(.5× .8 + .5× 1) = .85 that
−i believes that i believes in the crash, and so on.

We first observe the following direct consequence of Theorem 2.2.1.

Lemma 2.4.1. If S is a compact metrizable space, then so is each Xk.

So, henceforth, we shall always assume that S is such a space. This is
unproblematic, as in our examples and applications, S usually is finite.

According to (2.4.12), an element of Xk comprises beliefs about S, S ×
X1, . . . , Xk−2, Xk−1, and an element of Xk−1 in turn comprises beliefs about
S, S×X1, . . . , Xk−2. In principle, these beliefs may contradict each other. That
is, the belief of an element in Xk about S ×Xk−2 might be different from the
belief that the resulting belief about S ×Xk−1 induces on S ×Xk−2. This is,
however, not what we want when we consider the iterative beliefs induced by
types. When i has a joint belief about S and the types of −i, then, when she
marginalizes over S, that is, integrate over the types of −i, this should reduce
to her original belief about S. This should not be confused with the fact that
her belief about the states in S and the types of −i need not be a product
belief. She could well believe that every state in S is linked to one particular
type of −i. That is, slightly varying our above example, let us assume that
S = {0, 1} and i assigns nonzero probabilities only to the two types t0−i, t

1
−i,

with the probabilities p(0, t0−i) = .4, p(1, t1−i) = .6, p(0, t1−i) = 0 = p(1, t0−i).
Then pS(0) = .4, pS(1) = .6, but of course the latter can also be achieved by
other joint probability distributions, for instance by the product distribution
p(0, t0−i) = .2 = p(1, t1−i), p(1, t

0
−i) = .3 = p(1, t1−i). However, if she has a

probability distribution p(·) on S, then coherence would require that this dis-
tribution coincides with the marginal pS(·) of the probability distribution p(·, ·)
on S ×P(S). Or put differently, when i has a joint distribution over states and
opponent types, then marginalizing over the states should yield her distribution
for the states. If not, she should simply replace the latter by the former.
Note that coherence does not mean that the beliefs of different orders coincide.
For instance, the probabilities that i assigns to the actions of −i may well be
different from those that she thinks that −i believes that i herself has. In other
words, it is perfectly possible that i believes that −i has incorrect beliefs about
her own beliefs.

We now formulate this coherence condition in general
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Definition 2.4.3. A family qk ∈ Xk is coherent if

qk = (qk−1, rk−1) with
rk−1
S×Xk−2 = rk−2 where (2.4.13)

qk−1 = (qk−2, rk−2);

here, rk−1 ∈ P(S ×Xk−1) = P(S ×Xk−2 × P(S ×Xk−2)).

Putting the marginal condition (2.4.13) differently, we have

qk = (q1; r1, . . . , rk−1), (2.4.14)

where q1 represents i’s belief about S and rj ∈ P(S × Xj) is a probability
distribution over S and the beliefs of order ≤ j of the opponent −i.
Thus, the coherence condition means that the marginal distribution of r1 over
S be q1 and that the marginal distribution of rk over S × Xj is rj , whenever
1 < j < k.
With (2.4.14), we can also express the coherence condition by the requirement
that the projection of qk onto Xj be qj , for 1 ≤ j < k.

We have seen above that two families of types Ti, T−i generate coherent
systems of beliefs. It is now an important insight that, conversely, every such
coherent system of beliefs is generated by types of the participants. Since this
is somewhat technical, we need to refer for some details to [12], but we shall try
to explain the principle.

Definition 2.4.4. The universal type space T consists of all coherent families
qk ∈ Xk, that is, all families that are of the iterative form qk = (qk−1, rk−1)
and satisfy (2.4.13).

The fundamental result then is

Theorem 2.4.1. T is a compact space, and

T = P(S × T ). (2.4.15)

Here, ”=” means that the two spaces are homeomorphic to each other, that
is, there exists a continuous bijective map between the two compact spaces T
and P(S × T ) (the latter space is compact by Theorem 2.2.1 if the former is).

This result tells us that a type generates a probability distribution over
(states and) types. Thus, this formalizes the iterative principle described above.
When we have a type in the sense of the beginning of this section, then by re-
cursion it generates a coherent belief sequence, hence a member of the universal
type space, and conversely. The proof of Theorem 2.4.1 then formalizes this
idea.
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Proof. For the proof, we shall construct a map

h : P(S × T )→ T (2.4.16)

and show that it is a homeomorphism, that is, bijective and continuous in both
directions. Thus, let q ∈ P(S × T ). Let q1 be its marginal distribution on S,
and let rk be its marginal distribution on S ×Xk, and put qk+1 = (qk, rk) for
k = 1, 2, . . . . Then, because T only contains coherent belief hierarchies, the
projection of qk onto Xj for 1 ≤ j < k is qj . Thus, from q ∈ P(S × T ), we
have constructed an element of T . This defines our map h, and we now need to
check its properties.

First, h is continuous w.r.t. the weak-? topologies, because if qn converges
to some q w.r.t. to this topology, then so do all its projections qkn, with limits
the corresponding projections qk of q.

The construction of the inverse of h is the most interesting part of the proof.
This means that we can reconstruct q from h(q) = (q1, q2, . . . ). The idea is to
disentangle the coherent hierarchy of beliefs and apply the Kolmogorov exten-
sion theorem. To see the principle, we first simplify the situation. The family
(q1, q2, . . . ) gives us a family of probability distributions qn1,...,nk on Sk with

qn1,...,nj−1,nj+1,...,nk(A1×. . . Aj−1×Aj+1×. . . Ak) = qn1,...,nj−1,nj ,nj+1,...,nk(A1×. . . Aj−1×S×Aj+1×. . . Ak)
(2.4.17)

for all 1 ≤ n1 < n2 . . . nk, 1 ≤ j ≤ k and all Borel subsets Ai of S, i =
1, . . . , k. This is simply the coherence condition (called “consistency” in the
theory of stochastic processes), that we can marginalize over intermediate stages.
The Kolmogorov extension theorem then says that this family of distributions
is generated by a stochastic process, that is, a probability measure p on the
sequence space SN and a map

ξn : SN → S (2.4.18)

with
qn1,...,nk(A1 × . . . Ak) = p(ξn1 ∈ A1, . . . , ξnk ∈ Ak) (2.4.19)

for all Borel subsets Ai ⊂ S. The probability measure p, a so-called cylinder
measure, is in fact characterized by (2.4.19). A similar version holds with the
spaces Xk, but we leave that to the reader. This probability measure is, of
course, the object that we want. That is, from the sequence of marginals, i.e.,
an element of T , we have reconstructed the probability measure, that is, an
element of P(S × T ) that generates this sequence of marginals. Thus, we have
constructed the inverse of h. Also, this shows that h is surjective.

We can now conclude the proof by appealing to the general fact, Lemma
2.4.2 below, that a continuous and bijective map from a compact space to a
Hausdorff space is a homeomorphism, noting that our spaces are metrizable,
hence Hausdorff.

Lemma 2.4.2. A continuous bijective map h from a compact topological space
to a Hausdorff space is a homeomorphism.
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We sketch the

Proof. We need to show that the inverse h−1 is continuous. A map between
topological spaces is continuous iff the preimages of open sets are open.

Now, any closed subset of a compact space is compact. Since h is continuous,
it maps compact sets to compact sets. In turn, compact subsets of Hausdorff
spaces are closed. (Here, a topological space X is called a Hausdorff space if
any x 6= y ∈ X have disjoint open neighborhoods. For a compact subset K of
a Hausdorff space Y , its complement is open, and hence K itself is closed. In
fact, for x /∈ K, and every y ∈ K, by the Hausdorff property, there exist disjoint
open neighborhoods Uy of y and Vy of X. Since K is compact, it is covered
by finitely many of them, say Uy1 , . . . , Uyk . But then

⋂
i=1,...,k Vyi is an open

neighborhood of x disjoint from K, showing the openness of the complement of
K.)

Thus, h maps closed sets to closed sets. But then it also maps open sets to
open sets. Equivalently, for its inverse h−1, preimages of open sets are open,
that is, it is continuous.

Definition 2.4.5. The type ti of i believes that −i is rational iff supp q2i (ti) ⊂
S−i × P(Si) contains only pairs (s−i, µi) for which s−i is a best response to
µi. And the type ti of i believes that both −i is rational and believes that i is
rational in turn iff supp q3i (ti) ⊂ (S−i ×PSi)×P(Si ×P(S−i)) (recall (2.4.10),
(2.4.12)) contains only pairs ((s−i, µi), νi) where s−i is a best response to µi as
before and νi is supported on pairs (si, µ−i) where si is a best response to µ−i.
And so on for higher orders of belief in rationality.

2.5 Bayesian equilibria

In this section, we shall mostly follow [7]. After having formalized beliefs and
types, we now wish to apply this to game theory and determine equilibria in
games with incomplete information. The setting will, however, be somewhat
simpler than in the preceding section as we shall assume that the uncertainty
structure of the game is common knowledge among the players. That is, the
values of certain variables may be unknown to some or all players, but they
will be distributed according to some distribution p. This distribution will be
assumed to be known to all players, and every player knows that this distribution
is known, knows that everybody knows that it is known, and so on. In such a
situation, we speak of common knowledge of p. Then, some of the players may
have private knowledge, for instance know their type. Every other player then
knows that, say, player j has private knowledge. The other players then do not
know j’s type, but they know that j knows his type, and they also know the
distribution from which j’s type is drawn.

We consider a game where player i has possible types tαi ∈ Ti and a pure
strategy space Si. The types are distributed according to some commonly known
distribution p. W.l.o.g., each type is assumed to occur with positive probability.
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(Types with zero probability can thus be ignored; we do not discuss here the
somewhat subtle issue whether it makes a difference whether some possibility is
unknown and unconceivable to the players, that is, they are unaware of it, or in
principle conceived, but simply assigned zero probability, that is, they consider
this possibility as impossible to occur.) The utility ui of player i may depend on
her own action, those of her opponents, as well as one the values of the types,

ui(si, s−i, (ti, t−i)). (2.5.20)

Definition 2.5.1. We expand the game by assigning to player i the strategy
set STii , the set of all maps Ti → Si. That is, player i can choose some strategy
for each type of hers.

A Bayesian equilibrium of a game of incomplete information is a Nash equi-
librium of this expanded game.

Of course, the existence of a Bayesian equilibrium in such a game of incom-
plete information is a direct consequence of the Nash equilibrium theorem. It
was Harsanyi’s idea to formulate games of incomplete information in such a
manner that Nash’s theorem becomes applicable.

Again, an equilibrium could be pure or mixed. A family of mappings sj :
Tj → Sj for all players j is a pure Bayesian equilibrium iff

si(.) = argmax
σi∈S

Ti
i

∑
ti

∑
t−i

p(ti, t−i)ui(σi(ti), s−i(t−i), (ti, t−i)) for all i.

(2.5.21)
Here, i maximizes her expected utility for every type of hers. Note that the
probabilities p(ti, t−i) of the type constellations need not be products, that is,
the types of the different players could be correlated. For instance, if the types
of the players are “sick” or “healthy”, then in the case of major disease, many
players will be sick simultaneously.

We can also express (2.5.21) by saying that for each type ti, player i chooses
her action in such a way that her utility is maximized given the distribution of
types and the resulting actions of her opponents. Equivalently, we have

si(ti) = argmaxσi∈Si
∑
t−i

p(t−i|ti)ui(σi, s−i(t−i), (ti, t−i)), (2.5.22)

that is, for each type ti, i maximizes her utility given the conditional distribution
of the types of her opponents. (When players have infinitely many possible
types, the sums in (2.5.22) are replaced by integrals.)

Here, higher order beliefs of the players do not enter. All that is relevant
is the belief about the distribution of the opponents’ types and their type-
dependent strategies. Of course, the point of the previous section was that such
a belief about the distribution of types can result from a coherent higher order
belief structure.

In the terminology of game theory, we are considering here an “ex ante”
situation. That means that the predictions about the opponents are made
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independently of each player’s own type. In contrast, an “interim” situation
would be one where the predictions a player makes about her opponents depend
on her own type.

Let us now use these conceptual tools to analyze some examples:

1. This is a version of the public goods game where each player i has the
choice of contributing at a cost ci or not contributing, and where both
players earn 1 unit if at least one of them contributes.

Contribute Don’t
Contribute 1− cA, 1− cb 1− cA, 1

Don’t 1, 1− cB 0,0
(2.5.23)

Thus, each player prefers to let the other contribute.

We assume that the cost ci is only known to i herself, but both play-
ers know that both costs c are randomly drawn from the same continu-
ous distribution with a strictly increasing cumulative distribution function
P (c) = p(cost ≤ c) on an interval [c, c].

The cost ci then becomes i’s type. We thus consider functions si : [c, c]→
{0, 1} where 1 means “contribute”, 0 “don’t contribute”. Let (sA, sB) be
a Bayesian equilibrium, and let πi := p(si(ci) = 1) be the probability
that i contributes at this equilibrium. Thus, when i contributes, her ex-
pected pay-off is 1− ci whereas if she doesn’t, it is π−i. Thus, she should
contribute, that is, si(ci) = 1, when

ci < 1− π−i =: c∗i . (2.5.24)

Therefore, her probability of contributing satisfies

πi = p(c ≤ ci ≤ c∗i ) = P (c∗i ). (2.5.25)

From (2.5.24), (2.5.25)
c∗i = 1− P (c∗−i), (2.5.26)

and hence
c∗i = 1− P (1− P (c∗i )). (2.5.27)

We first consider the case where (2.5.27) has a single solution c∗. For
instance, when p is the uniform distribution on the interval [0,m], i.e.,
P (c) = c

m for 0 ≤ c ≤ m, then c∗ = m
m+1 . In particular, the optimal

strategy of a player depends not only on his cost, but on the distribution
of possible costs. This comes from the uncertainty about the opponent’s
costs. The optimal threshold is an increasing function of m, the upper
cost bound. When the other player faces a potentially higher cost, he
is less likely to contribute, and therefore, one should increase one’s own
threshold of contributing to be sure to reap the benefit.
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If, on the other hand, c > 1 − P (1), then there can be no solution c∗ =
c∗i = c∗−i of (2.5.26), and there are instead two assymmetric equilibria
where one player always contributes as long as her cost is below 1 and the
other never contributes.

2. In order to prepare for the next game, we first consider a monopoly situ-
ation where a single player M decides about his output s to maximize his
utility function

u(s) = s(1− s). (2.5.28)

The optimal value then is s = 1
2 . We now play this game with two players

A and B (a Cournot duopoly), and now assume that they have to share
the market so that the profit of player i with type ti playing si ∈ R+ is
given by

ui = si(ti − si − s−i) (2.5.29)

We assume that player A’s type is fixed to be tA = 1, whereas player B’s
type follows a probability distribution p(tB), commonly known to both
players. Thus, both players know player A’s type, but player B’s type is
only known to B himself. The expected pay-off uA of A is∫

sA(1− sA − sB(t))p(t)dt, (2.5.30)

which, using
∫
p(t)dt = 1, is maximized by

sA =
1
2
− 1

2

∫
sB(t)p(t)dt. (2.5.31)

Since B knows that, he can insert this value sA into (2.5.29) and for each
type tB then maximize uB as given by (2.5.29) and therefore choose

sB(tB) =
tB − sA

2
. (2.5.32)

Inserting (2.5.32) in turn into (2.5.31) yields

sA =
2
3
− 1

3

∫
tp(t)dt, (2.5.33)

and reinserting this into (2.5.32) finally gives

sB(tB) =
tB
2
− 1

3
+

1
6

∫
tp(t)dt. (2.5.34)

In particular, in the trivial case where B only has the unique type tB = 1,
that is, where p(t) is the Dirac delta distribution δ1, this becomes

sA = sB =
1
3
. (2.5.35)
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As a side remark, when we compare this with the monopoly player of
(2.5.28), the total output s = si + s−i now is 2

3 which is larger than the
monopoly output of 1

2 . Therefore, the market price will be lower, and more
will be sold at lower price; that is, competition of producers is good for
the consumers according to this stylized model. The sum of the utilities
ui+u−i is the same as the utility u, but now neither player decides about
the total output, but each can fix only her/his individual contribution to
that output.

Returning to our analysis, nevertheless, from the epistemic perspective,
there are some subtleties here. A could think that B will always follow
her value sA and choose sB according to (2.5.32). Anticipating that, A
could insert this value into (2.5.30) before maximizing w.r.t. sA. That is,
A would then maximize∫

sA(1− sA −
t− sA

2
)p(t)dt =

∫
sA(1− sA

2
− t

2
)p(t)dt (2.5.36)

w.r.t. sA, leading to

sA = 1−
∫

t

2
p(t)dt, (2.5.37)

which in turn leads to

sB(tB) =
tB − 1

2
+
∫

t

4
p(t)dt. (2.5.38)

In particular, in the trivial symmetric case p(t) = δ1(t), we get the asym-
metric result

sA =
1
2
, sB =

1
4
. (2.5.39)

The pay-offs then are also unequal,

uA =
1
8
, uB =

1
16
, (2.5.40)

whereas in the symmetric case (2.5.35), each player would get u = 1
9 .

Thus, in the asymmetric situation, A can slightly increase her pay-off
at the expense of B. One possible interpretation of this is a so-called
leader-follower game. In such a game, A, the leader, can determine and
announce her action first, and B, the follower, then is forced to react
to it. The increase in pay-off that A can achieve in this situation when
compared to the case of independent simultaneous actions is called the
leader’s advantage.

Of course, this is not an epistemic interpretation, and the question remains
under which epistemic conditions, that is, players forming beliefs about
each other, such an outcome is possible.

The equilibrium concept of Definition 2.5.1 did not refer to higher order
beliefs. In fact, it is difficult to formulate general equilibrium concepts in such
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situations, because at each stage of the iteration of the belief hierarchy, the be-
liefs might be different. For instance, i might believe something that is different
from what she thinks that −i believes that she believes. The following simpli-
fying concept rules this out. (We formulate it again for two players only for
simplicity. In the general case, one needs to include beliefs about the opponents
of i about each other and the player i to arbitrary order.)

Definition 2.5.2. A combination (qi, q−i) of beliefs of players generates the
simple belief hierarchy where each player i has the belief qi about the opponent
−i’s actions, believes that he has the belief q−i, that he believes that i has the
belief qi, etc.

Note that this condition is much stronger and more restrictive than the
above coherence condition of Definition 2.4.3. There, it was only required that
at each stage of the belief hierarchy, the beliefs at each level are the same. Here,
in contrast, it is required that the beliefs at different levels always coincide. In
particular, it is excluded that a player ascribes false beliefs to an opponent.

In the presence of (mutually known) utility functions, such a simple belief
hierarchy then encodes a common belief in rationality, or equivalently, is a Nash
equilibrium, if each player i’s beliefs only assign positive probabilities to actions
of −i that are optimal for −i under his beliefs q−i. The proof of the Nash
equilibrium then shows that for games with finitely many actions available to
each player, there always exists some such Nash equilibrium.

For general coherent belief hierarchies, equilibrium concepts and results be-
come more subtle. The basic idea of rationality tells us that at no stage at the
belief hierarchy, any player should be assumed to give positive probability to a
suboptimal action. Putting this around, we can then eliminate such subopti-
mal actions from consideration, and iterating this elimination can considerably
constrain the available options and in some cases even lead to a unique equi-
librium. In technical language, one speaks of the iterated elimination of weakly
dominated strategies. Here, a strategy is weakly dominant if there exists some
other strategy that is never worse, but strictly better in at least one condition,
that is, for one action combination of the opponents.
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