Conference in honor of Profs. Arendt, Prüß, and Weis

A regularity theory for the moving contact line

L. Giacomelli (Rome), H. Knüpfer (NYU → Bonn), F. Otto

Max Planck Institute for Mathematics in the Sciences

Leipzig, Germany
Spreading droplet

driven by surface tension \leftrightarrow limited by viscosity

quasi–static balance

vertical length \ll horizontal length
Different types of viscous dissipation

\[\partial_t h + \partial_x (h^n \partial_x^3 h) = 0 \]

fourth-order parabolic degenerate mobility

Hele-Shaw cell \hspace{2cm} Navier slip \hspace{2cm} No slip

\(n = 1 \) \hspace{2cm} \(n = 2 \) \hspace{2cm} \(n = 3 \)

good range \(n \in (0, 3) \) logarithmic contact line singularity
Different relations between surface tensions

Contact angle θ from Young’s law:

$$\sigma_{as} = \sigma_{al} \cos \theta + \sigma_{ls}$$

Two qualitatively different cases:

$$\theta = 0 \quad \text{or} \quad 0 < \theta \ll 1$$

$$\partial_x h = 0 \quad \text{at} \partial\{h > 0\} \quad \text{or} \quad (\partial_x h)^2 = 1 \quad \text{at} \partial\{h > 0\}$$
Different stationary and travelling wave solutions

\[\partial_x h = 0 \]

\[(\partial_x h)^2 = 1 \]

\[\partial_x h = 0, \ n \in (0, \frac{3}{2}) \]

\[\partial_x h = 0, \ n \in (\frac{3}{2}, 3) \]

\[(\partial_x h)^2 = 1, \ n \in (0, 3) \]
Existence theory of weak solutions

... based on

Energy estimate \[\frac{d}{dt} \int_{\mathbb{R}} \frac{1}{2} (\partial_x h)^2 \, dx = -\int_{\mathbb{R}} h^n (\partial_x^3 h)^2 \, dx \]

“Entropy” estimate \[\frac{d}{dt} \int_{\mathbb{R}} \eta_n(h) \, dx = -\int_{\mathbb{R}} (\partial_x^2 h)^2 \, dx \]

(Bernis ’96, Grün ’01)

... restricted to zero contact angle besides (O. ’97)
Qualitative properties of weak solutions

Waiting time:
DalPasso & Giacomelli & Grün ('01),
Grün ('04), Giacomelli & Grün ('06)

Finite speed of propagation:
Bernis ('96), Hulshof & Shikov ('98),
Bertsch & DalPasso & Garcke & Grün ('98), Grün ('02)

Asymptotic behavior:
Giacomelli & O. ('02), Carrillo & Toscani ('02)

... but no uniqueness for instance
Here: the simplest model

\[n = 1, \text{ i. e. } \partial_t h + \partial_x (h \partial_x^3 h) = 0 \text{ on } \{h > 0\} \]

\[\theta = 0, \text{ i. e. } \partial_x h = 0 \text{ at } \partial \{h > 0\} \]
Our point of view: A free boundary problem

\[
\begin{align*}
 h &= 0 \\
 \partial_x h &= 0 \\
 \partial_x^3 h &= \frac{dX}{dt} \\
\end{align*}
\]

\[h > 0 \]

\[\partial_t h + \partial_x (h \partial_x^3 h) = 0 \]

fourth order parabolic + free boundary + 1 b. c.
Our goal: Strong solutions

Either short–time or close to stationary.
Here: close to stationary $h = \frac{1}{2}x^2$
An analogy: porous medium equation

\[
\begin{align*}
\frac{dY}{dt} &= -\partial_x h \\
\partial_t h - \partial_x (h \partial_x h) &= 0 \\
h > 0
\end{align*}
\]

second order parabolic b. c. + free boundary + 1 b. c.
Strong solutions for porous medium equation

Angenent ('88): 1–d, short-time existence, moving coordinate transform, weighted Hölder spaces, semi-group theory

Daskalopoulos, Hamilton ('98): 2–d, short-time existence, hodograph transform, weighted Hölder spaces, Safanov’s strategy

Koch ('01): multi–d, short–time existence + near self–similar solution, graph transform, weighted Hölder and \(L^p \)–spaces, singular kernel theory
Long–time existence close to stationary profile

h_0 closely in what sense?
A global transformation onto fixed domain

From \((t, x, X, h)\) to \((t, y, F)\):

\[x = X(t) + y \quad \text{and} \quad h = \frac{1}{2}y^2 + yX + F \]

\[
\begin{align*}
\partial_x h &= y + X + \partial_y F \\
\partial^3 x h &= \partial^3 y F \\
\partial_t h + \partial_x h \frac{dX}{dt} &= \partial_t F + y \frac{dX}{dt}
\end{align*}
\]

\[
X = -\partial_y F|_{y=0} \\
\frac{dX}{dt} = \partial^3 y F|_{y=0}
\]

\[0 = \partial_t F - (\partial_y F - \partial_y F|_{y=0}) \partial^3 y F|_{y=0} \\
\quad + \partial_y \left((\frac{1}{2}y^2 + (F - y \partial_y F|_{y=0}))\partial^3 y F\right) \]
A simple form

All functions F satisfy $F|_0 := F|_{y=0} = 0$

Algebraic structure:

$$\partial_t F + AF + B(F, F) = 0$$

with

$$AF = \partial_y \left(\frac{1}{2} y^2 \partial^3_y F \right),$$

$$B(G, F) = \partial_y \left((G - y \partial_y G|_0) (\partial^3_y F - \partial^3_y F|_0) \right)$$
A nice linear operator, part I

Algebraic observation: \(y^{m-1} \partial_y^m \partial_y (y^2 \partial_y^3 F) = \partial_y^2 (y^{m+1} \partial_y^2 \partial_y^m F) \)

... motivates weighted Sobolev spaces \(H_m \) for \(m \geq 1 \)

\[
\langle F, G \rangle_{H_m} := \int_0^\infty y^{m-1} \partial_y^m F \partial_y^m G \, dy \quad F|_0 = G|_0 = 0
\]

\(A \) is symmetric & positive w. r. t. \(\langle \cdot, \cdot \rangle_{H_1} \):

\[
\langle F, AF \rangle_{H_1} = \langle F, F \rangle_{H_3}.
\]

\(A \) is self–adjoint with \(\text{Domain}(A) = H_1 \cap H_3 \cap H_5 \)
A nice linear operator, part II

Algebraic observation: \(\partial_y(y^2 \partial_y^3 F) = y \partial_y^2(y \partial_y^2 F) \)

\(A^{1/2} \) is given by

\[
A^{1/2} F = -y \partial_y^2 F \quad \text{with} \quad \text{Domain}(A^{1/2}) = H_1 \cap H_3.
\]

Scale of norms:

\[
|F|_{H^m}^2 = \langle F, A^{(m-1)/2} F \rangle_{H_1}.
\]
A nice linear operator, part III

Solution of

\[\partial_t F + AF = G \quad \text{and} \quad F(t = 0) = F_0 \]

satisfies for all \(m \geq 3 \)

\[|F|_{L^\infty(H_m)} + |F|_{L^2(H_{m+2})} \lesssim |F_0|_{H_m} + |G|_{L^2(H_{m-2})} \]
Attempt to estimate quadratic operator, part I

Units:
\[[\partial_t F] = [F][t]^{-1}, \quad [A F] = [F][y]^{-2}, \quad [B(F, F)] = [F]^2[y]^{-4} \]

Scale invariance: \(y = \lambda \hat{y}, \quad t = \lambda^2 \hat{t}, \quad F = \lambda^2 \hat{F} \)

Norm on initial data compatible with scaling: \(|F_0|_{H_4} \)

Is there an estimate
\[
|B(F, F)|_{L^2(H_2)} \lesssim \left(|F|_{L^\infty(H_4)} + |F|_{L^2(H_6)} \right)^2
\]
Attempt to estimate quadratic operator, part II

\[|B(F, F)|_{L^2(H_2)} \lesssim \left(|F|_{L^\infty(H_4)} + |F|_{L^2(H_6)} \right)^2 \]

Because of \(B(F, F) = \partial_y \left((F - y\partial_y F|_0) \left(\partial_y^3 F - \partial_y^3 F|_0 \right) \right) \), this requires at least

\[|\partial_y^3 F|_{y=0}|_{L^2(dt)} \lesssim |F|_{L^\infty(H_4)} + |F|_{L^2(H_6)}, \]

\[|\partial_y^3 F|_{y=0}|^2 \lesssim |F|^2_{H_6} = \int_0^\infty y^5 (\partial_y^6 F)^2 dy, \]

\[|f|_{y=0}|^2 \lesssim \int_0^\infty y^5 (\partial_y^3 f)^2 dy. \]

Counterexample: \(f = \ln |\ln y| \) for \(y \ll 1 \).
Interpolation space: same scaling but stronger

\[|F|_{H_m} = \left(\int_0^\infty \inf_{F = F_- + F_+} \left(s^{-2} |F_-|^{2}_{H_{m-1}} + s^2 |F_+|^{2}_{H_{m+1}} \right) \frac{ds}{s} \right)^{1/2} \]

\[\lesssim \int_0^\infty \inf_{F = F_- + F_+} \left(s^{-2} |F_-|^{2}_{H_{m-1}} + s^2 |F_+|^{2}_{H_{m+1}} \right)^{1/2} \frac{ds}{s} \]

\[=: |F|^{*}_{H_m} \gtrsim |\partial_y^{m/2} F|_{L^\infty} \]
Elementary characterization of H^*_4, I

Nonlinear change of variables

\[F(y) \mapsto h(z) := \sqrt{2} z^{5/2} (\partial_y^3 F)(z^2) \]

\[|F|_{H^3} \quad |h|_{L^2} \]
\[|F|_{H^4} = \langle h, \frac{1}{4}(-\partial_z^2 + \frac{15}{4} \frac{1}{z^2})h \rangle_{L^2} \sim \langle h, (-\partial_z^2)h \rangle_{L^2} \]
\[|F|_{H^5} = \langle h, \frac{1}{16}(\partial_z^4 - \frac{15}{2} \partial_z \frac{1}{z^2} \partial_z - \frac{135}{16} \frac{1}{z^4})h \rangle_{L^2} \sim \langle h, \partial_z^4 h \rangle_{L^2} \]

\[\inf_{F=F_+ + F_-} (s^2 |F_-|_{H^3}^2 + s^{-2} |F_+|_{H^5}^2) \sim \langle h, s^2 (s^4 + \partial_z^4)^{-1} \partial_z^4 h \rangle_{L^2} \]
Elementary characterization of H^*_4, II

Extension

\[h(z) \mapsto \bar{h}(z) := \begin{cases} h(z) & z \geq 0 \\ 0 & z \leq 0 \end{cases} \]

\[
\langle h, s^2 (s^4 + \partial^4_D)^{-1} \partial^4_z h \rangle_{L^2} \sim \langle \bar{h}, s^2 (s^4 + \partial^4_z)^{-1} \partial^4_z \bar{h} \rangle_{L^2}
\]

\[
= \langle \partial_z \bar{h}, s^2 \partial^2_z (s^4 + \partial^4_z)^{-1} \partial_z \bar{h} \rangle_{L^2}
\]
Elementary characterization of H^*_4, III

Decomposition in Fourier space

$$|F|_{H^*_4} \sim \int_0^\infty \frac{ds}{s} \left(\langle \partial_z \bar{h}, s^2 \partial_z^2 (s^4 + \partial_z^4)^{-1} \partial_z \bar{h} \rangle_{L^2} \right)^{1/2}$$

$$= \int_0^\infty \frac{ds}{s} \left(\int_{-\infty}^{\infty} \frac{s^2 |k|^2}{s^4 + |k|^4} |\mathcal{F}(\partial_z \bar{h})|^2 \, dk \right)^{1/2}$$

$$\sim \sum_{\ell \in \mathbb{Z}} \left(\int_{\{2^\ell \leq |k| < 2^{\ell+1}\}} |\mathcal{F}(\partial_z \bar{h})|^2 \, dk \right)^{1/2}$$

Compare to

$$|F|_{H^4} \sim |\partial_z h|_{L^2} \sim \left(\sum_{\ell \in \mathbb{Z}} \int_{\{2^\ell \leq |k| < 2^{\ell+1}\}} |\mathcal{F}(\partial_z \bar{h})|^2 \, dk \right)^{1/2}$$
Main result

Analogous definition

\[|F'|_{L^p(H_m)^*} \begin{cases} |F|_{L^p(H_{m-1})} \\ |F|_{L^p(H_{m+1})} \end{cases} \]

Theorem (GKO). Provided \(|F_0|_{H^*_4} \ll 1 \), there exists a unique \(F \in L^\infty(H_4)^* \cap L^2(H_6)^* \) with

\[\partial_t F + AF + B(F, F) = 0, \quad F(t = 0) = F_0. \]

It satisfies

\[|F|_{L^\infty(H_4)^*} + |F|_{L^2(H_6)^*} \lesssim |F_0|_{H^*_4}. \]
Main estimate

Proposition. For all F, G with $G|_0 = 0$

$$|B(G, F)|_{L^2(H_2)^*} \lesssim |G|_{L^\infty(H_4)^*} |F|_{L^2(H_6)^*}.$$

Proof:

Split F into part \tilde{F} with $\partial^3_y \tilde{F}|_0 = 0$ and $\partial^3_y F|_0(t) \xi(y)$.

Split G into part \tilde{G} with $\partial^2_y \tilde{G}|_0 = 0$ and $\partial^2_y G|_0(t) \eta(y).$
Split into two estimates

Lemma 1. For all F, G with $G|_0 = \partial_y^3 F|_0 = 0$

\[|B(G, F)|_{L^2(H_2)^*} \lesssim |G|_{L^\infty(H_4)^*} |F|_{L^2(H_6)^*}. \]

Lemma 2. For all F, G with $G|_0 = \partial_y^2 G|_0 = 0$

\[|B(G, F)|_{L^2(H_2)^*} \lesssim |G|_{L^\infty(H_4)^*} |y^4 \partial_y^8 F|_{L^2(L^1)}. \]
Proof of Lemma 1, part I

\[|B(G, F)|_{L^2(H_2)}^* \lesssim |G|_{L^\infty(H_4)}^* |F|_{L^2(H_6)}^*. \]

Fix G, interpolate between

\[|B(G, F)|_{L^2(H_1)} \lesssim |G|_{L^\infty(H_4)}^* |F|_{L^2(H_5)} \]
\[|B(G, F)|_{L^2(H_3)} \lesssim |G|_{L^\infty(H_4)}^* |F|_{L^2(H_7)} \]

Disintegrate in time

\[|B(G, F)|_{H_1} \lesssim |G|_{H_4^*}^* |F|_{H_5} \]
\[|B(G, F)|_{H_3} \lesssim |G|_{H_4^*}^* |F|_{H_7} \]
Proof of Lemma 1, part II

\[|B(G, F)|_{H_3} \]

\[= \left| y \partial_y^4 \left((G - y \partial_y G|_0) \partial_y^3 F \right) \right|_{L^2} \]

\[\lesssim \left| y \partial_y^4 G \partial_y^3 F \right|_{L^2} + \cdots + \left| y (G - y \partial_y G|_0) \partial_y^7 F \right|_{L^2} \]

\[\lesssim \underbrace{|y^{3/2} \partial_y^4 G|_{L^2}}_{\leq} \times \underbrace{|y^{-1/2} \partial_y^3 F|_{L^\infty}}_{\lesssim} + \cdots \]

\[= |G|_{H_4} \lesssim |G|_{H^*_4} \lesssim |\partial_y^4 F|_{L^2} \lesssim |F|_{H_7} \]

\[+ \left| y^{-2} (G - y \partial_y G|_0) \right|_{L^\infty} \times \left| y^3 \partial_y^7 F \right|_{L^2} \]

\[\lesssim |\partial_y^2 G|_{L^\infty} \lesssim |G|_{H^*_4} = |F|_{H_7} \]
Further results

Theorem’ (GKO). Provided $|F_0|_{H^*_4} \ll 1$,
the solution from Theorem 1 is in $C^\infty((0,\infty)_t \times [0,\infty)_x)$.

Use all $|\cdot|_{H_m}$.
Progress by H. Knüpfer

\(n = 2, \ (\partial_x h)^2 = 1: \)

Asymptotics suggest \(h \approx x + c V x^2 \ln x \)

As before \(AF = \partial_y (y^2 \partial_y^3 F) \)

but now essential b. c. \(F|_0 = \partial_y F|_0 = 0 \)

\(n = 1, \ (\partial_x h)^2 = 1: \)

Rigorous lubrication approximation (Giacomelli & O. ’03)
Knüpfer & Masmoudi

Simplest open problem

\(n = 2, \ \partial_x h = 0: \)

Need to linearize around travelling wave \(h = (x + ct)^{3/2} \)