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Abstract. We consider the porous medium equation on a compact Riemannian manifold and
give a new proof of the contraction of its semigroup in the Wasserstein distance. This proof is
based on the insight that the porous medium equation does not increase the size of infinitesimal
perturbations along gradient flow trajectories, and on an Eulerian formulation for the Wasserstein
distance using smooth curves. Our approach avoids the existence result for optimal transport maps
on Riemannian manifolds.
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1. Introduction. In this paper we consider the porous medium equation

∂tρ−∆U(ρ) = 0 (1.1)

and give an entirely “Eulerian” argument for the contraction of its semigroup in the
Wasserstein distance. The argument is guided by the formal gradient flow structure
of the porous medium equation proposed in [13].

More precisely, we choose as our state space M the space of probability measures
ρ(x) dx, endowed with a suitable metric tensor g, see §2.2. The metric tensor g
induces a distance on (M, g) that coincides with the Wasserstein distance W(ρ0, ρ1).
Loosely speaking, this equivalence is a consequence of the Benamou–Brenier Eulerian
formulation of the optimal transportation problem defining W(ρ0, ρ1) [4]. Then the
porous medium equation is the gradient flow on (M, g) of the functional

E(ρ) =
∫

e(ρ) dx, (1.2)

where the “osmotic pressure” U(ρ) is related to the energy density e(ρ) via

U(ρ) = ρe′(ρ)− e(ρ) for ρ > 0. (1.3)

We notice that U is (strictly) monotone if and only if e is (strictly) convex, and that
for strictly monotone U , (1.1) is of parabolic type. The contraction property for the
porous medium semigroup then follows from the convexity of E on (M, g). The latter
is a reformulation of McCann’s displacement convexity [11].

This formal argument has been made rigorous in [13] using the fact that for any
two points ρ0, ρ1 a shortest curve with respect to W exists. The existence of these
shortest curves relies on Brenier’s result [5] on the existence of a one-to-one optimal
transport map y = Φ(x) between two measures ρ0(x) dx and ρ1(y) dy. This can be
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seen as a Lagrangian approach. It is somewhat delicate since the optimal transport
map Φ can be nonsmooth even if the densities ρ0 and ρ1 are smooth.

In this paper, we carry out a rigorous Eulerian approach based on the new insight
• that the porous medium equation does not increase the naturally defined

action A(ρ) of smooth curves [0, 1] 3 s 7→ ρ(s) ∈M (see Proposition 4.2);
• that the squared Wasserstein distance 1

2W(ρ0, ρ1)2 is the infimum of A(ρ)
over smooth curves connecting ρ0 to ρ1 (see Proposition 4.3).

Hence we can work in the “class of smooth objects”. Alternatively, contraction esti-
mates can also be derived in more elaborate frameworks based on metric space theory.
We refer to the recent publications [6, 1] for further information.

Our approach allows to obtain the contraction property on a compact Riemannian
manifold Mn (instead of Rn) without additional effort. A sufficient condition is that
the Ricci curvature of Mn be nonnegative. This is the well known Bakry–Emery
criterion for the logarithmic Sobolev inequality [3] (which can be refined using Γ2–
calculus [2]). It turns out that contractivity of the semigroup for certain nonlinear
evolutions equation is in fact equivalent to lower bounds for the Ricci curvature.
This has been proved for the heat semigroup in [17] and more generally in [16]. Our
Eulerian approach avoids the subtle existence result for optimal transport maps Φ on
Riemannian manifolds by McCann [12].

2. Gradient flows. It is instructive to discuss our approach in the language of
gradient flows. This heuristics will serve as a guideline for the rigorous argument.

2.1. Abstract framework. Let us quickly recall the mathematical structure
required for a gradient flow. One first needs a smooth function M 3 ρ 7→ E(ρ) on a
differentiable manifold M. The differential diff E of E is a co-tangent vector field:

M3 ρ 7→ diff E|ρ ∈ TρM∗.

Therefore one also needs a metric tensor g on M, i.e., a scalar product gρ on TρM
in every point ρ ∈M. This scalar product allows to identify co-tangent with tangent
vectors, yielding the gradient vector field grad E. The gradient flow of E on the
Riemannian manifold (M, g) is then given by the dynamical system

dρ

dt
= − gradE|ρ. (2.1)

For subsequent use, we shall reformulate (2.1). We recall that the differential
diff E can be inferred from differentiating E along a curve [0, 1] 3 s 7→ ρ(s) ∈M:

d

ds
E

(
ρ(s)

)
=

〈
diff E|ρ(s),

dρ

ds
(s)

〉
.

Then the gradient grad E is defined by the requirement that for any tangent vector
field [0, 1] 3 s 7→ δρ(s) ∈ Tρ(s)M along the above curve we have

gρ(s)

(
gradE|ρ(s), δρ(s)

)
=

〈
diff E|ρ(s), δρ(s)

〉
.

Now a trajectory [0,∞) 3 t 7→ ρ(t) ∈M of (2.1) is characterized by the fact that for
any tangent vector field [0,∞) 3 t 7→ δρ(t) ∈ Tρ(t)M one has

gρ(t)

(
dρ

dt
(t), δρ(t)

)
+

〈
diff E|ρ(t), δρ(t)

〉
= 0 for all t. (2.2)
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2.2. Heuristics: The porous medium equation as gradient flow. We
are interested in the porous medium equation on a compact, connected Riemannian
manifold Mn without boundary. We denote by · the metric tensor on Mn, by ∇, ∇·
and ∆ = ∇·∇ the gradient, divergence and Laplacian on Mn. Finally dx denotes the
volume form on Mn; without loss of generality we assume

∫
Mn 1 dx = 1. The porous

medium equation describes the evolution of a nonnegative density ρ(t, x) on Mn. It
is given by the nonlinear diffusion equation

∂tρ−∆U(ρ) = 0. (2.3)

The porous medium equation preserves the total mass and we assume
∫
Mn ρ dx = 1

for definiteness. In view of this, our state space M is the space of all nonnegative
functions ρ : Mn → [0,∞) with unit integral:

∫

Mn

ρ dx = 1. (2.4)

We also may think of M as the space of probability measures ρ(x) dx onMn. For con-
venience we will not distinguish in the following between functions and the measures
they induce via the volume element dx defined on Mn.

Following [13], we now introduce the metric tensor g on M. Notice that in view
of (2.4) we may think of infinitesimal perturbations δρ ∈ TρM of a state ρ ∈ M as
functions δρ : Mn → R with

∫

Mn

δρ dx = 0. (2.5)

For given ρ ∈M we define the scalar product gρ on TρM as

gρ

(
δρ0, δρ1

)
=

∫

Mn

∇φ0 · ∇φ1 ρ dx, (2.6)

where, up to additive constants, the functions φi : Mn → R are defined by

δρi −∇ · (ρ∇φi) = 0. (2.7)

Notice that (2.7) constitutes an elliptic equation with variable coefficient ρ > 0 for
φi; (2.5) is necessary for the existence. If ρ is strictly positive and ρ, δρi are smooth,
then (2.5) is also sufficient for the existence of a smooth solution φi. For later use we
notice that gρ(δρ0, δρ1) can be rewritten as

gρ

(
δρ0, δρ1

)
= −

∫

Mn

δρ0 φ1 dx. (2.8)

The quadratic part of the metric tensor can also be characterized variationally:

1
2gρ

(
δρ, δρ

)
= sup

φ

{
−

∫

Mn

1
2 |∇φ|2ρ dx−

∫

Mn

δρ φ dx

}
, (2.9)

where the sup is taken over all smooth functions φ : Mn −→ R. In view of (2.7), we
may think of φi as the “velocity potential” that generates the infinitesimal change δρi

of the density ρ.
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We now formally argue that (2.3) is indeed the gradient flow of (1.2) on (M, g),
reproducing the argument in [13]. We are given a nonnegative function ρ = ρ(t, x)
satisfying (2.4); we fix a time t. Let the function δρ of x be given with (2.5) and let
φ be related to δρ by (2.7). Then we have on the one hand that

〈
diff E|ρ, δρ

〉
=

∫

Mn

e′(ρ) δρ dx

(2.7)
= −

∫

Mn

e′′(ρ)∇ρ · ρ∇φdx

(1.3)
= −

∫

Mn

∇U(ρ) · ∇φdx

=
∫

Mn

∆U(ρ)φdx. (2.10)

On the other hand we have according to (2.8)

gρ

(
∂tρ, δρ

)
= −

∫

Mn

∂tρφ dx.

The combination of the last two identities gives, for any δρ satisfying (2.5),

gρ

(
∂tρ, δρ

)
+

〈
diff E|ρ, δρ

〉
= −

∫

Mn

(
∂tρ−∆U(ρ)

)
φdx.

In view of (2.2), this proves that indeed (2.3) is the gradient flow of (1.2) with respect
to the metric tensor (2.6) defined on M.

3. Convexity and contraction. In this section we discuss heuristically how
the convexity of E on (M, g) implies contraction for the gradient flow.

3.1. Abstract framework. Recall that a function E on a Riemannian manifold
(M, g) is convex if its Hessian Hess E is positive definite in any point ρ ∈M, i.e.,

gρ

(
δρ, HessE|ρ δρ

)
> 0 for all δρ ∈ TρM and ρ ∈M.

In an infinite-dimensional context, it is convenient to have alternative ways of probing
convexity. We mention two possibilities:

• The standard way to probe convexity is by geodesics: If [0, 1] 3 s 7→ ρ(s) ∈M
is a geodesic, i.e., any curve for which

D

ds

dρ

ds
= 0,

where D
ds denotes the covariant derivative along s 7→ ρ(s), then we have

d2

ds2
E

(
ρ(s)

)
> 0.

Indeed, this follows from the chain rule

d2

ds2
E

(
ρ(s)

)
=

d

ds
gρ

(
dρ

ds
, gradE|ρ

)

= gρ

(
dρ

ds
, HessE|ρ

dρ

ds

)
+ gρ

(
D

ds

dρ

ds
, grad E|ρ

)

= gρ

(
dρ

ds
, HessE|ρ

dρ

ds

)
. (3.1)
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• There is another way to probe convexity of E: For any gradient flow trajectory
[0,∞) 3 t 7→ ρ(t) ∈M, i.e., any curve for which

dρ

dt
= − grad E|ρ,

and any infinitesimal perturbation [0,∞) 3 t 7→ δρ(t) ∈ Tρ(t)M along this
curve for which by the chain rule

D

dt
δρ = −HessE|ρ δρ, (3.2)

we have that the size of this perturbation does not increase over time:

d

dt
1
2gρ

(
δρ, δρ

)
6 0. (3.3)

Indeed, this follows from

d

dt
1
2gρ

(
δρ, δρ

)
= gρ

(
δρ,

D

dt
δρ

)
= −gρ

(
δρ, HessE|ρ δρ

)
. (3.4)

The property (3.3) has a finite counterpart: Recall that the distance dist(ρ0, ρ1)
between ρ0, ρ1 ∈M induced by the metric tensor g is defined by

1
2 dist(ρ0, ρ1)2 = inf

{
A(ρ)

∣∣∣∣∣ [0, 1] 3 s 7→ ρ(s) ∈M,

{
ρ(0, ·) = ρ0

ρ(1, ·) = ρ1

} }
, (3.5)

where A(ρ) is the natural action of a curve, i.e.,

A(ρ) :=
∫ 1

0

1
2gρ

(
dρ

ds
,
dρ

ds

)
ds. (3.6)

We now argue that (3.3) easily yields a global consequence of the convexity of E: The
gradient flow of E is a contraction in dist. This means that for any two gradient flow
trajectories [0,∞) 3 t 7→ ρi(t) ∈M, i = 0, 1, i.e., any curves with

dρi

dt
= − gradE|ρi

,

we have

dist(ρ0, ρ1) is nonincreasing in t.

Indeed, by translational invariance in time, it is enough to show that

1
2 dist

(
ρ0(t), ρ1(t)

)2 6 1
2 dist

(
ρ0(0), ρ1(0)

)2 for all t > 0. (3.7)

According to (3.5), for given ε > 0, there exists a curve [0, 1] 3 s 7→ ρ̄(s) ∈ M such
that ρ̄(s = 0) = ρ0(t = 0) and ρ̄(s = 1) = ρ1(t = 0), with

1
2 dist

(
ρ0(0), ρ1(0)

)2 = 1
2 dist

(
ρ̄(0), ρ̄(1)

)2 > A(ρ̄)− ε. (3.8)



6 Felix Otto and Michael Westdickenberg

Now for every s ∈ [0, 1] let [0,∞) 3 t 7→ ρ(s, t) ∈M denote the solution of

dρ(s, ·)
dt

= − gradE|ρ(s,·), (3.9)

with ρ(s, 0) = ρ̄(s). Notice that then ρ(0, t) = ρ0(t) and ρ(1, t) = ρ1(t) so that

1
2 dist

(
ρ0(t), ρ1(t)

)2 6 A(
ρ(·, t)). (3.10)

Taking the covariant derivative of (3.9) with respect to s yields

D

∂t

∂ρ

∂s
=

D

∂s

∂ρ

∂t
= −Hess E|ρ

∂ρ

∂s
.

Thus we obtain from (3.3) applied to δρ = ∂ρ
∂s

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
6 0.

Integration over s yields

d

dt
A(

ρ(·, t)) =
∫ 1

0

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
ds 6 0.

Integration over t yields

A(
ρ(·, t)) 6 A(

ρ(·, 0)
)
.

Together with (3.10) and (3.8) we therefore end up with

1
2 dist

(
ρ0(t), ρ1(t)

)2 6 1
2 dist

(
ρ0(0), ρ1(0)

)2 + ε,

and since ε > 0 was arbitrary, (3.7) is proved.

Remark. It is possible to give an argument in favor of

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
= −gρ

(
∂ρ

∂s
, HessE|ρ

∂ρ

∂s

)
(3.11)

that avoids using the covariant derivative altogether: Consider first a family of curves
[0, 1] 3 s 7→ ρ̃(s, t) ∈M for t ∈ [0,∞) such that s 7→ ρ̃(s, 0) is a geodesic. Then

∂

∂t
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
=

∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)
for t = 0. (3.12)

Indeed, given any function [0, 1] 3 s 7→ α(s) ∈ R with α(0) = α(1) = 0 let

ρ̂(s, t) := ρ̃
(
s, α(s)t

)
for all s, t.

Since ρ̂(0, t) = ρ̃(0, 0) and ρ̂(1, t) = ρ̃(1, 0), the definition of geodesic yields

0 =
d

dt |t=0

∫ 1

0

1
2gρ̂

(
∂ρ̂

∂s
,
∂ρ̂

∂s

)
ds =

∫ 1

0

∂

∂t |t=0

1
2gρ̂

(
∂ρ̂

∂s
,
∂ρ̂

∂s

)
ds. (3.13)
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On the other hand, we have ∂ρ̂
∂s (s, t) = ∂ρ̃

∂s (s, α(s)t) + α′(s)t ∂ρ̃
∂t (s, α(s)t) and therefore

[
1
2gρ̂

(
∂ρ̂

∂s
,
∂ρ̂

∂s

)]
(s, t) =

[
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)](
s, α(s)t

)

+ α′(s)t
[
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)](
s, α(s)t

)

+ 1
2

(
α′(s)t

)2
[
gρ̃

(
∂ρ̃

∂t
,
∂ρ̃

∂t

)](
s, α(s)t

)
.

Using this identity in (3.13) then gives

0 =
∫ 1

0

α
∂

∂t |t=0

1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
ds +

∫ 1

0

α′ gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)

|t=0

ds

=
∫ 1

0

α

{
∂

∂t
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
− ∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)}

|t=0

ds.

This proves (3.12) because α was arbitrary. Consider now the family of gradient flows
ρ = ρ(s, ·) satisfying (3.9). For any s0 ∈ [0, 1] there exists a map ρ̃ such that





[0, 1] 3 s 7→ ρ̃(s, t) is a geodesic

ρ̃(s0, t) = ρ(s0, t)
∂ρ̃
∂s (s0, t) = ∂ρ

∂s (s0, t)





for all t ∈ [0,∞). (3.14)

At s = s0 we then find

∂

∂t
1
2gρ

(
∂ρ

∂s
,
∂ρ

∂s

)
(3.14)
=

∂

∂t
1
2gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂s

)
(3.12)
=

∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ̃

∂t

)

(3.14)
=

∂

∂s
gρ̃

(
∂ρ̃

∂s
,
∂ρ

∂t

)

(2.2)
=

∂

∂s

[
−

〈
diff E|ρ,

∂ρ̃

∂s

〉]

(3.14)
=

∂

∂s

[
−

〈
diff E|ρ̃,

∂ρ̃

∂s

〉]
= − ∂2

∂s2
E(ρ̃).

By definition of the Hessian, we have

∂2

∂s2
E(ρ̃) = gρ̃

(
∂ρ̃

∂s
, HessE|ρ̃

∂ρ̃

∂s

)
(3.14)
= gρ

(
∂ρ

∂s
, HessE|ρ

∂ρ

∂s

)

and (3.11) follows.

3.2. Heuristics: Convexity and induced metric. In this section we show
heuristically how the abstract framework of the previous section yields a contraction
property in the Wasserstein distance for the porous medium equation. This argument
will be made rigorous in the remainder of the paper.

We recall the heuristic argument for the convexity of E on (M, g) for which we
probe the convexity along geodesics. Therefore we start by heuristically deriving the
equation for geodesics, essentially reproducing [14]. An alternative heuristic deriva-
tion can be found in [13]. Notice first that within the abstract framework, the geodesic
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equation is the Euler–Lagrange equation (i.e., the first variation) of the action func-
tional (3.6). We will take this venue. In view of (2.6), our action functional for a
curve in M, i.e., for a function ρ : [0, 1]×Mn → [0,∞) with

∫
Mn ρ(s, x) dx = 1 for all

s ∈ [0, 1], takes the form

A(ρ) =
∫∫

[0,1]×Mn

1
2 |∇φ|2 ρ dx ds, (3.15)

where the function φ : [0, 1]×Mn → R is determined by

∂sρ−∇ · (ρ∇φ) = 0 (3.16)

and plays the role of the tangent vector field along the curve. Like for the metric
tensor itself, cf. (2.9), the action functional can be written variationally:

A(ρ) = sup
φ

{
−

∫∫

[0,1]×Mn

1
2 |∇φ|2 ρ dx ds−

∫∫

[0,1]×Mn

φ∂sρ dx ds

}

= sup
φ

{
−

∫∫

[0,1]×Mn

1
2 |∇φ|2 ρ dx ds +

∫∫

[0,1]×Mn

∂sφρ dx ds

+
∫

Mn

φ(0, x) ρ0(x) dx−
∫

Mn

φ(1, x) ρ1(x) dx

}
, (3.17)

where the sup is taken over all smooth functions φ : [0, 1]×Mn → R. Here ρ0, ρ1 are
the fixed end points of the curve, i.e., we have

ρ(0, ·) = ρ0 and ρ(1, ·) = ρ1. (3.18)

To obtain the induced distance in M, the expression (3.17) needs to be minimized
over all functions ρ : [0, 1]×Mn → [0,∞) with

∫
Mn ρ(·, x) dx = 1, see (3.5). In fact, we

may think of minimizing (3.17) over all functions ρ : [0, 1] ×Mn → R because (3.17)
is +∞ if (3.16) or (3.18) are violated. Maximizing in φ and minimizing in ρ amounts
to a saddle-point problem. The first variation in φ is given by (3.16) & (3.18). The
first variation in ρ is given by the Hamilton–Jacobi equation

∂sφ− 1
2 |∇φ|2 = 0. (3.19)

Hence the combination of the transport equation (3.16) and the Hamilton–Jacobi
equation (3.19) form the geodesic equation. Note that the system (3.16) & (3.19) is
of hyperbolic nature as a partial differential equation. The velocity u = −∇φ satisfies
the “pressureless Euler equation”

D

ds
u + Du u = 0,

and thus the flow ∂sΦ = u◦Φ consists of geodesic trajectories, i.e., D
ds

∂
∂sΦ = 0. Notice

that (3.16) states that ρ(s, ·) is the push-forward of ρ(s = 0) under Φ(s, ·). This is
what we call the Lagrangian approach. Geodesics in the sense of shortest curves were
given a rigorous meaning for a Riemannian manifold Mn in [12].

Having identified the geodesic equation, we can probe the convexity of (1.2) along
geodesics. This was first done in the Lagrangian framework in [11] and gave rise to the
notion of displacement convexity. We reproduce the heuristic Eulerian argument from
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[14]. Let ρ : [0, 1]×Mn → [0,∞) be a geodesic with tangent field φ : [0, 1]×Mn → R,
i.e., let (3.16) & (3.19) be satisfied. As in (2.10), we find for the first derivative

dE

ds
=

∫

Mn

∆U(ρ) φdx =
∫

Mn

U(ρ) ∆φdx.

For the second derivative, we obtain

d2E

ds2
=

∫

Mn

(
U ′(ρ) ∂sρ ∆φ + U(ρ)∆∂sφ

)
dx

(3.16)
(3.19)
=

∫

Mn

(
U ′(ρ)∇ · (ρ∇φ)∆φ + U(ρ) ∆ 1

2 |∇φ|2
)

dx

=
∫

Mn

(
ρU ′(ρ) (∆φ)2 +∇U(ρ) · ∇φ ∆φ + U(ρ)∆ 1

2 |∇φ|2
)

dx

=
∫

Mn

(
ρU ′(ρ) (∆φ)2 + U(ρ)

(
−∇ · (∇φ∆φ) + ∆ 1

2 |∇φ|2
))

dx

=
∫

Mn

((
ρU ′(ρ)− U(ρ)

)
(∆φ)2 + U(ρ)

(
−∇φ · ∇∆φ + ∆ 1

2 |∇φ|2
))

dx.

We appeal to Bochner’s formula (see [15]):

−∇φ · ∇∆φ + ∆ 1
2 |∇φ|2 = |D2φ|2 +∇φ · Ric∇φ,

where D2φ denotes the Hessian of φ, |A|2 stands for the trace of AtA, and Ric denotes
the Ricci curvature of Mn. We thus obtain the formula

d2E

ds2
=

∫

Mn

((
ρU ′(ρ)− U(ρ)

)
(∆φ)2 + U(ρ)

(
|D2φ|2 +∇φ · Ric∇φ

))
dx. (3.20)

In view of (3.1), the right-hand side of (3.20) can be understood as the quadratic
part of the Hessian of E in ρ in direction of the infinitesimal variation δρ = ∇· (ρ∇φ).
We notice that it is nonnegative for all functions ρ > 0 and φ, if and only if

ρU ′(ρ) >
(
1− 1

n

)
U(ρ) > 0 and Ric(x) > 0 for all x ∈Mn

because (∆φ)2 6 n|D2φ|2. The convexity of E along geodesics in the Riemannian
case Mn was given a rigorous meaning in [7].

To conclude it only remains to prove that (3.5) with (3.15) & (3.16) coincides
with 1

2W2(ρ0, ρ1). Recall that for ρ0, ρ1 ∈ Prob(Mn), W2(ρ0, ρ1) is defined as

inf

{∫∫

Mn×Mn

d(x, y)2 dπ(x, y)

∣∣∣∣∣ π ∈ Prob(Mn ×Mn),
∫

Mn

dπ(·, y) = ρ0,

∫

Mn

dπ(x, ·) = ρ1

}
,

compare to [18]. Several heuristic arguments are possible here (cf. [13] and [14]).
However, the rigorous proof we provide in the next section is no more diffcult than a
heuristic one; therefore we refer to Proposition 4.3.
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4. Rigorous Result: Contraction. We recall thatMn is a compact connected
Riemannian manifold without boundary, with geodesic distance d and

∫
Mn 1 dx = 1.

Here is our main result.

Theorem 4.1 (Contraction estimate). Assume that ρU ′(ρ) >
(
1 − 1

n

)
U(ρ) > 0

for all ρ > 0, and that Ric(x) > 0 for all x ∈Mn. For nonnegative initial data ρ̄0, ρ̄1

with
∫
Mn ρ̄i dx = 1 consider solutions ρi of the porous medium equation

∂tρi −∆U(ρi) = 0
ρi(t = 0) = ρ̄i

}
for i = 0, 1.

Then the Wasserstein distance of ρ0 and ρ1 is nonincreasing in time, i.e.,

d+

dt
W2(ρ0, ρ1) 6 0. (4.1)

Remark. We have seen in §3.2 that heuristically the convexity of E is equivalent
to the conditions on U and Ric required in Theorem 4.1. We have seen in §3.1 that
convexity of E is equivalent to the contractivity of the corresponding gradient flow.
Hence we expect that the conditions on U and Ric are also necessary. This has been
rigorously proven in [16]. Also in [16], the sufficiency of these conditions has been
established using the Lagrangian approach mentioned in §1 which relies on [12].

The theorem will be a consequence of the following two propositions.

Proposition 4.2. Assume that ρU ′(ρ) >
(
1 − 1

n

)
U(ρ) > 0 for all ρ > 0, and

that Ric(x) > 0 for all x ∈Mn. Consider a family of smooth positive solutions of

∂tρ−∆U(ρ) = 0, (4.2)

depending smoothly on the parameter s ∈ [0, 1]. For any (s, t) let φ be defined by

∂sρ−∇ · (ρ∇φ) = 0.

Then the following holds

d

dt

∫∫

[0,1]×Mn

|∇φ|2ρ dx ds 6 0.

Remark. Proposition 4.2 is guided by the abstract observation of §3.1: Convexity
can be probed by the gradient flow. More precisely, convexity expresses itself by the
fact that the action of curves is reduced when the points along the curve are evolved
by the gradient flow.

Proposition 4.3. Consider ρ0 dx, ρ1 dx ∈ Prob(Mn) where ρ0, ρ1 are smooth
and positive functions. Then the Wasserstein distance squared 1

2W2(ρ0, ρ1) equals

inf

{ ∫∫

[0,1]×Mn

1
2 |∇φ|2ρ dx ds

∣∣∣∣∣ (ρ > 0, φ) smooth functions on [0, 1]×Mn,

∂sρ−∇ · (ρ∇φ) = 0,

{
ρ(0, ·) = ρ0

ρ(1, ·) = ρ1

} }
. (4.3)
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Proof of Theorem 4.1. Assume first that the initial data are smooth and positive,
and that U is linear for ρ 6∈ [α, 1/α] with α > 0 small. Then standard parabolic
theory yields that solutions of the porous medium equation for smooth and positive
initial data are also smooth and positive. By Proposition 4.3 we can, for any ε > 0,
find smooth functions

(
ρ̄ > 0, φ̄

)
on [0, 1]×Mn, with

∂sρ̄−∇ · (ρ̄∇φ̄
)

= 0,

{
ρ̄(0, ·) = ρ̄0

ρ̄(1, ·) = ρ̄1

}

such that
∫∫

[0,1]×Mn

∣∣∇φ̄
∣∣2ρ̄ dx ds 6 W2(ρ̄0, ρ̄1) + ε.

For any s ∈ [0, 1], let ρ̄(·, s) evolve according to the porous medium equation. This
yields a family ρ of solutions depending smoothly on s for which Proposition 4.2
applies. Using again the characterization of Proposition 4.3 then yields

W2
(
ρ0(t), ρ1(t)

)
6

∫∫

[0,1]×Mn

|∇φ(t)|2ρ(t) dx ds

6
∫∫

[0,1]×Mn

∣∣∇φ̄
∣∣2ρ̄ dx ds 6 W2(ρ̄0, ρ̄1) + ε for all t > 0. (4.4)

Since ε > 0 was arbitrary, we obtain (4.1) in this case.

The general case follows by an approximation argument that we do not discuss
in detail here. For general nonnegative initial data one can find sequences of smooth
positive functions, converging strongly to the given ρ̄0, ρ̄1. Then standard theory for
the porous medium equation yields that the solutions converge strongly in L1(Mn),
hence a posteriori also in the Wasserstein distance which metrizes the weak* topology
of measures. Therefore the contraction estimate generalizes to this setting. Similarly,
one can approximate a given U with ρU ′(ρ) >

(
1 − 1

n

)
U(ρ) > 0 for all ρ > 0, by a

sequence of functions that have the same property and are linear for small and large
ρ, and that converge uniformly. Then again standard theory applies and allows to
conclude. We refer to [13] where this program has been carried out in Rn.

Proof of Proposition 4.2. The following remark is at the core of Proposition 4.2:

Lemma 4.4. Consider smooth functions
(
ρ > 0, δρ

)
on [0,∞)×Mn solving





∂tρ −∆U(ρ) = 0,

∂t(δρ)−∆
(
U ′(ρ) δρ

)
= 0.

(4.5)

For any t let φ be defined by

δρ−∇ · (ρ∇φ
)

= 0. (4.6)

Then we have

d

dt

∫

Mn

1
2 |∇φ|2ρ dx

= −
∫

Mn

((
ρU ′(ρ)− U(ρ)

)
(∆φ)2 + U(ρ)

(
|D2φ|2 +∇φ · Ric∇φ

))
dx. (4.7)
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Remark. Observe that the second equation in (4.5) describes the evolution of an
infinitesimal perturbation δρ of ρ, see (3.2). Notice further that in view of (4.6), the
left-hand side of (4.7) measures how the squared norm of δρ changes in time, cf. (3.3).
Observe finally that the right-hand side expression of (4.7) coincides with what we
expect to be—up to the sign—the Hessian, see (3.20). In this sense the formula (4.7)
reproduces (3.4).

Proof. The left-hand side of (4.7) equals, after an integration by parts,

d

dt

∫

Mn

1
2 |∇φ|2ρ dx =

∫

Mn

(
− φ∇ · (ρ ∂t∇φ

)
+ 1

2 |∇φ|2 ∂tρ
)

dx. (4.8)

We express −∇ · (ρ ∂t∇φ) in terms of ρ and φ. We find by differentiating (4.6)

−∇ · (ρ ∂t∇φ
)

= −∂t(δρ) +∇ · (∂tρ∇φ
)

(4.5)
= −∆

(
U ′(ρ) δρ

)
+∇ ·

(
∆U(ρ)∇φ

)

(4.6)
= −∆

(
U ′(ρ)∇ · (ρ∇φ)

)
+∇ ·

(
∆U(ρ)∇φ

)

= −∆
((

ρU ′(ρ)− U(ρ)
)
∆φ

)
−∆∇ ·

(
U(ρ)∇φ

)
+∇ ·

(
∆U(ρ)∇φ

)
.

Using this identity and (4.5) in (4.8) gives, after throwing all derivatives onto φ,

d

dt

∫

Mn

1
2 |∇φ|2ρ dx

= −
∫

Mn

((
ρU ′(ρ)− U(ρ)

)
(∆φ)2 + U(ρ)

(
−∇∆φ · ∇φ + ∆ 1

2 |∇φ|2
))

dx.

Then we use Bochner’s formula

−∇∆φ · ∇φ + ∆ 1
2 |∇φ|2 = |D2φ|2 +∇φ · Ric∇φ

(see Proposition 3.3 of [15]) to conclude.

Fix s ∈ [0, 1] and let δρ = ∂sρ(·, s). Differentiating (4.2) with respect to s gives

∂t

(
∂sρ

)−∆
(
U ′(ρ) ∂sρ

)
= 0.

Then Lemma 4.4 applies and yields

d

dt

∫

Mn

1
2 |∇φ|2ρ dx

= −
∫

Mn

((
ρU ′(ρ)− U(ρ)

)
(∆φ)2 + U(ρ)

(
|D2φ|2 +∇φ · Ric∇φ

))
dx. (4.9)

Notice that (∆φ)2 6 n|D2φ|2. By the assumption on U , we therefore get
(
ρU ′(ρ)− U(ρ)

)
(∆φ)2 + U(ρ)|D2φ|2 > U(ρ)

(
− 1

n (∆φ)2 + |D2φ|2
)

> 0.

Furthermore, we have ∇φ · Ric∇φ > 0. This proves the proposition.
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Remark. The same reasoning also yields convergence rates: In fact, if

U(ρ) ξ · Ric(x)ξ > λρ|ξ|2 for all ρ > 0 and (x, ξ) ∈ TMn (4.10)

for a suitable constant λ ∈ R, then (4.9) gives

d

dt

∫

Mn

1
2 |∇φ|2ρ dx = −

∫

Mn

U(ρ)
(
∇φ · Ric∇φ

)
dx 6 −2λ

∫

Mn

1
2 |∇φ|2ρ dx.

We obtain exponential decay of
∫
Mn

1
2 |∇φ|2ρ dx with rate 2λ, thus of W2(ρ1, ρ0), by

(4.4). For the heat equation on the unit sphere, for example, condition (4.10) is
satisfied with constant λ = 1.

Proof of Proposition 4.3. We proceed in five steps.

Step 1: We first prove that 1
2W2(ρ0, ρ1) 6 (4.3). Therefore assume that (ρ, φ) is

admissible in (4.3). For abbreviation we introduce the velocity field u := −∇φ, such
that ∂sρ +∇ · (ρu) = 0, and consider the flow induced by u:

Φ: [0, 1]×Mn −→Mn with ∂sΦ(s, x) = u
(
s, Φ(s, x)

)
, Φ(0, x) = x, (4.11)

for all (s, x) ∈ [0, 1] ×Mn. Then the measure ρ(s, x) dx is the push-forward of the
measure ρ0(x) dx under Φ(s, ·), i.e., we have for all smooth functions ζ on Mn

∫

Mn

ζ(x)ρ(s, x) dx =
∫

Mn

ζ
(
Φ(s, x)

)
ρ0(x) dx for all s ∈ [0, 1]. (4.12)

Moreover, by definition of the geodesic distance d we have

d
(
x, Φ(1, x)

)2 6
∫ 1

0

|∂sΦ(s, x)|2 ds. (4.13)

Let π be the nonnegative measure defined by
∫∫

Mn×Mn

ζ(x, y) dπ(x, y) =
∫

Mn

ζ
(
x, Φ(1, x)

)
ρ0(x) dx (4.14)

for all smooth functions ζ on Mn × Mn. Thanks to (4.12), π is admissible in the
definition of the Wasserstein distance W2(ρ0, ρ1). Furthermore we have

∫∫

Mn×Mn

d(x, y)2 dπ(x, y)

(4.14)
=

∫

Mn

d
(
x, Φ(1, x)

)2
ρ0(x) dx

(4.13)

6
∫

Mn

( ∫ 1

0

|∂sΦ(s, x)|2 ds

)
ρ0(x) dx

(4.11)
=

∫ 1

0

∫

Mn

∣∣u(
s,Φ(s, x)

)∣∣2ρ0(x) dx ds

(4.12)
=

∫ 1

0

∫

Mn

|u(s, x)|2ρ(s, x) dx ds =
∫∫

[0,1]×Mn

|∇φ|2ρ dx ds.

This proves our claim.



14 Felix Otto and Michael Westdickenberg

Step 2: Notice that any smooth vector field on [0, 1]×Mn can be identified with
a pair (ρ, m), where ρ is a function on [0, 1] ×Mn and m is an s–dependent vector
field on Mn (such as m = −ρ∇φ). We will now show that (4.3) equals

inf

{∫∫

[0,1]×Mn

1
2ρ−1|m|2 dx ds

∣∣∣∣∣ (ρ > 0, m) smooth vector field on [0, 1]×Mn,

∂sρ +∇ ·m = 0,

{
ρ(0, ·) = ρ0

ρ(1, ·) = ρ1

} }
. (4.15)

That (4.15) does not exceed (4.3) is obvious. To prove the converse consider an
admissible pair (ρ,m) in the sense of (4.15). By positivity of ρ we then find, for any
s ∈ [0, 1], a smooth function φ on Mn solving the elliptic equation

∇ · (m + ρ∇φ
)

= 0 on Mn. (4.16)

This φ depends smoothly on s because the pair (ρ,m) does. SinceMn has no boundary
∫

Mn

(
m + ρ∇φ

) · ∇φdx = 0.

Therefore by Cauchy–Schwarz
∫

Mn

ρ|∇φ|2 dx
(4.16)
=

∫

Mn

−m · ∇φdx

6
(∫

Mn

ρ−1|m|2 dx

)1/2 (∫

Mn

ρ|∇φ|2 dx

)1/2

,

and thus
∫

Mn

1
2ρ|∇φ|2 dx 6

∫

Mn

1
2ρ−1|m|2 dx.

Step 3: Now we generalize the functional (4.15) to a certain class of distributions
and prove that then the inf is bounded by the Wasserstein distance, for any measures
ρ0, ρ1 ∈ Prob(Mn). To achieve this, notice first that thanks to the Riemannian metric
on Mn, any smooth 1-form ω on [0, 1]×Mn can be identified with a pair (σ, ξ), where
σ is a function on [0, 1]×Mn and ξ is an s–dependent vector field on Mn, via

〈
ω, (ρ,m)

〉
= σρ + ξ ·m

for all (smooth) vector fields (ρ, m). We write

ω = σ ds + ξ · dx.

The space of 1-forms can be topologized as usual in the theory of distributions, but
we do not want to go into details and refer to [9, 10] instead. A linear functional
on the space of smooth 1-forms is called a current. Any smooth vector field (ρ, m)
defined on [0, 1]×Mn gives rise to a current T via

〈
T, σ ds + ξ · dx

〉
:=

∫∫

[0,1]×Mn

ρσ + m · ξ dx ds. (4.17)

But of course not all currents T can be represented in this form.
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We consider currents defined on [0, 1]×Mn that satisfy

〈
T, ∂sζ ds +∇ζ · dx

〉
=

∫

Mn

ζ(1, x) dρ1(x)−
∫

Mn

ζ(0, x) dρ0(x) (4.18)

for all test functions ζ, for given ρ0, ρ1 ∈ Prob(Mn). If now T is of the form (4.17),
then (4.18) is just the weak formulation of the continuity equation ∂sρ +∇ ·m = 0
with initial and final data ρ0 and ρ1. Following [4], we can generalize the action

∫∫

[0,1]×Mn

1
2ρ−1|m|2 dx ds (4.19)

as follows. For any current T with (4.18) we consider

A(T ) := sup
{〈

T, σ ds + ξ · dx
〉 ∣∣∣∣ (σ, ξ) smooth vector field on [0, 1]×Mn

with σ + 1
2 |ξ|2 6 0

}
. (4.20)

We claim that this A(T ) coincides with (4.19) if T is of the form (4.17): Indeed,
setting ξ = ρ−1m and σ = − 1

2 |ξ|2 = − 1
2ρ−2|m|2 shows that (4.19) 6 A(T ); and

ρσ + m · ξ 6 −ρ 1
2 |ξ|2 + m · ξ 6 1

2ρ−1|m|2

for all admissible (σ, ξ) implies that A(T ) 6 (4.19).

Step 4: Now we prove that 1
2W2(ρ0, ρ1) is bigger than or equal to

inf
{
A(T )

∣∣∣ T current on [0, 1]×Mn satisfying (4.18)
}

. (4.21)

Consider any transference plan π ∈ Prob(Mn×Mn) that is admissible in the definition
of W2(ρ0, ρ1), and let Φ: [0, 1]×Mn ×Mn −→Mn be defined by

[0, 1] 3 s 7→ Φ(s, x, y) is the shortest geodesic between x and y.

Then we have in particular

∫ 1

0

|∂sΦ(s, x, y)|2 ds = d(x, y)2 and
{

Φ(0, x, y) = x
Φ(1, x, y) = y

}
. (4.22)

We define a current T on [0, 1]×Mn as follows: For all 1-forms σ ds + ξ · dx let

〈
T, σ ds + ξ · dx

〉

:=
∫∫ ∫ 1

0

{
σ
(
s, Φ(s, x, y)

)
+ ξ

(
s, Φ(s, x, x)

) · ∂sΦ(s, x, y)
}

ds dπ(x, y).
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This current satisfies the admissibility condition (4.18). Indeed we have
〈
T, ∂sζ ds +∇ζ · dx

〉

=
∫∫ ∫ 1

0

{
∂sζ

(
s, Φ(s, x, y)

)
+∇ζ

(
s,Φ(s, x, y)

) · ∂sΦ(s, x, y)
}

ds dπ(x, y)

=
∫∫ ∫ 1

0

d

ds

{
ζ
(
s, Φ(s, x, y)

)}
ds dπ(x, y)

=
∫∫

ζ
(
1, Φ(1, x, y)

)
dπ(x, y)−

∫∫
ζ
(
0, Φ(0, x, y)

)
dπ(x, y)

(4.22)
=

∫∫
ζ(1, y) dπ(x, y)−

∫∫
ζ(0, x) dπ(x, y)

=
∫

ζ(1, y) dρ1(y)−
∫

ζ(0, x) dρ0(x)

for all test functions ζ. Now we argue that A(T ) 6
∫∫

1
2d(x, y)2 dπ(x, y). Indeed we

have for any vector field (σ, ξ) admissible in (4.20) that
〈
T, σ ds + ξ · dx

〉

=
∫∫ ∫ 1

0

{
σ
(
s, Φ(s, x, y)

)
+ ξ

(
s, Φ(s, x, y)

) · ∂sΦ(s, x, y)
}

ds dπ(x, y)

6
∫∫ ∫ 1

0

{
− 1

2

∣∣ξ(s, Φ(s, x, y)
)∣∣2 + ξ

(
s, Φ(s, x, y)

) · ∂sΦ(s, x, y)
}

ds dπ(x, y)

6
∫∫ ∫ 1

0

1
2 |∂sΦ(s, x, y)|2 ds dπ(x, y)

(4.22)
=

∫∫
1
2d(x, y)2 dπ(x, y).

Step 5. To conclude the proof of the proposition it is then sufficient to show
that the two inf in (4.15) and (4.21) coincide. This will follow from Proposition 5.1
below which shows that any current T satisfying the admissibility condition (4.18)
for smooth and positive data ρ0, ρ1 can in fact be approximated by a current Tε that
is representable by a smooth vector field (ρε > 0,mε), in such a way that (4.18) still
holds with Tε in place of T and lim supε→0A(Tε) 6 A(T ).

The only detail that needs to be settled is (strict) positivity of ρε. We argue as
follows. Since ρ0, ρ1 > 0 and Mn is compact, there exists 0 < δ < 1 with ρ0, ρ1 > δ.
Recall that by assumption

∫
Mn 1 dx = 1. Then we consider

ρ̃0 :=
ρ0 − δ

1− δ
and ρ̃1 :=

ρ1 − δ

1− δ

which are in Prob(Mn). Let T̃ be the current constructed in Step 4, based on an
admissible transference plan π in the definition of W2(ρ̃0, ρ̃1). As shown there

A(T̃ ) 6 1
2W2(ρ̃0, ρ̃1). (4.23)

We apply Proposition 5.1 to T̃ . This gives an approximation T̃ε that satisfies (4.18)
and is representable by smooth vector fields (ρ̃ε > 0, m̃ε), such that

lim sup
ε→0

A(T̃ε) 6 A(T̃ ). (4.24)
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In view of the remark in Step 3, the admissibility condition (4.18) amounts to

∂sρ̃ε +∇ · m̃ε = 0,

{
ρ̃ε(0, ·) = ρ̃0

ρ̃ε(1, ·) = ρ̃1

}
.

Now notice that ρ̃0 and ρ̃1 are constructed in such a way that

(ρε, mε) :=
(
(1− δ)ρ̃ε + δ, (1− δ)m̃ε

)

is admissible in (4.15) because ρε > δ > 0. We have ρ−1
ε |mε|2 6 (1− δ) ρ̃−1

ε |m̃ε|2, and
thus by the remark in Step 3

∫∫

[0,1]×Mn

1
2ρ−1

ε |mε|2 dx ds 6 (1− δ)
∫∫

[0,1]×Mn

1
2 ρ̃−1

ε |m̃ε|2 = (1− δ)A(T̃ε). (4.25)

In view of (4.23), (4.24) and (4.25) it remains to argue that

W(ρ̃0, ρ̃1) 6 W(ρ0, ρ1) + o(1) as δ → 0.

By the triangle inequality for the Wasserstein distance (see Theorem 7.3 of [18]),

W(ρ̃0, ρ̃1) 6 W(ρ0, ρ1) +W(ρ0, ρ̃0) +W(ρ1, ρ̃1). (4.26)

In order to conclude it suffices therefore to prove that the last two terms on the right-
hand side of (4.26) can be made small by choosing δ appropriately. We consider the
transference plan π ∈ Prob(Mn ×Mn) defined by

∫∫

Mn×Mn

ζ(x, y) dπ(x, y)

:=
∫

Mn

ζ(x, x)
(
ρ0(x)− δ

)
dx + δ

1−δ

∫∫

Mn×Mn

ζ(x, y)
(
ρ0(y)− δ

)
dx dy (4.27)

for all ζ. This π is admissible in the definition of W2(ρ0, ρ̃0) because
∫∫

Mn×Mn

ζ(x) dπ(x, y)

=
∫

Mn

ζ(x)
(
ρ0(x)− δ

)
dx + δ

1−δ

∫

Mn

ζ(x) dx

∫

Mn

(
ρ0(y)− δ

)
dy

=
∫

Mn

ζ(x) ρ0(x) dx

and similarly
∫∫

Mn×Mn

ζ(y) dπ(x, y)

=
∫

Mn

ζ(y)
(
ρ0(y)− δ

)
dy + δ

1−δ

∫

Mn

dx

∫

Mn

ζ(y)
(
ρ0(y)− δ

)
dy

=
∫

Mn

ζ(y)
ρ0(y)− δ

1− δ
dy.

Using ζ(x, y) := d(x, y)2 in (4.27) then yields

W2(ρ0, ρ̃0) 6 δ diam(Mn)2.

The same argument applies to W2(ρ1, ρ̃1), thereby finishing the proof.
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5. Approximation of currents. In this section we prove the approximation
result for currents used in the proof of Proposition 4.3. Notice that the regularization
of currents is well understood, see e.g. [8, 10]. Here we need to adopt the standard
arguments somewhat in order to obtain convergence of the action functional (4.20).

Proposition 5.1. Let Mn be a compact connected Riemannian manifold without
boundary. For given measures ρ0, ρ1 ∈ Prob(Mn) consider a current T on [0, 1]×Mn

with A(T ) < ∞ which satisfies the admissibility condition
〈
T, ∂sζ ds +∇ζ · dx

〉
=

∫

Mn

ζ(1, x) dρ1(x)−
∫

Mn

ζ(0, x) dρ0(x) (5.1)

for all test functions ζ defined on [0, 1]×Mn. Then we have
1. There exists a family of currents {Tε}ε>0 representable in the form

〈
Tε, σ ds + ξ · dx

〉
=

∫∫

[0,1]×Mn

ρεσ + mε · ξ dx ds (5.2)

for suitable vector fields (ρε > 0,mε) which are smooth inside (0, 1) ×Mn.
The admissibility condition (5.1) still holds with Tε in place of T and

lim sup
ε→0

A(Tε) 6 A(T ).

2. If ρ0 and ρ1 are smooth functions, we may assume that the fields (ρε, mε) are
smooth up to the boundary, and thus ρε(0, ·) = ρ0 and ρε(1, ·) = ρ1.

Remark. Since the action functional A(T ) is lower semicontinuous in the usual
weak* topology of currents (see [10]), it even holds that limε→0A(Tε) = A(T ).

Proof. We start with a remark on notation. Because of the action and the
admissibility condition, the s– and x–variables have to be treated differently. However,
it will often be convenient to lump s– and x–variables together; therefore we will write
x = (s, x), ξ = (σ, ξ) and m = (ρ,m). As a rule, bold symbols always denote (n+1)–
dimensional objects (vector fields, parameters, operators, sets).

The approximating currents Tε are obtained by regularization of T . We proceed
as usual (see [8, 10]): Since a current is a linear form on 1-forms, we regularize T by
duality, i.e., by constructing a linear operator that regularizes 1-forms ξ · dx. This
must be done in such a way that exact 1-forms ξ · dx = ∇ζ · dx turn into exact
1-forms since by assumption (5.1), T vanishes on exact 1-forms that are compactly
supported in (0, 1) × Mn. Recall that pulling-back a 1-form under a smooth map
preserves exactness. Therefore we regularize ξ · dx as follows: We construct a family
of diffeomorphisms {Φ(z, ·)}z of R×Mn, parametrized by z ∈ R×Rn, we then consider
its pull-back Φ(z, ·)#(ξ · dx) and average over z.

In order to preserve the boundary condition (5.1), it is necessary that Φ(z, ·) leaves
the complement of (0, 1)×Mn invariant. On the other hand, in order to achieve the
regularizing effect, it is important that z ∈ R×Rn “acts transitively” on (0, 1)×Mn.
Because of topological reasons, this cannot be achieved globally by a single map Φ in
general. We have to work locally with several maps Φ, each of which is attached to
some open set U of a suitable covering of Mn.

More precisely, we consider a finite covering {Ui}N
i=1 of Mn subordinate to some

atlas, with Ui ⊂ Mn homeomorphic to the unit ball B1(0) ⊂ Rn and φi : Ui −→ Rn
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the corresponding smooth coordinate map. We may assume that each φi extends to
a neighborhood of Ui and B1(0). Based on this map, we shall construct an operator
T 7→ TUi

εi
for εi > 0 with the following properties:

(a) The operator T 7→ TUi
εi

regularizes in (0, 1)× Ui, i.e., TUi
εi

is representable in
(0, 1)× Ui by a smooth vector field (ρεi > 0,mεi) as in (5.2).

(b) The operator T 7→ TUi
εi

does not destroy smoothness, i.e., if T is representable
by a smooth vector field in (0, 1) × V with V ⊂ Mn open, then also TUi

εi
is

representable by a smooth vector field in (0, 1)× V .
(c) The new current is admissible in the sense that (5.1) still holds with TUi

εi
in

place of T , and we have upper semicontinuity of the action

lim sup
εi→0

A(
TUi

εi

)
6 A(T ).

Then the composition

T 7→ TU1
ε1

7→ (
TU1

ε1

)
U2
ε2

7→ · · · 7→ ( · · · (TU1
ε1

)
U2
ε2
· · · )UN

εN

yields an approximate current Tε with all the properties required by the proposition.
In particular, we obtain a vector field (ρε > 0,mε) that represents Tε in the sense
of (5.2) and is smooth throughout (0, 1) ×Mn. It suffices to consider each operator
T 7→ TUi

εi
separately and check that (a)–(c) are satisfied. To simplify the notation,

we will suppress the index i and do not indicate the dependence on Ui. The idea of
regularizing a current defined on a manifold by composing several operators attached
to local coordinate maps already appeared in [8].

We proceed in several steps.

Step 1: As mentioned before, the regularization T 7→ Tε is based on a family of
diffeomorphisms {Φ(z, ·)}z of R×Mn, parametrized by z ∈ R× Rn and attached to
the open set U ⊂Mn. We would like these diffeomorphisms to leave the complement
of (0, 1)×U invariant, but we cannot impose this since in order to control the action
we need that the first component of Φ does not depend on x.

We shall use

• a smooth map Φ = (Φ0,Φ): (R × Rn) × (R × Mn) −→ R × Mn (whose
construction is postponed until Step 7) with the following properties:

∀ z ∈ R× Rn Φ(z, ·) is a diffeomorphism of R×Mn onto R×Mn, (5.3a)
∀ x ∈ R×Mn Φ(0,x) = x, (5.3b)

∀ x ∈ (0, 1)× U Φ(·,x) is a diffeomorphism of R× Rn onto (0, 1)× U , (5.3c)

Φ0 does not depend on x, (5.3d)

∀ (z,x) ∈ (R× Rn)× (
(0, 1)× (Mn − U)

)
Φ(z,x) = x, (5.3e)

∀ (z,x) ∈ (R× Rn)× ((
R− (0, 1)

)×Mn
)

Φ(z,x) = x. (5.3f)

We shall also need the following maps which exist by (5.3a) and (5.3c):
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• the right inverse Θ = (Θ0, Θ): (R×Rn)× (R×Mn) −→ R×Mn of Φ which
is characterized by

∀ (z,x) ∈ (R× Rn)× (R×Mn) Φ
(
z,Θ(z,x)

)
= x; (5.4)

• the left inverse Ψ = (Ψ0, Ψ):
(
(0, 1) × U

) × (
(0, 1) × U

) −→ R × Rn of Φ
which is characterized by

∀ (x,y) ∈ (
(0, 1)× U

)× (
(0, 1)× U

)
Φ

(
Ψ(y,x),x

)
= y. (5.5)

For later reference we collect some properties: Let D1Φ and D2Φ denote the
derivatives of Φ with respect to the first resp. second variable. Then

∀ (z,x) ∈ (R× Rn)× (R×Mn) D2Φ(z,x) has full rank, (5.6)

∀ (z,x) ∈ (R× Rn)× (
(0, 1)× U

)
D1Φ(z,x) has full rank, (5.7)

as a consequence of (5.3a) and (5.3c). From (5.4) we obtain

DzΘ(z,x) = −
(
D2Φ

(
z,Θ(z,x)

))−1

D1Φ
(
z,Θ(z,x)

)
,

DxΘ(z,x) =
(
D2Φ

(
z,Θ(z,x)

))−1

,
(5.8)

which together with (5.6) implies that Θ is smooth. Similarly, (5.5) yields

DyΨ(y,x) =
(
D1Φ

(
Ψ(y,x),x

))−1

,

DxΨ(y,x) = −
(
D1Φ

(
Ψ(y,x),x

))−1

D2Φ
(
Ψ(y,x),x

)
,

(5.9)

so Ψ is smooth by (5.7). Moreover, we gather from (5.3b) that

D2Φ(z, ·) = Id +O(|z|) as |z| → 0. (5.10)

Finally, we notice that the properties above entail that

∀ y ∈ (0, 1)× U lim
x∈(0,1)×U

x→∂((0,1)×U)

|Ψ(y,x)| = +∞. (5.11)

We argue by contradiction. Indeed suppose that (5.11) fails. Then there exist a
sequence {xν}ν ⊂ (0, 1)× U and x ∈ ∂

(
(0, 1)× U

)
, z ∈ R× Rn with

lim
ν→∞

xν = x and lim
ν→∞

Ψ(y,xν) = z.

Passing to the limit in (5.5) yields by continuity of Φ that

Φ(z,x) = y ∈ (0, 1)× U. (5.12)

Now recall that x ∈ ∂
(
(0, 1)× U

)
=

(
(0, 1)× ∂U

) ∪ ({0, 1} × Ū
)
. If x ∈ (0, 1)× ∂U ,

then (5.12) contradicts (5.3e); if x ∈ {0, 1} × Ū , then (5.12) contradicts (5.3f).

We now introduce our Tε. We select a smooth nonnegative function k on R×Rn

with compact support in B1(0) and
∫∫
R×Rn k(z) dz = 1. For ε > 0, we denote by
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kε(z) = k(z/ε)/εn+1 the rescaled kernel. Given a smooth 1-form ξ · dx on R ×Mn

and z ∈ R×Rn we consider its pull-back Φ(z, ·)#(ξ · dx) =: ξ(z, ·) · dx. Observe that
in terms of the vector fields this means

∀ x ∈ R×Mn ξ(z,x) =
(
DxΦ(z,x)

)t
ξ
(
Φ(z,x)

)
, (5.13)

where At denotes the transpose of A with respect to the metric on R×Mn. Then we
define the smeared out 1-form ξε · dx by averaging ξ(z, ·) · dx over z with respect to
kε. On the level of the vector fields this means

∀ x ∈ R×Mn ξε(x) =
∫∫

R×Rn

ξ(z,x) kε(z) dz. (5.14)

Finally, we introduce Tε by duality, i.e., for all 1-forms ξ · dx we put
〈
Tε, ξ · dx

〉
:=

〈
T, ξε · dx

〉
. (5.15)

Step 2: We first argue that Tε has a smooth representative in (0, 1)×U . In order
to see this, we write (5.14) in form of

ξε(x) =
∫∫

(0,1)×U

Kε(y,x) ξ(y) dy for x ∈ (0, 1)× U . (5.16)

Indeed, we shall see that (5.16) holds for the tensor field

Kε(y,x) =





(
− (

DyΨ(y,x)
)−1

DxΨ(y,x)
)t

kε

(
Ψ(y,x)

)
detDyΨ(y,x)

for x ∈ (0, 1)× U
0 otherwise





for all y ∈ (
0, 1)× U . (5.17)

Notice that Kε(y,x) is an endomorphism from the tangent space Ty(R ×Mn) into
Tx(R×Mn), and that Kε(y,x) is smooth in (y,x) ∈ (

(0, 1)×U
)× (R×Mn). Indeed,

if y varies in a compact subset of (0, 1)×U and x ∈ (0, 1)×U is close to ∂
(
(0, 1)×U

)
,

we learn from (5.11) that kε

(
Ψ(y,x)

)
= 0 and thus Kε(y,x) = 0, because kε has

bounded support. We check (5.16): For all x ∈ (0, 1)× U

ξε(x)
(5.14)
=

∫∫

R×Rn

ξ(z,x) kε(z) dz

(5.13)
=

∫∫

R×Rn

(
DxΦ(z,x)

)t
ξ
(
Φ(z,x)

)
kε(z) dz

(5.5)
=

∫∫

(0,1)×U

(
D2Φ

(
Ψ(y,x),x

))t

ξ(y) kε

(
Ψ(y,x)

)
det DyΨ(y,x) dy

(5.9)
=

∫∫

(0,1)×U

(
− (

DyΨ(y,x)
)−1

DxΨ(y,x)
)t

ξ(y) kε

(
Ψ(y,x)

)

× det DyΨ(y,x) dy
(5.17)
=

∫∫

(0,1)×U

Kε(y,x) ξ(y) dy.
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We now argue that in (0, 1)× U , Tε is represented by mε defined through

mε(y) · ξ :=
〈
T,

(
Kε(y, ·) ξ

) · dx
〉

for y ∈ (0, 1)× U, ξ ∈ Ty(R×Mn). (5.18)

Since Kε(y,x) is smooth in (y,x) ∈ (
(0, 1) × U

) × (R × Mn), mε is smooth in
y ∈ (0, 1)×U . We check that mε is indeed the representative of Tε in (0, 1)×U . Let
ξ be a smooth vector field compactly supported in (0, 1)× U . Then

〈
Tε, ξ · dx

〉
(5.15)
=

〈
T, ξε · dx

〉

(5.16)
=

∫∫

(0,1)×U

〈
T,

(
Kε(y, ·) ξ(y)

) · dx
〉

dy

(5.18)
=

∫∫

(0,1)×U

mε(y) · ξ(y) dy.

Step 3: We now prove that the operator T 7→ Tε does not destroy smoothness.
More precisely, we shall argue that for V ⊂Mn open

T has a smooth representative in (0, 1)× V
=⇒ Tε has a smooth representative in (0, 1)× (U ∪ V ) (5.19)

and that

T has a smooth representative in a neighborhood of {0, 1} ×Mn

=⇒ Tε has the same property. (5.20)

To treat both situations simultaneously, we consider a set V that is relatively open
in [0, 1]×Mn and in which T is represented by a smooth vector field m in the sense
that for all smooth vector fields ξ compactly supported in V

〈
T, ξ · dx

〉
=

∫∫

R×Mn

m · ξ dx. (5.21)

Then we claim that in the set

Vε :=
⋂

z∈Bε(0)

Φ(z,V) (5.22)

the regularized current Tε is represented by

mε(x) :=





∫∫

R×Rn

(
DxΘ(z,x)

)−1
m

(
Θ(z,x)

)
kε(z) det DxΘ(z,x) dz

for x ∈ Vε ∩
(
(0, 1)×Mn

)

m(x) for x ∈ Vε ∩
({0, 1} ×Mn

)





. (5.23)

Notice first that Vε is relatively open in [0, 1]×Mn since (5.3a) & (5.3f) give

Vε =
(
[0, 1]×Mn

)−Φ
(
Bε(0),

(
[0, 1]×Mn

)−V
)
.

According to (5.21), (5.22) & (5.4), the vector field mε is well defined. Moreover,
mε inherits the smoothness of m separately in both subsets of Vε. Hence we only
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need to check that mε is regular throughout Vε. By smoothness of Θ and (5.3f), the
function (s, x) 7→ Θ

(
z, (s, x)

)
approaches the identity map as s → {0, 1}, uniformly

in all derivatives and both in z ∈ Bε(0) and x ∈ Mn. This implies in particular that
DxΘ → Id and det DxΘ → 1. Since by assumption m is smooth in V, regularity
of mε then follows easily by standard arguments. Therefore the operator T 7→ Tε

does not destroy smoothness in the above sense. We now check that mε is indeed the
representative. Let a smooth vector field ξ be given that is compactly supported in
Vε. Because of (5.22), ξ(z, ·) defined in (5.13) is compactly supported in V for all
z ∈ Bε(0), and so ξε is compactly supported in V, by definition (5.14). We obtain

〈
Tε, ξ · dx

〉

(5.15)
=

〈
T, ξε · dx

〉

(5.21)
=

∫∫

R×Mn

m · ξε dx

(5.14)
=

∫∫

R×Rn

∫∫

R×Mn

m(x) · ξ(z,x) dx kε(z) dz

(5.13)
=

∫∫

R×Rn

∫∫

R×Mn

DxΦ(z,x)m(x) · ξ(
Φ(z,x)

)
dx kε(z) dz

(5.4)
=

∫∫

R×Rn

dz kε(z)

×
∫∫

R×Mn

DxΦ
(
z,Θ(z,y)

)
m

(
Θ(z,y)

) · ξ(y) det DyΘ(z,y) dy

(5.8)
=

∫∫

R×Rn

dz kε(z)

×
∫∫

R×Mn

(
DyΘ(z,y)

)−1
m

(
Θ(z,y)

) · ξ(y) det DyΘ(z,y) dy

(5.23)
=

∫∫

Vε

mε(y) · ξ(y) dy.

If now V = (0, 1)× V with V ⊂Mn open, then (5.3d)–(5.3f) entail

Vε −
(
(0, 1)× U

)
= V − (

(0, 1)× U
)
.

In particular, Vε contains an open neighborhood of V ∩ (
(0, 1)× ∂U

)
. Therefore Tε

is smooth in V ∪ (
(0, 1) × U

)
. This establishes (5.19). Similarly, if V = [0, α) ×Mn

for some 0 < α < 1, then Vε = [0, α′)×Mn for some 0 < α′ 6 α, by (5.3d) & (5.3f).
Therefore Tε is smooth up to the boundary {0}×Mn. The same argument applies to
V = (1− α, 1]×Mn. This establishes (5.20).

Step 4: We now argue that Tε is admissible if T is, i.e., if
〈
T, ∇ζ · dx

〉
=

∫

Mn

ζ(1, x) dρ1(x)−
∫

Mn

ζ(0, x) dρ0(x) (5.24)

for all smooth functions ζ on R×Mn. Consider the gradient field ξ := ∇ζ. We gather
from (5.13) and the chain rule that

ξ(z,x) = ∇xζ(z,x) where ζ(z,x) := ζ
(
Φ(z,x)

)
.
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We thus infer from (5.14) that

ξε(x) = ∇ζε(x) where ζε(x) :=
∫∫

R×Rn

ζ(z,x) kε(z) dz. (5.25)

Then (5.3f) implies that

∀ (z,x) ∈ (R× Rn)× ((
R− (0, 1)

)×Mn
)





ζ(z,x) = ζ(x)
and thus

ζε(x) = ζ(x)



 . (5.26)

Hence we obtain as desired

〈
Tε, ∇ζ · dx

〉 (5.15)
(5.25)
=

〈
T, ∇ζε · dx

〉

(5.24)
=

∫

Mn

ζε(1, x) dρ1(x)−
∫

Mn

ζε(0, x) dρ0(x)

(5.26)
=

∫

Mn

ζ(1, x) dρ1(x)−
∫

Mn

ζ(0, x) dρ0(x).

Step 5: Now we address the action estimate. We claim that for small ε

A(Tε) 6
(
1 +O(ε)

)A(T ) +O(ε) (5.27)

with the modulus O(ε) only depending on Φ. Let ξ = (σ, ξ) be an admissible vector
field in the definition of A, i.e., for which

σ + 1
2 |ξ|2 6 0. (5.28)

Consider ξ(z,x) =
(
σ(z,x), ξ(z,x)

)
defined in (5.13). We will then show that the

modified vector field
(
λ(z)

(
σ(z, ·)− µ(z)

)
, λ(z) ξ(z, ·)

)
is admissible

for suitable constants λ(z) = 1−O(|z|), µ(z) = O(|z|).
(5.29)

Indeed, the anisotropy condition (5.3d) on Φ = (Φ0, Φ) and (5.13) give

σ(z,x) = ∂sΦ0(z, s)σ
(
Φ(z,x)

)
+ ∂sΦ(z,x) · ξ(Φ(z,x)

)
,

ξ(z,x) =
(
DxΦ(z,x)

)t
ξ
(
Φ(z,x)

)
.

Because of (5.10) this yields the estimates

σ(z,x) 6
(
1−O(|z|)) σ

(
Φ(z,x)

)
+O(|z|)

∣∣ξ(Φ(z,x)
)∣∣,

|ξ(z,x)| 6 (
1 +O(|z|)) ∣∣ξ(Φ(z,x)

)∣∣.
(5.30)

Using Young’s inequality

2λ(z)
∣∣ξ(Φ(z,x)

)∣∣ 6 1 + λ(z)2
∣∣ξ(Φ(z,x)

)∣∣2, (5.31)
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we notice that the latter implies

λ(z)
(
σ(z,x)− µ(z)

)
+ 1

2 |λ(z) ξ(z,x)|2
(5.30)

6 λ(z)
((

1−O(|z|))σ
(
Φ(z,x)

)
+O(|z|) ∣∣ξ(Φ(z,x)

)∣∣− µ(z)
)

+ λ(z)2
(
1 +O(|z|))2 1

2

∣∣ξ(Φ(z,x)
)∣∣2

(5.31)

6 λ(z)
(
1−O(|z|))σ

(
Φ(z,x)

)
+ λ(z)2

(
1 +O(|z|)) 1

2

∣∣ξ(Φ(z,x)
)∣∣2

+O(|z|)− λ(z)µ(z)
(5.28)

6 λ(z)
(
− (

1−O(|z|)) +
(
1 +O(|z|)) λ(z)

)
1
2

∣∣ξ(Φ(z,x)
)∣∣2

+O(|z|)− λ(z)µ(z)

which in turn yields (5.29).

Choosing ζ(s, x) = s in the admissibility condition (5.24) yields
〈
T, 1 ds

〉
= 1. (5.32)

Thus we have by definition of A(T ):
〈
T, σ(z, ·) ds + ξ(z, ·) · dx

〉

=
1

λ(z)

〈
T, λ(z)

(
σ(z, ·)− µ(z)

)
ds + λ(z) ξ(z, ·) · dx

〉
+ µ(z)

〈
T, 1 ds

〉

(5.29)
(5.32)

6 1
λ(z)

A(T ) + µ(z)

(5.29)
=

(
1 +O(|z|))A(T ) +O(|z|). (5.33)

We therefore obtain as desired
〈
Tε, σ ds + ξ · dx

〉
(5.15)
=

〈
T, σε ds + ξε · dx

〉

(5.14)
=

∫∫

R×Rn

〈
T, σ(z, ·) ds + ξ(z, ·) · dx

〉
kε(z) dz

(5.33)
=

(
1 +O(ε)

)A(T ) +O(ε).

Since (σ, ξ) was arbitrary with (5.28), this yields (5.27) by definition of A(Tε).

Step 6: Let Tε have a smooth representative (ρε,mε) in (0, 1) ×Mn and satisfy
A(Tε) < ∞. We now argue that ρε > 0. More precisely, we shall show that

〈
Tε, ζ ds

〉
> 0 for all smooth test function ζ with ζ > 0. (5.34)

Indeed, for n ∈ N the vector field ξ = (−nζ, 0) is admissible and yields

−n
〈
Tε, ζ ds

〉
=

〈
Tε, ξ · dx

〉
6 A(Tε),

which gives (5.34) in the limit n →∞. By (5.2), this proves that ρε > 0.
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Step 7: It remains to construct the map Φ = (Φ0, Φ). This is done in a series of
short steps. Starting point is the diffeomorphism h0 : (0, 1) −→ R defined by

h0(s) =
(
s− 1

2

)
exp

(
1

s(1− s)

)
.

Next we introduce the map Φ0 : R× R −→ R:

Φ0(u, s) =
{

h−1
0

(
h0(s) + u

)
for s ∈ (0, 1)

s otherwise

}
. (5.35)

The properties of the exponential function imply that Φ0 is smooth. In particular,
we have by the inverse function theorem that

∂uΦ0(u, s) =





(
h′0

(
Φ0(u, s)

))−1

for s ∈ (0, 1)

0 otherwise



 ,

∂sΦ0(u, s) =





(
h′0

(
Φ0(u, s)

))−1

h′0(s) for s ∈ (0, 1)

1 otherwise



 .

The map Φ0 obviously has the homomorphism property

∀ u, u′ ∈ R, s ∈ R Φ0(u + u′, s) = Φ0

(
u, Φ0(u′, s)

)
,

∀ s ∈ R Φ0(0, s) = s.
(5.36)

In a similar way, we introduce the diffeomorphism h̃ : B1(0) → Rn defined by

h̃(x̃) = x̃ exp
(

1
1− |x̃|2

)
,

and the map Φ̃: Rn × Rn −→ Rn through

Φ̃(z, x̃) =
{

h̃−1
(
h̃(x̃) + z) for x̃ ∈ B1(0)

x̃ otherwise

}
. (5.37)

Again, the properties of the exponential function imply that Φ̃ is smooth, and

DzΦ̃(z, x̃) =





(
Dh̃

(
Φ̃(z, x̃)

))−1

for x̃ ∈ B1(0)

0 otherwise



 ,

Dx̃Φ̃(z, x̃) =





(
Dh̃

(
Φ̃(z, x̃)

))−1

Dh̃(x̃) for x̃ ∈ B1(0)

Id otherwise



 .

As for Φ0 above, the map Φ̃ has the homomorphism property

∀ z, z′ ∈ Rn, x̃ ∈ Rn Φ̃(z + z′, x̃) = Φ̃
(
z, Φ̃(z′, x̃)

)
,

∀ x̃ ∈ Rn Φ̃(0, x̃) = x̃.
(5.38)
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Recall that U ⊂Mn is an open subset homeomorphic to the ball B1(0) ⊂ Rn, with
φ : U −→ Rn a coordinate map. We may assume that φ extends to some neighborhood
of U and B1(0). Then the composition

h(x) := h̃
(
φ(x)

)
for all x ∈ U

defines a diffeomorphism h : U −→ Rn. In view of (5.37),

Φ(z, x) =

{
φ−1

(
Φ̃

(
z, φ(x)

))
for x ∈ U

x otherwise

}

defines a smooth map Φ: Rn × Mn −→ Mn, and it is immediately clear that the
properties (5.37) and (5.38) are conserved, i.e., we have

Φ(z, x) =
{

h−1
(
h(x) + z

)
for x ∈ U

x otherwise

}
(5.39)

and

∀ z, z′ ∈ Rn, x ∈Mn Φ(z + z′, x) = Φ
(
z, Φ(z′, x)

)
,

∀ x ∈Mn Φ(0, x) = x.
(5.40)

Finally, we consider the smooth function δ : R −→ R defined through

δ(s) =





exp
(
− 1

s(1− s)

)
for s ∈ (0, 1)

0 otherwise



 . (5.41)

We now introduce the smooth map Φ : (R× Rn)× (R×Mn) −→ (R×Mn):

Φ
(
(u, z), (s, x)

)
:=

(
Φ0(u, s),Φ

(
δ(s)z, x

))
.

Let us quickly check that Φ has the required properties. We establish the diffeomor-
phism properties (5.3a) by explicitly giving the right inverse

Θ
(
(u, z), (s, x)

)
=

(
Φ0(−u, s),Φ

(− δ
(
Φ0(−u, s)

)
z, x

))

which defines a smooth map Θ : (R×Rn)× (R×Mn) −→ (R×Mn). Then (5.36) &
(5.40) imply (5.4) and (5.3b). The anisotropy property (5.3d) is clear by construction.
The first invariance property (5.3e) can be read off from (5.39); the second invariance
property (5.3f) follows from (5.35) for the Φ0–component and from (5.41) combined
with (5.40) for the Φ–component. The second diffeomorphism property (5.3c) follows
from an explicit formula for the left inverse

Ψ
(
(t, y), (s, x)

)
=

(
h0(t)− h0(s),

h(y)− h(x)
δ(s)

)

which defines a smooth map Ψ :
(
(0, 1)×U

)× (
(0, 1)×U

) −→ R×Rn (recall that δ
is positive on (0, 1)). The identities (5.35) & (5.39) imply (5.5) as desired.

Step 8: In this last step, we prove that if ρ0 and ρ1 are smooth functions and if T
is a current defined on [0, 1]×Mn satisfying the admissibility condition (5.1), then the
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regularization Tε of T is representable by a vector field (ρε > 0,mε) that is smooth
up to the boundary {0, 1}×Mn. This can be achieved by first approximating T by an
admissible current Tα that is representable by a smooth vector field in [0, α)×Mn and
(1− α, 1]×Mn for suitable α, and then applying to Tα the regularization procedure
described above. Since the operators T 7→ TUi

εi
do not destroy smoothness in stripes

around the boundary {0, 1} ×Mn (see Step 3) the regularized current (Tα)ε can be
represented by a vector field that attains the data ρ0 and ρ1 smoothly as desired.

We proceed as follows: For 0 < α < 1
2 we consider the map

Φα(s, x) :=
(
α + (1− 2α)s, x

)
for (s, x) ∈ [0, 1]×Mn.

Given a smooth 1-form ξ ·dx, let Φ#
α (ξ ·dx) =: ξα ·dx be its pull-back under the map

Φα. In terms of the vector field ξ = (σ, ξ) this means

∀ x ∈ [0, 1]×Mn ξα(x) =
(
DxΦα(x)

)t
ξ
(
Φα(x)

)
, (5.42)

hence ξα = (σα, ξα) with

σα(x) = (1− 2α)σ
(
Φα(x)

)
and ξα(x) = ξ

(
Φα(x)

)
. (5.43)

We define the approximate current Tα by duality as
〈
Tα, ξ · dx

〉
:=

〈
T, ξα · dx

〉
+

∫∫

[0,α]×Mn

σ(s, x) ρ0(x) dx ds

+
∫∫

[1−α,1]×Mn

σ(s, x) ρ1(x) dx ds (5.44)

for all smooth 1-forms ξ · dx = σ ds + ξ · dx. This Tα is admissible: If ζ is a smooth
function and ξ := ∇ζ the gradient field, then (5.42) implies that

ξα(x) = ∇ζα(x) where ζα(x) := ζ
(
Φα(x)

)
,

and therefore
〈
Tα, ∇ζ · dx

〉
=

∫

Mn

ζ(1− α, x) ρ1(x) dx +
∫∫

[1−α,1]×Mn

∂sζ(s, x) ρ1(x) dx ds

−
∫

Mn

ζ(α, x) ρ0(x) dx +
∫∫

[0,α]×Mn

∂sζ(s, x) ρ0(x) dx ds

=
∫

Mn

ζ(1, x) ρ1(x) dx−
∫

Mn

ζ(0, x) ρ0(x) dx.

It follows easily from (5.44) that Tα is represented by the smooth vector field (ρ0, 0)
in the stripe [0, α) × Mn and by (ρ1, 0) in (1 − α, 1] × Mn. Now we consider the
action: Notice first that if ξ = (σ, ξ) is admissible in the definition of A, then also the
modified vector field (1− 2α) ξα is admissible since by (5.43)

(1− 2α)σα + 1
2 |(1− 2α)ξα|2 = (1− 2α)2

(
σ ◦Φα + 1

2 |ξ ◦Φα|2
)

6 0.

The extra integrals in (5.44) do not contribute to A(Tα) because σ 6 − 1
2 |ξ|2 6 0 and

ρ0, ρ1 > 0. This yields as above A(Tα) 6 (1− 2α)−1A(T ), and thus

lim sup
α→0

A(Tα) 6 A(T ).

Now we regularize as before to conclude.
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