Metabolic flux prediction via gene expression and metabolomics

Tomer Shlomi
Department of Computer Science, Technion, Haifa, Israel

October, 2009
Metabolic stuff we’ve been doing recently

Tomer Shlomi
Department of Computer Science, Technion, Haifa, Israel

October, 2009
Outline:

- **Context-dependent Biomass Flux Balance Analysis (CB-FBA)**
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner

- **RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production**
 - Improving OptKnock by accounting for alternative pathways

- **Predicting Metabolic Gene-Nutrient Interactions (GNIs) in yeast**
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data

- **Predicting Enzyme Sub-cellular Localization**
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner

- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways

- Predicting Metabolic Gene-Nutrient Interactions (GNIs) in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data

- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network

NOT PUBLISHED YET

Metabolic Flux Balance Analysis with Context-dependant Biomass.
T. Benyamini, O. Folger, E. Ruppin, T. Shlomi,
RECOMB, Systems Biology, 2009 (to appear)
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner

- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways

- Predicting Metabolic Gene-Nutrient Interactions in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data

- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner

- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways

- Predicting Metabolic Gene-Nutrient Interactions in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data

- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes' sub-cellular localization based on partial localization data for a subset of the enzymes in the network

NOT PUBLISHED YET

Predicting Metabolic Engineering Knockout Strategies for Chemical Production: Accounting for Competing Pathways.
N. Tepper, T. Shlomi (Submitted)
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner

- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways

- Predicting Metabolic Gene-Nutrient Interactions in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data

- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner

- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways

- Predicting Metabolic Gene-Nutrient Interactions in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data

- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network

Metabolic Network-based Analysis of Yeast Gene-Nutrient Interactions.
Gene-Nutrient Interactions

- Under which growth media G1 is essential?
- A GNI represents a constraint on the presence/absence of a nutrient in the growth media under which a gene is essential.
- A weak (vs. strong) GNI reflects a non-strict constraint.

Diamant, et al., Molecular Biosystems, 2009
Predicting Gene-Nutrient Interactions

- Identified via a bi-level optimization problem
- Transformed into Mixed-Integer Linear Programming (MILP)

\[
\begin{align*}
\text{Maximize} & \quad \text{gene essentiality (wild-type vs. knockout growth-rate)} \\
& \quad \text{(over all growth media)} \\
\text{subject to} & \quad \text{Maximize} \\
& \quad \text{wild-type growth rate} \\
& \quad \text{(over fluxes)} \\
& \quad \text{subject to} \\
& \quad \text{uptake of media substrates} \\
& \quad \text{network stoichiometry, thermodynamics and capacity constraints} \\
& \quad \text{Maximize} \\
& \quad \text{knockout growth rate} \\
& \quad \text{(over fluxes)} \\
& \quad \text{subject to} \\
& \quad \text{uptake of media substrates} \\
& \quad \text{network stoichiometry, thermodynamics and capacity constraints} \\
& \quad \text{Inactive knocked-out reactions}
\end{align*}
\]

Diamant, et al., Molecular Biosystems, 2009
Gene-Nutrient Interactions in Yeast
GNI-based ‘Reverse Prediction’ of Growth Media Composition

- What is the natural growth environment of a pathogen within a host organism?
- Suppose we have in-vivo data on bacterial gene knockout essentiality
- Can we use the measured pattern of gene essentiality to predict constraints on the in-vivo growth environment of the bacteria?
- Unfortunately, we don’t have enough data of this kind. However…

Diamant, et al., Molecular Biosystems, 2009
GNI-based ‘Reverse Prediction’ of Growth Media Composition

- In simulations, GNI-based analysis provide accurate predictions of growth media composition based on gene essentiality data

Diamant, et al., Molecular Biosystems, 2009
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner
- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways
- Predicting Metabolic Gene-Nutrient Interactions in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data
- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network
Outline:

- Context-dependent Biomass Flux Balance Analysis (CB-FBA)
 - Predicting flux distributions by accounting for growth-associated demand for biomass production in a context-dependent manner
- RobustKnock: Predicting Metabolic Engineering Knockout Strategies for Chemical Production
 - Improving OptKnock by accounting for alternative pathways
- Predicting Metabolic Gene-Nutrient Interactions in yeast
 - Predicting constraints on nutrient availability in the growth media based on enzyme essentiality data
- Predicting Enzyme Sub-cellular Localization
 - Predicting enzymes’ sub-cellular localization based on partial localization data for a subset of the enzymes in the network
Detecting Protein Subcellular Localization

Experimental Methods:
- Green fluorescent protein (GFP) tagging
- Electron microscopy
- Subcellular fractionation + detection

Limitations:
- Costly
- Time-consuming

Computational Methods:
- Sequence motifs
- Amino acid composition
- Homology
- PPI data

Limitations:
- Low number of compartments
- Performance varies across different organisms and compartments
- Relatively low availability of PPI networks

Wormit et al., Plant Cell, 2006

Mintz et al., ISMB & Bioinformatics, 2009
Research Objective

Predict metabolic enzymes’ subcellular localization, based on:

- The organism’s metabolic network
- Prior knowledge regarding localization of a subset of the enzymes
- Parsimonious assumption of minimal number of cross-membrane metabolite transports between compartments

Mintz, et al., ISMB & Bioinformatics, 2009
Minimal Metabolic Transport Assumption

Mintz, et al., ISMB & Bioinformatics, 2009
Minimal Metabolic Transport Assumption

Mintz, et al., ISMB & Bioinformatics, 2009
Minimal Metabolic Transport Assumption

- Transport reactions depend on transporter proteins, imposing energetic cost or requiring the maintenance of a membrane potential

- Minimize transport reactions

Mintz, et al., ISMB & Bioinformatics, 2009
Minimal Metabolic Transport Assumption

- Match known localization data
- Assume minimal number of metabolite cross-membrane transports

Mintz, et al., ISMB & Bioinformatics, 2009
CBM method for predicting localization:

Input:

Optimization process:

Output (prediction):

Mintz, et al., ISMB & Bioinformatics, 2009
Example

Initial compartmentalized network:

- **Localized reactions** – R2, R4, R6, R8
- **Non-localized reactions** – R1, R3, R5, R7
Example – Flux Distribution

Initial compartmentalized network:

- Localized reaction
- Non-localized reaction
- Transport/exchange reaction
- Activated reaction
- Non-activated reaction
Example – Results

Initial compartmentalized network:

Predictions:
- R1, R5 - Compartment A
- R7 - Cytoplasm
- R3? - Compartment B
Validating Predictions via Metabolic Network of *S. cerevisiae*

- Genome-scale, fully compartmentalized metabolic network model of (Duarte et al, 2004)
- 1062 metabolites, 1149 reactions, 7 compartments

- To evaluate our method:
 1. Remove existing localization data
 2. **Cross validation test** - random localized vs. non-localized sets
 3. Apply our method
 4. Compute - **accuracy** (compared to experimental data)
 - **coverage** (portion of predictions with single predicted compartment)

Mintz, et al., ISMB & Bioinformatics, 2009
Comparison to Pathway Enrichment-Based Method

- Localization is determined based on the assignment of enzymes in pre-determined biochemical pathways.

- For each pathway compute a set of hyper-geometric p-values reflecting the pathway’s enrichment for all compartments, respectively.

- Prediction based on compartment yielding the lowest p-value in the corresponding pathway.

Mintz, et al., ISMB & Bioinformatics, 2009
Results

Accuracy and coverage for various fractions of localized reactions:

- Robust accuracy
- Moderate coverage decline
Collaborators

- **My lab**
 - Naama Tepper
 - Edward Vitkin
 - Roi Adadi

- **Eytan Ruppin’s lab (Tel-Aviv)**
 - Tomer Benyamini
 - Ori Folger
 - Idit Diamant

- **Asaph Aharoni’s lab (Weizmann)**
 - Shira Mintz