Pattern formation in micromagnetics

Felix Otto, R. Schäfer, J. Steiner, H. Wieczorek

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany
Magnetization

Model for mesoscopic magnetization m of a ferromagnetic sample Ω
Model

Energy:

\[E = d^2 \int_\Omega |\nabla m|^2 \, dx \quad \text{exchange} \]

\[+ Q \int_\Omega m_2^2 + m_3^2 \, dx \quad \text{anisotropy} \]

\[+ \int_{\mathbb{R}^3} |H_{\text{str}}|^2 \, dx \quad \text{stray field} \]

\[- 2 \int_\Omega H_{\text{ext}} \cdot m \, dx \quad \text{external field} \]

[next slides]
Non-convexity through saturation constraint:

\[|m|^2 = 1 \quad \text{in} \quad \Omega \]

Non-locality through stray field:

\[
\begin{align*}
\n \nabla \cdot (m + H_{str}) &= 0 \\
\n \nabla \times H_{str} &= 0
\end{align*}
\] distributionally in \(\mathbb{R}^3 \)

\[
\int_{\mathbb{R}^3} |H_{str}|^2 \, dx = \int_{\mathbb{R}^3} \|\nabla\|^{-1} \nabla \cdot m|^2 \, dx
\]
Electrostatic analogy

\[H_{\text{stray}} = -\nabla U \]

\[
\begin{cases}
-\nabla^2 U = -\nabla \cdot m & \text{in } \Omega \\
- \left[\frac{\partial U}{\partial \nu} \right] = \nu \cdot m & \text{on } \partial \Omega \\
-\nabla^2 U = 0 & \text{in } \mathbb{R}^3 - \Omega
\end{cases}
\]

volume charges

surface charges

\[H_{\text{stray}} \]

\[-\nabla \cdot m \]

\[\nu \cdot m \]
Investigated phenomena

- Domain branching
- Landau state
- Concertina pattern
- Cross-tie wall
Pattern 1: bulk sample, domain branching

\[\Omega = \mathbb{R}^2 \times (0, t) \]

Bloch wall

Hubert Kohn & Müller
Choksi & Kohn, & O. Conti
Pattern 2: thin film, Concertina pattern

\[\Omega = \mathbb{R} \times (0, l) \times (0, t) \]

Néel wall

Cantero & Steiner & O., & Schäfer & Wiezcorek
Pattern 3: thin film, Landau pattern

\[\Omega = (0, l) \times (0, l) \times (0, t) \]

Bryant & Suhl
DeSimone &
Kohn &
Müller & O.,
& Schäfer,
& Drwenski
Pattern 4: thin film, cross–tie wall

\[\Omega = \mathbb{R}^2 \times (0, t) \]

Bloch line = vortex

Alouges & Rivière & Serfaty, DKMO
Pattern 5: thin film, Néel walls

Symmetric vs. Asymmetric (LaBonte)

$m = m(x_1)$

$\{m_1(x_1)\}$

$m_1(x_1, 0)$

$h_{stray} = 0$

Optimal mix of symmetric tails and asymmetric core

as a function of the wall angle

Döring & Ignat & O.
Concertina pattern
Goal: birth and coarsening of Concertina
Sample geometry for Concertina

Thin film element: \(\Omega = \mathbb{R} \times (0, \ell) \times (0, t) \), period \(L \) in \(x_1 \)

external field: \(H_{\text{ext}} = (-h_{\text{ext}}, 0, 0) \)

stationary point: \(m = (1, 0, 0) \)
Experiments: period w increases with width ℓ

$\ell = 60\mu m$

$\ell = 80\mu m$

$\ell = 100\mu m$

thickness $t = 80nm$
Experiments: period w decreases with thickness t

$t = 30\text{nm}$ \hspace{1cm} $t = 80\text{nm}$ \hspace{1cm} $t = 300\text{nm}$

width $\ell = 100\mu m$

... reproducible trends
Theory: Derivation and analysis of reduced model
Unstable mode and critical field h_{crit}

Ansatz I: coherent rotation

\[h_{crit} \sim \frac{t}{\ell} \log(\ell/t) \]

Ansatz II: buckling

\[h_{crit} \sim \left(\frac{d}{\ell}\right)^2 \]
Ansatz III: oscillatory buckling

\[w \sim \left(\frac{d^2 \ell^2}{t} \right)^{1/3} \]

\[h_{\text{crit}} \sim \left(\frac{d^2 t^2}{\ell^4} \right)^{1/3} \]

Is there a better Ansatz?

— rigorous answer by Ansatz–free lower bounds
There are exactly 4 regimes for h_{crit} ...

Theorem 1 (Cantero, O.). For $\ell \gg d$

\[
h_{\text{crit}} = f(L, T)
\]

\[
L := \frac{\ell}{d}
\]

\[
T := \frac{t}{d}.
\]

... Regime III is relevant for Concertina
Derivation of a reduced model ...

Limit in parameter space & blow–up in function space

... as singular limit
Rescaling for singular limit

Anisotropic rescaling of space:

\[
x_1 = \left(\frac{d^2 \ell^2}{t} \right)^{1/3} \hat{x}_1, \quad x_2 = \ell \hat{x}_2, \quad x_3 = t \hat{x}_3
\]

Blow up of magnetization:

\[
(m_2, m_3) = \left(\frac{d^2}{\ell t} \right)^{1/3} (\hat{m}_2, \hat{m}_3),
\]
Motivation of scaling in m ...

\[\nu' \cdot m' = 0 \]
\[\nabla' \cdot m' = 0 \quad |m'|^2 = 1 \]
\[\nu' \cdot m' = 0 \]

turns into

\[\hat{m}_2 = 0 \]
\[-\tilde{\partial}_1 \left(\frac{1}{2} \hat{m}_2^2 \right) + \tilde{\partial}_2 \hat{m}_2 = 0 \]
\[\hat{m}_2 = 0 \]

... recovers Burgers operator
Reduced model …

Theorem 2 (Cantero, O., Steiner).

\[
\int_0^1 \int_0^\hat{L} (\hat{\partial}_1 \hat{m}_2)^2 \, d\hat{x}_1 d\hat{x}_2
\]

exchange

\[
+ \frac{1}{2} \int_0^1 \int_0^\hat{L} \left(|\hat{\partial}_1|^{-1/2} \left(-\hat{\partial}_1 \left(\frac{1}{2} \hat{m}_2^2 \right) + \hat{\partial}_2 \hat{m}_2 \right) \right)^2 \, d\hat{x}_1 d\hat{x}_2
\]

stray field

\[
- \hat{h}_{ext} \int_0^1 \int_0^\hat{L} \hat{m}_2^2 \, d\hat{x}_1 d\hat{x}_2
\]

external field

… has single parameter \(\hat{h}_{ext} \)
Numerical simulation of reduced model
Simulation of reduced model: subcritical bifurcation

\[\langle \hat{m}_2^2 \rangle^{1/2} \]

\[\hat{h}_{crit} = 5.477 \]

unstable mode
Simulation of reduced model: turning point

\[\langle \hat{m}_2^2 \rangle^{1/2} \]

\[\hat{h}_{\text{ext}} = 6.8 \]
\[\hat{h}_{\text{ext}} = 10.8 \]
\[\hat{h}_{\text{ext}} = 30.8 \]

... birth of concertina
Simulation of reduced model: secondary bifurcations

\[\hat{m}^2_{2} \] \[^{1/2} \]

\[\hat{h}_{ext} = 6.09 \]
\[\hat{h}_{ext} = 5.87 \]
\[\hat{h}_{ext} = 6.96 \]

... coarsening of concertina
Comparison with experiment:
qualitative & quantitative
Material heterogeneity

Material: small grains, random easy axis

Reduced model: small, random external transversal field
Experiment vs. simulation of reduced model

Good qualitative agreement
Experiment vs. theory: Period of the concertina

average concertina period at formation

vs. period of unstable mode

ratio of
experimental
to theoretic

variations of theoretical \(w \)

Good agreement for large range of samples sizes

— systematic deviation of factor \(\varepsilon \in [1, 2) \) due to coarsening
Experiment vs. theory: difficult measurement

polycrystalline anisotropy

ripple

unstable mode

coarsened concertina

... capture right moment between ripple and coarsening
Experiment vs. theory: difficult measurement

Same sample at different h_{ext} values

$t = 30\text{nm}$, $\ell = 40\text{nm}$

... capture right moment between ripple and coarsening
Theory: Coarsening
Eckhaus instability: the concept

Concavity of energy \hat{E} per length in wave number $\hat{k} = \frac{2\pi}{\hat{w}}$

\iff Concavity of energy \hat{E} per period in period \hat{w}

\iff Eckhaus instability
Eckhaus instability: valid despite non-locality

For fixed period \(\hat{w} \) consider

\[\hat{m}_2 \text{ optimal configuration } \]
\[\hat{E} \text{ minimal energy } \]
\[\begin{aligned}
\text{among } \hat{w} \text{-periodic configurations }
\end{aligned}\]

Consider infinitesimal perturbations of Bloch form

\[\delta m_2 = e^{i \hat{k}_1 \hat{x}_1} F(\hat{x}_1, \hat{x}_2) \text{ s.t. } F \text{ is } \hat{w} \text{-periodic in } \hat{x}_1 \]

Theorem 3 (Steiner). Then for wave-length \(\hat{w} |\hat{k}_1| \ll 1 \)

\[\inf_{\delta m_2} \frac{\text{Hess } \hat{E}(\hat{m}_2)(\delta \hat{m}_2, \delta \hat{m}_2)}{\int \int \delta \hat{m}_2^2 d\hat{x}_1 d\hat{x}_2} \approx \hat{k}_1^2 \frac{d^2}{d\hat{w}^2}(\hat{w} \hat{E}) \]
Bifurcation analysis: set-up

Small deviations from critical field and wave number

\[\hat{h}_{ext} = \hat{h}^*_{ext} + \delta h_{ext} \quad \text{and} \quad \hat{k} = \hat{k}^* + \delta k \]

Perturbation of unstable mode

\[\hat{m}_2 \approx A \hat{m}^*_2 + A^2 \hat{m}^{**}_2 \]

Optimization in \(\hat{m}^{**}_2 \) yields

\[\hat{E} \approx -c_2 \delta h_{ext} A^2 - c_4 A^4 \]

Note \(c_4 = 0.0075 \ll 1 \)
Bifurcation analysis:
unfold near-degenerate bifurcation

Expanded Ansatz

\[\tilde{m}_2 \approx A \tilde{m}_2^* + A^2 \tilde{m}_2^{**} + A^3 \tilde{m}_2^{***} \]

Optimization in \(\tilde{m}_2^{**} \) and \(\tilde{m}_2^{***} \) yields

\[\hat{E} \approx (-c_2 \delta h_{ext} + \tilde{c}_2 \delta k^2) A^2 + (-c_4 + \tilde{c}_4 \delta k) A^4 + c_6 A^6 \]
Bifurcation analysis:
Optimal and Eckhaus stable periods

Given $\hat{h}_{ext} = \hat{h}_{ext}^* + \delta \hat{h}_{ext}$ determine $\hat{k} = \hat{k}^* + \delta \hat{k}$ s.t.

- Optimal: \[
\frac{\partial \hat{E}}{\partial A} = \frac{\partial \hat{E}}{\partial \delta k} = 0, \quad \frac{\partial^2 \hat{E}}{\partial A^2} > 0, \quad \text{det} \left(\begin{array}{cc} \frac{\partial^2 \hat{E}}{\partial A^2} & \frac{\partial^2 \hat{E}}{\partial A \partial \delta k} \\ \frac{\partial^2 \hat{E}}{\partial A \partial \delta k} & \frac{\partial^2 \hat{E}}{\partial \delta k^2} \end{array} \right) > 0
\]

- Marginally E.-stable: \[
\frac{\partial \hat{E}}{\partial A} = 0, \quad \frac{\partial^2 \hat{E}}{\partial A^2} > 0, \quad \text{det} \left(\begin{array}{cc} \frac{\partial^2 \hat{E}}{\partial A^2} & \frac{\partial^2 \hat{E}}{\partial A \partial \delta k} \\ \frac{\partial^2 \hat{E}}{\partial A \partial \delta k} & \frac{\partial^2 \hat{E}}{\partial \delta k^2} \end{array} \right) = 0
\]
Bifurcation analysis:
Optimal and Eckhaus stable periods

\[\hat{w} = \frac{2\pi}{k} = \frac{2\pi}{k^* + \delta k} \]

\[\hat{h}_{ext} = \hat{h}_{ext}^* + \hat{\delta h}_{ext} \]

All stable concertina patterns have period $> w^*$
Domain theory: Set-up

Solution of Burgers equation

\[\hat{\sigma} = -\hat{\partial}_1 \frac{1}{2} \hat{m}_2^2 + \hat{\partial}_2 \hat{m}_2 = 0 \text{ distributionally,} \]

... selected by wall energy + external field:

\[\hat{E}_{\text{Domain}} = \int_{\text{jump set}} e_{\text{wall}}([\hat{m}_2]) \, d\hat{x}_2 - \hat{h}_{\text{ext}} \int_0^1 \int_0^{\hat{L}} \hat{m}_2 \, d\hat{x}_1 \, d\hat{x}_2 \]
Domain theory: Néel wall energy

A two–scale object: core + extended tails

Asymptotic analysis + fitting to numerical simulation:

\[e_{\text{wall}}(2\hat{m}_2^0) = \frac{\pi}{8} (\hat{m}_2^0)^4 \ln^{-1} \left(\frac{L}{c} (\hat{m}_2^0)^2 \right) \quad c \approx 1.8559 \]

Néel wall energy is quartic in wall angle
Domain theory: simple Ansatz

Ansatz functions of concertina type:

\[\hat{E}_{\text{Domain}}(A, \hat{w}, \hat{h}_{\text{ext}}) \]

... yield explicit expression \(\hat{E}_{\text{Domain}}(A, \hat{w}, \hat{h}_{\text{ext}}) \)
Domain theory: scaling

\[
L^{-1} \hat{E}_{Domain}(A, \hat{w}, \hat{h}_{ext}) \approx (\hat{h}_{ext}^3 \ln^2 \hat{h}_{ext}) F \left(\frac{A}{\hat{h}_{ext} \ln \hat{h}_{ext}}, \frac{\hat{w}}{\hat{h}_{ext} \ln \hat{h}_{ext}} \right)
\]

... predicts coarsening, on level of minimizer and stability
Domain theory: scaling consistent with reduced model

Theorem 4 (O., Steiner). $\hat{h}_{\text{ext}} \gg 1$ and $\hat{L} \gtrsim \hat{h}_{\text{ext}} \ln \hat{h}_{\text{ext}}$:

i) $\min \hat{L}^{-1} \hat{E} \sim -\hat{h}_{\text{ext}}^3 \ln^2 \hat{h}_{\text{ext}}$

ii) For any \hat{m}_2 with $\hat{L}^{-1} \hat{E}(\hat{m}_2) \sim \min \hat{L}^{-1} \hat{E}$ we have

\[
A^2 := \hat{L}^{-1} \int_0^1 \int_0^{\hat{L}} \hat{m}_2^2 \, d\hat{x}_1 \, d\hat{x}_2 \sim (\hat{h}_{\text{ext}} \ln \hat{h}_{\text{ext}})^2
\]

\[
\hat{L}^{-1} \int_0^1 \int_0^{\hat{L}} (\hat{m}_2(\cdot + \hat{w}, \cdot) - \hat{m}_2)^2 \, d\hat{x}_1 \, d\hat{x}_2 \lesssim \left(\frac{\hat{w}}{\hat{h}_{\text{ext}} \ln \hat{h}_{\text{ext}}} \right)^{1/2} A^2
\]
Both asymptotics...

Bifurcation analysis

... match and confirm coarsening by Eckhaus instability
Hysteresis loop of the concertina
Conclusions

The challenge: few mechanism (exchange, stray field) — wealth of pattern

Our approach: Identification of parameter regime, Derivation of reduced model, numerical simulation