Non-integer multigraded algebra

Ezra Miller

Duke University, Department of Mathematics and Department of Statistical Science
ezra@math.duke.edu

Nonlinear Algebra Meeting Online
Max Planck Institute für Mathematik in den Naturwissenschaften

17 November 2020
Outline

1. Polynomials with real exponents
2. Poset modules
3. Partially ordered groups
4. Tameness
5. Primary decomposition
6. Coprimary modules
7. Future directions
Polynomials with real exponents

Def. The ring of real-exponent polynomials in n variables over field k is

$$k[\mathbb{R}^n_+] = \bigoplus_{a \in \mathbb{R}^n_+} k \cdot \{x^a\} \quad \text{with} \quad x^a x^b = x^{a+b},$$

a monoid algebra.

Example. $(x^{\sqrt{2}} + y^\pi)(xy^2 - z) = x^{1+\sqrt{2}} y^2 + x y^{2+\pi} - x^{\sqrt{2}} z - y^\pi z$

An \mathbb{R}^n-graded module over $k[\mathbb{R}^n_+]$ is

$$M = \bigoplus_{a \in \mathbb{R}^n} M_a \quad \text{with action} \quad x^a M_b \subseteq M_{a+b}.$$

Examples. monomial ideal $I = \langle x^a \mid a \in A \rangle$ for some $A \subseteq \mathbb{R}^n_+$

1. $I = \langle x_1^{a_1}, \ldots, x_n^{a_n} \mid a_i > 0 \ \forall \ i \rangle = \mathfrak{m} = \text{maximal monomial ideal}$
 - countably generated
 - no minimal generating set

2. $I = \langle x^a \mid a_1 + \cdots + a_n = 1 \text{ and } a_i \geq 0 \ \forall \ i \rangle$
 - uncountably generated
 - unique minimal monomial generating set
Polynomials with real exponents

Def. The ring of real-exponent polynomials in n variables over field k is

$$k[R^n_+] = \bigoplus_{a \in R^n_+} k \cdot \{x^a\} \quad \text{with} \quad x^a x^b = x^{a+b},$$

a monoid algebra.

Example. $(x^{\sqrt{2}} + y^\pi)(xy^2 - z) = x^{1+\sqrt{2}}y^2 + xy^{2+\pi} - x^{\sqrt{2}}z - y^\pi z$

An R^n-graded module over $k[R^n_+]$ is

$$M = \bigoplus_{a \in R^n} M_a \quad \text{with action} \quad x^a M_b \subseteq M_{a+b}.$$

Examples. monomial ideal $I = \langle x^a \mid a \in A \rangle$ for some $A \subseteq R^n_+$

1. $I = \langle x_1^{a_1}, \ldots, x_n^{a_n} \mid a_i > 0 \ \forall \ i \rangle = m = \text{maximal monomial ideal}$
 - countably generated
 - no minimal generating set

2. $I = \langle x^a \mid a_1 + \cdots + a_n = 1 \ \text{and} \ a_i \geq 0 \ \forall \ i \rangle$
 - uncountably generated
 - unique minimal monomial generating set
Polynomials with real exponents

Def. The ring of real-exponent polynomials in n variables over field \mathbf{k} is

$$k[\mathbb{R}_+^n] = \bigoplus_{a \in \mathbb{R}_+^n} k \cdot \{x^a\} \quad \text{with} \quad x^a x^b = x^{a+b},$$

a monoid algebra.

Example. $(x^{\sqrt{2}} + y^{\pi})(xy^2 - z) = x^{1+\sqrt{2}}y^2 + xy^{2+\pi} - x^{\sqrt{2}}z - y^{\pi}z$

An \mathbb{R}^n-graded module over $k[\mathbb{R}_+^n]$ is

$$M = \bigoplus_{a \in \mathbb{R}_+^n} M_a \quad \text{with action} \quad x^a M_b \subseteq M_{a+b}.$$

Examples. monomial ideal $I = \langle x^a \mid a \in A \rangle$ for some $A \subseteq \mathbb{R}_+^n$

1. $I = \langle x_1^{a_1}, \ldots, x_n^{a_n} \mid a_i > 0 \ \forall \ i \rangle = m = \text{maximal monomial ideal}$
 - countably generated
 - no minimal generating set

2. $I = \langle x^a \mid a_1 + \cdots + a_n = 1 \text{ and } a_i \geq 0 \ \forall \ i \rangle$
 - uncountably generated
 - unique minimal monomial generating set
Polynomials with real exponents

Def. The ring of real-exponent polynomials in n variables over field k is

$$k[R^n_+] = \bigoplus_{a \in R^n_+} k \cdot \{x^a\} \quad \text{with} \quad x^a x^b = x^{a+b},$$

a monoid algebra.

Example. $(x^{\sqrt{2}} + y^\pi)(xy^2 - z) = x^{1+\sqrt{2}}y^2 + xy^{2+\pi} - x^{\sqrt{2}}z - y^\pi z$

An R^n-graded module over $k[R^n_+]$ is

$$M = \bigoplus_{a \in R^n} M_a \quad \text{with action} \quad x^a M_b \subseteq M_{a+b}.$$

Examples. monomial ideal $I = \langle x^a \mid a \in A \rangle$ for some $A \subseteq R^n_+$

1. $I = \langle x_1^{a_1}, \ldots, x_n^{a_n} \mid a_i > 0 \ \forall \ i \rangle = m =$ maximal monomial ideal
 - countably generated
 - no minimal generating set

2. $I = \langle x^a \mid a_1 + \cdots + a_n = 1 \ \text{and} \ a_i \geq 0 \ \forall \ i \rangle$
 - uncountably generated
 - unique minimal monomial generating set
Polynomials with real exponents

Def. The ring of real-exponent polynomials in \(n \) variables over field \(k \) is

\[
k[\mathbb{R}^n_+] = \bigoplus_{a \in \mathbb{R}^n_+} k \cdot \{x^a\} \quad \text{with} \quad x^a x^b = x^{a+b},
\]

a monoid algebra.

Example. \((x^{\sqrt{2}} + y^\pi)(xy^2 - z) = x^{1+\sqrt{2}}y^2 + xy^{2+\pi} - x^{\sqrt{2}}z - y^{\pi}z\)

An \(\mathbb{R}^n \)-graded module over \(k[\mathbb{R}^n_+] \) is

\[
M = \bigoplus_{a \in \mathbb{R}^n} M_a \quad \text{with action} \quad x^a M_b \subseteq M_{a+b}.
\]

Examples. monomial ideal \(I = \langle x^a \mid a \in A \rangle \) for some \(A \subseteq \mathbb{R}^n_+ \)

1. \(I = \langle x_1^{a_1}, \ldots, x_n^{a_n} \mid a_i > 0 \ \forall \ i \rangle = m = \text{maximal monomial ideal} \)
 - countably generated
 - no minimal generating set

2. \(I = \langle x^a \mid a_1 + \cdots + a_n = 1 \ \text{and} \ a_i \geq 0 \ \forall \ i \rangle \)
 - uncountably generated
 - unique minimal monomial generating set
Context

Prior research

- finitely presented \(\Rightarrow\) Krull–Schmidt: \(\bigoplus\) indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \(\Rightarrow\) subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented ⇒ Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents ⇒ subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research
- finitely presented ⇒ Krull–Schmidt: \(\oplus \) indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for
- presentation
- syzygy theorem
- primary decomposition

Bad news
- finite vs. free: these are incompatible
- minimality: real exponents ⇒ subtle

Developments: commutative algebra on posets
2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

• finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
• discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
• Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
• almost no commutative or homological algebra in general

Good news: analogues exist for

• presentation
• syzygy theorem
• primary decomposition

Bad news

• finite vs. free: these are incompatible
• minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]

Context

Prior research
- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for
- presentation
- syzygy theorem
- primary decomposition

Bad news
- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets
2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

2. primary decomposition over partially ordered abelian group [arXiv:2008.00093]
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Context

Prior research

- finitely presented \Rightarrow Krull–Schmidt: \bigoplus indecomposables [Lesnick 2011]
- discretely generated ideals [Ingebretson, Sather-Wagstaff, Andersen 2013–2015]
- Descartes’ rule of signs: some multivariate cases [Bihan, Rojas, Sottile 2008]
- almost no commutative or homological algebra in general

Good news: analogues exist for

- presentation
- syzygy theorem
- primary decomposition

Bad news

- finite vs. free: these are incompatible
- minimality: real exponents \Rightarrow subtle

Developments: commutative algebra on posets

1. theory of tame modules to replace “noetherian” \leftarrow a little today!
2. primary decomposition over partially ordered abelian group \leftarrow a lot today!
5. interpretation in terms of constructible sheaves via [Kashiwara–Schapira 2018]
Modules over posets

Def. \textit{Q-module} over the poset \(Q \):

- \(Q \)-graded vector space \(M = \bigoplus_{q \in Q} M_q \) over the field \(\mathbf{k} \) with

- homomorphism \(M_q \rightarrow M_{q'} \) whenever \(q \preceq q' \) in \(Q \) such that

- \(M_q \rightarrow M_{q''} \) equals the composite \(M_q \rightarrow M_{q'} \rightarrow M_{q''} \) whenever \(q \preceq q' \preceq q'' \)

Examples

- \(Q = \mathbb{Z}^n \leftrightarrow M = \mathbb{Z}^n \)-graded \(\mathbf{k}[x_1, \ldots, x_n] \)-module
- \(Q = \mathbb{R}^n \leftrightarrow M = \mathbb{R}^n \)-graded \(\mathbf{k}[\mathbb{R}_+^n] \)-module
- wing veins: \(Q = \mathbb{Z}^2 \) (two discrete parameters)
- wing veins: \(Q = \mathbb{R}^2 \) (two continuous parameters)

Motivation. Topological space \(X \) filtered by set \(Q \) of subspaces: \(X_q \subseteq X \) for \(q \in Q \Rightarrow \) partial ordering on \(Q \) via \(X_q \subseteq X_{q'} \Leftrightarrow q \preceq q' \)

Def. \(\{X_q\}_{q \in Q} \) has \textbf{persistent homology} the \(Q \)-module \(H \) with \(H_q = H(X_q; \mathbf{k}) \)

Real exponents | Poset modules | Partially ordered groups | Tameness | Primary decomposition | Coprimary modules | Future
Modules over posets

Def. *Q*-module over the poset *Q*: (think *Q* = ℤ[*]n or ℜⁿ)

- *Q*-graded vector space *M* = ⊕<sub>*q*∈*Q* *M*<sub>*q*> over the field *k* with
- homomorphism *M*<sub>*q*> → *M*<sub>*q′*> whenever *q* ≤ *q′* in *Q* such that
- *M*<sub>*q*> → *M*<sub>*q″*> equals the composite *M*<sub>*q*> → *M*<sub>*q′*> → *M*<sub>*q″*> whenever *q* ≤ *q′* ≤ *q″*

Examples

- *Q* = ℤⁿ ⇔ *M* = ℤⁿ-graded *k*[*x*₁, . . . , *x*<sub>*n*<sub>]-module
- *Q* = ℜⁿ ⇔ *M* = ℜⁿ-graded *k*[ℜⁿ]₊-module
- wing veins: *Q* = ℤ² (two discrete parameters)
- wing veins: *Q* = ℜ² (two continuous parameters)

Motivation. Topological space *X* filtered by set *Q* of subspaces: *X*<sub>*q*<sub> ⊆ *X* for *q* ∈ *Q* ⇒ partial ordering on *Q* via *X*<sub>*q*<sub> ⊆ *X*<sub>*q′*<sub> ⇔ *q* ≤ *q′*

Def. {*X*<sub>*q*<sub>}<sub>*q*∈*Q* has persistent homology the *Q*-module *H* with *H*<sub>*q* = *H*(*X*<sub>*q*<sub>; *k*)
Modules over posets

Def. *Q*-module over the poset *Q*: (think *Q* = \(\mathbb{Z}^n\) or \(\mathbb{R}^n\))

- *Q*-graded vector space \(M = \bigoplus_{q \in Q} M_q\) over the field \(k\) with
- homomorphism \(M_q \rightarrow M_{q'}\) whenever \(q \preceq q'\) in *Q* such that
- \(M_q \rightarrow M_{q'}\) equals the composite \(M_q \rightarrow M_{q'} \rightarrow M_{q''}\) whenever \(q \preceq q' \preceq q''\)

Examples

- \(Q = \mathbb{Z}^n \Leftrightarrow M = \mathbb{Z}^n\)-graded \(k[x_1, \ldots, x_n]\)-module
- \(Q = \mathbb{R}^n \Leftrightarrow M = \mathbb{R}^n\)-graded \(k[\mathbb{R}^n_+]\)-module
- wing veins: \(Q = \mathbb{Z}^2\) (two discrete parameters)
- wing veins: \(Q = \mathbb{R}^2\) (two continuous parameters)

Motivation. Topological space \(X\) filtered by set \(Q\) of subspaces: \(X_q \subseteq X\) for \(q \in Q\) ⇒ partial ordering on \(Q\) via \(X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'\)

Def. \(\{X_q\}_{q \in Q}\) has persistent homology the *Q*-module \(H\) with \(H_q = H(X_q; k)\)
Modules over posets

Def. \(Q \)-module over the poset \(Q \): (think \(Q = \mathbb{Z}^n \) or \(\mathbb{R}^n \))

- \(Q \)-graded vector space \(M = \bigoplus_{q \in Q} M_q \) over the field \(k \) with
- homomorphism \(M_q \to M_{q'} \) whenever \(q \preceq q' \) in \(Q \) such that
- \(M_q \to M_{q''} \) equals the composite \(M_q \to M_{q'} \to M_{q''} \) whenever \(q \preceq q' \preceq q'' \)

Examples

- \(Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n \)-graded \(k[x_1, \ldots, x_n] \)-module
- \(Q = \mathbb{R}^n \iff M = \mathbb{R}^n \)-graded \(k[\mathbb{R}^n_+] \)-module
- wing veins: \(Q = \mathbb{Z}^2 \) (two discrete parameters)
- wing veins: \(Q = \mathbb{R}^2 \) (two continuous parameters)

Motivation. Topological space \(X \) filtered by set \(Q \) of subspaces: \(X_q \subseteq X \) for \(q \in Q \) \(\Rightarrow \) partial ordering on \(Q \) via \(X_q \subseteq X_{q'} \iff q \preceq q' \)

Def. \(\{X_q\}_{q \in Q} \) has persistent homology the \(Q \)-module \(H \) with \(H_q = H(X_q; k) \)
Modules over posets

Def. **Q-module** over the poset Q: (think $Q = \mathbb{Z}^n$ or \mathbb{R}^n)

- Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field k with
- homomorphism $M_q \to M_{q'}$ whenever $q \preceq q'$ in Q such that
- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \preceq q' \preceq q''$

Examples

- $Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n$-graded $k[x_1, \ldots, x_n]$-module
- $Q = \mathbb{R}^n \iff M = \mathbb{R}^n$-graded $k[\mathbb{R}_+^n]$-module
- wing veins: $Q = \mathbb{Z}^2$ (two discrete parameters)
- wing veins: $Q = \mathbb{R}^2$ (two continuous parameters)

Motivation. Topological space X filtered by set Q of subspaces:
$X_q \subseteq X$ for $q \in Q \Rightarrow$ partial ordering on Q via $X_q \subseteq X_{q'} \iff q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** the Q-module H with $H_q = H(X_q; k)$
Def. Q-module over the poset Q: (think $Q = \mathbb{Z}^n$ or \mathbb{R}^n)

- Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field k with
- homomorphism $M_q \to M_{q'}$ whenever $q \preceq q'$ in Q such that
- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \preceq q' \preceq q''$

Examples

- $Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n$-graded $k[x_1, \ldots, x_n]$-module
- $Q = \mathbb{R}^n \iff M = \mathbb{R}^n$-graded $k[\mathbb{R}^n_+]$-module
- wing veins: $Q = \mathbb{Z}^2$ (two discrete parameters)
- wing veins: $Q = \mathbb{R}^2$ (two continuous parameters)

Motivation. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q \Rightarrow$ partial ordering on Q via $X_q \subseteq X_{q'} \iff q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has persistent homology the Q-module H with $H_q = H(X_q; k)$
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- **1st parameter**: distance from vertex set
- **2nd parameter**: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- **1st parameter**: distance from vertex set
- **2nd parameter**: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:

$$
\begin{align*}
&\rightarrow H_{r-\epsilon, s+\delta} \rightarrow H_{r, s+\delta} \rightarrow H_{r+\epsilon, s+\delta} \rightarrow \\
&\rightarrow H_{r-\epsilon, s} \rightarrow H_{r, s} \rightarrow H_{r+\epsilon, s} \rightarrow \\
&\rightarrow H_{r-\epsilon, s-\delta} \rightarrow H_{r, s-\delta} \rightarrow H_{r+\epsilon, s-\delta} \rightarrow
\end{align*}
$$
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- 1st parameter: distance from vertex set
- 2nd parameter: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- **1st parameter**: distance from vertex set
- **2nd parameter**: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- **1st parameter**: distance from vertex set
- **2nd parameter**: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:
Use two parameters to encode fruit fly wing

- **1st parameter**: distance from vertex set (require distance $\geq -r$)
- **2nd parameter**: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- **1st parameter**: distance from vertex set (require distance $\geq -r$)
- **2nd parameter**: distance from edge set (require distance $\leq s$)

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:

$\begin{align*}
\rightarrow H_{r-\varepsilon,s+\delta} &\rightarrow H_{r,s+\delta} &\rightarrow H_{r+\varepsilon,s+\delta} \\
\uparrow &\uparrow &\uparrow \\
\rightarrow H_{r-\varepsilon,s} &\rightarrow H_{r,s} &\rightarrow H_{r+\varepsilon,s} \\
\uparrow &\uparrow &\uparrow \\
\rightarrow H_{r-\varepsilon,s-\delta} &\rightarrow H_{r,s-\delta} &\rightarrow H_{r+\varepsilon,s-\delta} \\
\uparrow &\uparrow &\uparrow
\end{align*}$
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:

$$
\begin{align*}
&\rightarrow H_{r-\epsilon,s+\delta} \rightarrow H_{r,s+\delta} \rightarrow H_{r+\epsilon,s+\delta} \rightarrow \\
&\uparrow \hspace{2cm} \uparrow \hspace{2cm} \uparrow \hspace{2cm} \uparrow \\
&\rightarrow H_{r-\epsilon,s} \rightarrow H_{r,s} \rightarrow H_{r+\epsilon,s} \rightarrow \\
&\uparrow \hspace{2cm} \uparrow \hspace{2cm} \uparrow \hspace{2cm} \uparrow \\
&\rightarrow H_{r-\epsilon,s-\delta} \rightarrow H_{r,s-\delta} \rightarrow H_{r+\epsilon,s-\delta} \rightarrow \\
&\uparrow \hspace{2cm} \uparrow \hspace{2cm} \uparrow \hspace{2cm} \uparrow
\end{align*}
$$
Use two parameters to encode fruit fly wing

- **1st parameter:** distance from vertex set \((\text{require distance} \geq -r)\)
- **2nd parameter:** distance from edge set \((\text{require distance} \leq s)\)

Sublevel set \(W_{r,s}\) is near edges but far from vertices

\[\begin{align*}
\mathbb{Z}^2\text{-module:} & \\
\rightarrow H_{r-\epsilon,s+\delta} & \rightarrow H_{r,s+\delta} & \rightarrow H_{r+\epsilon,s+\delta} & \rightarrow \\
\uparrow & \uparrow & \uparrow & \\
\rightarrow H_{r-\epsilon,s} & \rightarrow H_{r,s} & \rightarrow H_{r+\epsilon,s} & \\
\uparrow & \uparrow & \uparrow & \\
\rightarrow H_{r-\epsilon,s-\delta} & \rightarrow H_{r,s-\delta} & \rightarrow H_{r+\epsilon,s-\delta} & \\
\uparrow & \uparrow & \uparrow & \\
\end{align*} \]
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:
Example: planar maps [with Houle, et al. (many advisees)]

Use two parameters to encode fruit fly wing

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Sublevel set $W_{r,s}$ is near edges but far from vertices

\mathbb{Z}^2-module:

$$
\begin{align*}
\uparrow & \quad H_{r-\varepsilon,s+\delta} \quad \uparrow & \quad H_{r,s+\delta} \quad \uparrow & \quad H_{r+\varepsilon,s+\delta} \quad \uparrow \\
\uparrow & \quad H_{r-\varepsilon,s} \quad \uparrow & \quad H_{r,s} \quad \uparrow & \quad H_{r+\varepsilon,s} \quad \uparrow \\
\uparrow & \quad H_{r-\varepsilon,s-\delta} \quad \uparrow & \quad H_{r,s-\delta} \quad \uparrow & \quad H_{r+\varepsilon,s-\delta} \quad \uparrow
\end{align*}
$$
Modules over posets

Def. **Q-module** over the poset **Q**: (think **Q** = **Z**^n or **R**^n)

- **Q**-graded vector space **M** = \(\bigoplus_{q \in Q} M_q \) over the field \(k \) with
- homomorphism \(M_q \to M_{q'} \) whenever \(q \preceq q' \) in **Q** such that
- \(M_q \to M_{q''} \) equals the composite \(M_q \to M_{q'} \to M_{q''} \) whenever \(q \preceq q' \preceq q'' \)

Examples

- \(Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n\)-graded \(k[x_1, \ldots, x_n] \)-module
- \(Q = \mathbb{R}^n \iff M = \mathbb{R}^n\)-graded \(k[\mathbb{R}^n_+] \)-module
- wing veins: \(Q = \mathbb{Z}^2 \) (two discrete parameters)
- wing veins: \(Q = \mathbb{R}^2 \) (two continuous parameters)

Motivation. Topological space \(X \) filtered by set \(Q \) of subspaces:
\(X_q \subseteq X \) for \(q \in Q \Rightarrow \) partial ordering on \(Q \) via \(X_q \subseteq X_{q'} \iff q \preceq q' \)

Def. \(\{X_q\}_{q \in Q} \) has **persistent homology** the \(Q \)-module \(H \) with \(H_q = H(X_q; k) \)
Modules over posets

Def. *Q*-module over the poset *Q*: (think *Q* = \(\mathbb{Z}^n \) or \(\mathbb{R}^n \))

- *Q*-graded vector space \(M = \bigoplus_{q \in Q} M_q \) over the field \(k \) with
- homomorphism \(M_q \to M_{q'} \) whenever \(q \preceq q' \) in *Q* such that
- \(M_q \to M_{q''} \) equals the composite \(M_q \to M_{q'} \to M_{q''} \) whenever \(q \preceq q' \preceq q'' \)

Examples

- \(Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n \)-graded \(k[x_1, \ldots, x_n] \)-module
- \(Q = \mathbb{R}^n \iff M = \mathbb{R}^n \)-graded \(k[\mathbb{R}_+^n] \)-module
- wing veins: \(Q = \mathbb{Z}^2 \) (two discrete parameters)
- wing veins: \(Q = \mathbb{R}^2 \) (two continuous parameters)

Motivation. Topological space \(X \) filtered by set *Q* of subspaces: \(X_q \subseteq X \) for \(q \in Q \) ⇒ partial ordering on *Q* via \(X_q \subseteq X_{q'} \iff q \preceq q' \)

Def. \(\{X_q\}_{q \in Q} \) has persistent homology the *Q*-module *H* with \(H_q = H(X_q; k) \)
Def. *Q*-module over the poset *Q*: (think $Q = \mathbb{Z}^n$ or \mathbb{R}^n)

- *Q*-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field k with
- homomorphism $M_q \rightarrow M_{q'}$ whenever $q \preceq q'$ in Q such that
- $M_q \rightarrow M_{q''}$ equals the composite $M_q \rightarrow M_{q'} \rightarrow M_{q''}$ whenever $q \preceq q' \preceq q''$

Examples

- $Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n$-graded $k[x_1, \ldots, x_n]$-module
- $Q = \mathbb{R}^n \iff M = \mathbb{R}^n$-graded $k[\mathbb{R}_+]^n$-module
- wing veins: $Q = \mathbb{Z}^2$ (two discrete parameters)
- wing veins: $Q = \mathbb{R}^2$ (two continuous parameters)

Motivation. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q \Rightarrow$ partial ordering on Q via $X_q \subseteq X_{q'} \iff q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has persistent homology the *Q*-module H with $H_q = H(X_q; k)$
Modules over posets

Def. **Q-module** over the poset Q: (think $Q = \mathbb{Z}^n$ or \mathbb{R}^n)

- Q-graded vector space $M = \bigoplus_{q \in Q} M_q$ over the field k with
- homomorphism $M_q \to M_{q'}$ whenever $q \preceq q'$ in Q such that
- $M_q \to M_{q''}$ equals the composite $M_q \to M_{q'} \to M_{q''}$ whenever $q \preceq q' \preceq q''$

Examples

- $Q = \mathbb{Z}^n \iff M = \mathbb{Z}^n$-graded $k[x_1, \ldots, x_n]$-module
- $Q = \mathbb{R}^n \iff M = \mathbb{R}^n$-graded $k[\mathbb{R}_+^n]$-module
- wing veins: $Q = \mathbb{Z}^2$ (two discrete parameters)
- wing veins: $Q = \mathbb{R}^2$ (two continuous parameters)

Motivation. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q \Rightarrow$ partial ordering on Q via $X_q \subseteq X_{q'} \iff q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** the Q-module H with $H_q = H(X_q; k)$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
⇔ cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (⇔ prime ideals)
- localization (without altering ambient poset)

Def. Abelian group Q is partially ordered if Q generated by submonoid Q_+, the positive cone, with trivial unit group. Partial order: $q \preceq q' \iff q' - q \in Q_+$

Lemma. Q-module $\iff Q$-graded module over $k[Q_+]$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
↔ cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (↔ prime ideals)
- localization (without altering ambient poset)

Def. Abelian group Q is partially ordered if Q generated by submonoid Q_+,
the positive cone, with trivial unit group. Partial order: $q \preceq q' \iff q' - q \in Q_+$

Lemma. Q-module \leftrightarrow Q-graded module over $\mathbb{k}[Q_+]$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
↔ cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (↔ prime ideals)
- localization (without altering ambient poset)

Def. Abelian group Q is partially ordered if Q generated by submonoid Q_+, the positive cone, with trivial unit group. Partial order: $q \preceq q' \iff q' - q \in Q_+$

Lemma. Q-module ↔ Q-graded module over $\mathbb{k}[Q_+]$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
\(\leftrightarrow \) cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (\(\leftrightarrow \) prime ideals)
- localization (without altering ambient poset)

Def. Abelian group \(Q \) is partially ordered if \(Q \) generated by submonoid \(Q_+ \),
the positive cone, with trivial unit group. Partial order: \(q \preceq q' \iff q' - q \in Q_+ \)

Lemma. \(Q \)-module \(\leftrightarrow \) \(Q \)-graded module over \(\mathbb{k}[Q_+] \)
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
\(\leftrightarrow \) cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [−]. Need at least
- faces (\(\leftrightarrow \) prime ideals)
- localization (without altering ambient poset)

Def. Abelian group \(Q \) is partially ordered if \(Q \) generated by submonoid \(Q_+ \),
the positive cone, with trivial unit group. Partial order: \(q \preceq q' \iff q' - q \in Q_+ \)

Lemma. \(Q \)-module \(\leftrightarrow \) \(Q \)-graded module over \(\mathbb{k}[Q_+] \)
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
↔ cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (↔ prime ideals)
- localization (without altering ambient poset)

Def. Abelian group Q is partially ordered if Q generated by submonoid Q_+, the positive cone, with trivial unit group. Partial order: $q \preceq q'$ ↔ $q' - q \in Q_+$

Lemma. Q-module ↔ Q-graded module over $\mathbb{k}[Q_+]$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
\(\leftrightarrow \) cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (\(\leftrightarrow \) prime ideals)
- localization (without altering ambient poset)

Def. Abelian group \(Q \) is partially ordered if \(Q \) generated by submonoid \(Q_+ \),
the positive cone, with trivial unit group. Partial order: \(q \leq q' \iff q' - q \in Q_+ \)

Lemma. \(Q \)-module \(\leftrightarrow \) \(Q \)-graded module over \(\mathbb{k}[Q_+] \)
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
\(\leftrightarrow \) cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (\(\leftrightarrow \) prime ideals)
- localization (without altering ambient poset) \(\Rightarrow \) poset \(\subseteq \) group

Def. Abelian group \(Q \) is partially ordered if \(Q \) generated by submonoid \(Q_+ \),
the positive cone, with trivial unit group. Partial order: \(q \preceq q' \iff q' - q \in Q_+ \)

Lemma. \(Q \)-module \(\leftrightarrow \) \(Q \)-graded module over \(\mathbb{k}[Q_+] \)
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
 • teases apart groups of monomials parallel to the coordinate planes
 • or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
 \leftrightarrow cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
 • faces (\leftrightarrow prime ideals)
 • localization (without altering ambient poset) \Rightarrow poset \subseteq group

Def. Abelian group Q is partially ordered if Q generated by submonoid Q_+,
the positive cone, with trivial unit group. Partial order: $q \preceq q' \iff q' - q \in Q_+$

Lemma. Q-module \leftrightarrow Q-graded module over $k[Q_+]$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
 • teases apart groups of monomials parallel to the coordinate planes
 • or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
 ↔ cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
 • faces (↔ prime ideals)
 • localization (without altering ambient poset) ⇒ poset ⊆ group

Def. Abelian group Q is partially ordered if Q generated by submonoid Q_+,
the positive cone, with trivial unit group. Partial order: $q \preceq q' \iff q' - q \in Q_+$

Lemma. Q-module ↔ Q-graded module over $\mathbb{k}[Q_+]$
Partially ordered groups

Monomial ideals: combinatorial primary decomposition
- teases apart groups of monomials parallel to the coordinate planes
- or parallel to faces in affine semigroup rings

Combinatorial primary decomposition requires positive multigrading
\(\leftrightarrow \) cone of positive elements greater than 0.

Question. Over which posets does monomial primary decomposition work?

Remark. Homological algebra generalizes to modules over any poset

Answer 1 [–]. Need at least
- faces (\(\leftrightarrow \) prime ideals)
- localization (without altering ambient poset) \(\Rightarrow \) poset \(\subseteq \) group

Def. Abelian group \(Q \) is partially ordered if \(Q \) generated by submonoid \(Q_+ \),
the positive cone, with trivial unit group. Partial order: \(q \preceq q' \leftrightarrow q' - q \in Q_+ \)

Lemma. \(Q \)-module \(\leftrightarrow \) \(Q \)-graded module over \(\mathbb{k}[Q_+] \)
Partially ordered groups

Examples.

1. $Q = \mathbb{Z}^n$ with $Q_+ = \mathbb{N}^n$: polynomial combinatorial commutative algebra
2. $Q = \mathbb{Z}^n$ with Q_+ pointed rational polyhedral cone: affine semigroup CCA
3. $Q = \mathbb{R}^n$ with Q_+ any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. $Q = \mathbb{R}^3$ with Q_+ = positive half of the right circular cone $x^2 + y^2 \leq z^2$
5. $Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
6. continuous version: $Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

7. $\mathbb{R}^n \hookrightarrow \mathbb{Q}^n$
 - anywhere here
 - including with irrational cones
Partially ordered groups

Examples.

1. $Q = \mathbb{Z}^n$ with $Q_+ = \mathbb{N}^n$: polynomial combinatorial commutative algebra
2. $Q = \mathbb{Z}^n$ with Q_+ pointed rational polyhedral cone: affine semigroup CCA
3. $Q = \mathbb{R}^n$ with Q_+ any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. $Q = \mathbb{R}^3$ with Q_+ = positive half of the right circular cone $x^2 + y^2 \leq z^2$
5. $Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
6. continuous version: $Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

7. $\mathbb{R}^n \hookrightarrow \mathbb{Q}^n$
 - anywhere here
 - including with irrational cones
Examples.

1. $Q = \mathbb{Z}^n$ with $Q_+ = \mathbb{N}^n$: polynomial combinatorial commutative algebra
2. $Q = \mathbb{Z}^n$ with Q_+ pointed rational polyhedral cone: affine semigroup CCA
3. $Q = \mathbb{R}^n$ with Q_+ any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. $Q = \mathbb{R}^3$ with Q_+ = positive half of the right circular cone $x^2 + y^2 \leq z^2$
5. $Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
6. continuous version: $Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
7. $\mathbb{R}^n \hookrightarrow \mathbb{Q}^n$
 - anywhere here
 - including with irrational cones
Partially ordered groups

Examples.

1. $Q = \mathbb{Z}^n$ with $Q_+ = \mathbb{N}^n$: polynomial combinatorial commutative algebra
2. $Q = \mathbb{Z}^n$ with Q_+ pointed rational polyhedral cone: affine semigroup CCA
3. $Q = \mathbb{R}^n$ with Q_+ any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. $Q = \mathbb{R}^3$ with Q_+ = positive half of the right circular cone $x^2 + y^2 \leq z^2$
5. $Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
6. continuous version: $Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with Q_+ generated by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

7. $\mathbb{R}^n \sim \mathbb{Q}^n$
 - anywhere here
 - including with irrational cones
Partially ordered groups

Examples.

1. \(Q = \mathbb{Z}^n \) with \(Q_+ = \mathbb{N}^n \): polynomial combinatorial commutative algebra
2. \(Q = \mathbb{Z}^n \) with \(Q_+ \) pointed rational polyhedral cone: affine semigroup CCA
3. \(Q = \mathbb{R}^n \) with \(Q_+ \) any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. \(Q = \mathbb{R}^3 \) with \(Q_+ \) = positive half of the right circular cone \(x^2 + y^2 \leq z^2 \)
5. \(Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) with \(Q_+ \) generated by \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \).
6. continuous version: \(Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z} \) with \(Q_+ \) generated by \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \)

7. \(\mathbb{R}^n \leadsto \mathbb{Q}^n \)
 - anywhere here
 - including with irrational cones
Partially ordered groups

Examples.

1. $Q = \mathbb{Z}^n$ with $Q_+ = \mathbb{N}^n$: polynomial combinatorial commutative algebra
2. $Q = \mathbb{Z}^n$ with Q_+ pointed rational polyhedral cone: affine semigroup CCA
3. $Q = \mathbb{R}^n$ with Q_+ any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. $Q = \mathbb{R}^3$ with Q_+ positive half of the right circular cone $x^2 + y^2 \leq z^2$
5. $Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with Q_+ generated by $[1]_0$ and $[1]_1$.
6. continuous version: $Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with Q_+ generated by $[1]_0$ and $[1]_1$

7. $\mathbb{R}^n \hookrightarrow \mathbb{Q}^n$
 - anywhere here
 - including with irrational cones
Partially ordered groups

Examples.

1. $Q = \mathbb{Z}^n$ with $Q_+ = \mathbb{N}^n$: polynomial combinatorial commutative algebra
2. $Q = \mathbb{Z}^n$ with Q_+ pointed rational polyhedral cone: affine semigroup CCA
3. $Q = \mathbb{R}^n$ with Q_+ any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. $Q = \mathbb{R}^3$ with Q_+ = positive half of the right circular cone $x^2 + y^2 \leq z^2$
5. $Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ with Q_+ generated by $[1\ 0]$ and $[1\ 1]$.
6. continuous version: $Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z}$ with Q_+ generated by $[1\ 0]$ and $[1\ 1]$

7. $\mathbb{R}^n \leadsto \mathbb{Q}^n$
 - anywhere here
 - including with irrational cones

...
Examples.

1. \(Q = \mathbb{Z}^n \) with \(Q_+ = \mathbb{N}^n \): polynomial combinatorial commutative algebra
2. \(Q = \mathbb{Z}^n \) with \(Q_+ \) pointed rational polyhedral cone: affine semigroup CCA
3. \(Q = \mathbb{R}^n \) with \(Q_+ \) any pointed polyhedral cone: the case of interest here
 - rational or irrational okay, but need
 - finitely many faces
4. \(Q = \mathbb{R}^3 \) with \(Q_+ \) = positive half of the right circular cone \(x^2 + y^2 \leq z^2 \)
5. \(Q = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \) with \(Q_+ \) generated by \([1,0] \) and \([1,1] \).
6. continuous version: \(Q = \mathbb{R} \times \mathbb{R}/\mathbb{Z} \) with \(Q_+ \) generated by \([1,0] \) and \([1,1] \)

• line = \(\mathbb{R} \)
• origin \(\mathbf{0} \) at dot
• \(Q_+ \) shaded

7. \(\mathbb{R}^n \rightsquigarrow \mathbb{Q}^n \)
 - anywhere here
 - including with irrational cones
Tameness

Finiteness conditions: ● \mathbb{Z}^n-modules: finitely generated \Leftrightarrow noetherian
● $Q =$ partially ordered group: ??

Def [−]. M admits a constant subdivision if Q is partitioned into
● constant regions $A \rightsquigarrow$ vector space $M_A \simrightarrow M_a$ for all $a \in A$ with
● no monodromy: all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce
the same composite $M_A \rightarrow M_a \rightarrow M_b \rightarrow M_B$.

M is tame if $\dim_k M_q < \infty$ and admits a finite constant subdivision.
Example. $k_0 \oplus k[\mathbb{R}^2]$ admits constant regions $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$
Finiteness conditions:
- \mathbb{Z}^n-modules: finitely generated \iff noetherian
- $Q =$ partially ordered group: ??

Def [–]. M admits a **constant subdivision** if Q is partitioned into

- **constant regions** $A \rightsquigarrow$ vector space $M_A \simto M_a$ for all $a \in A$ with
- **no monodromy:** all comparable pairs $a \preceq b$ with $a \in A$ and $b \in B$ induce the same composite $M_A \to M_a \to M_b \to M_B$.

M is **tame** if $\dim_k M_q < \infty$ and admits a finite constant subdivision.

Example. $k_0 \oplus k[\mathbb{R}^2]$ admits constant regions $\{0\}$ and $\mathbb{R}^2 \setminus \{0\}$
Tameness

Finiteness conditions: • \(\mathbb{Z}^n\)-modules: finitely generated ⇔ noetherian
• \(Q\) = partially ordered group: ??

Def [−]. \(M\) admits a constant subdivision if \(Q\) is partitioned into
• constant regions \(A\) ⇨ vector space \(M_A \sim M_a\) for all \(a \in A\) with
• no monodromy: all comparable pairs \(a \preceq b\) with \(a \in A\) and \(b \in B\) induce the same composite \(M_A \to M_a \to M_b \to M_B\).

\(M\) is tame if \(\text{dim}_k M_q < \infty\) and admits a finite constant subdivision.

Example. \(k_0 \oplus k[R^2]\) admits constant regions \(\{0\}\) and \(R^2 \setminus \{0\}\)
Finiteness conditions:
• \(\mathbb{Z}^n \)-modules: finitely generated \(\iff \) noetherian
• \(Q = \) partially ordered group: ??

Def [–]. \(M \) admits a constant subdivision if \(Q \) is partitioned into

- constant regions \(A \rightsquigarrow \) vector space \(M_A \sim \to M_a \) for all \(a \in A \) with
- no monodromy: all comparable pairs \(a \preceq b \) with \(a \in A \) and \(b \in B \) induce the same composite \(M_A \to M_a \to M_b \to M_B \).

\(M \) is tame if \(\text{dim}_k M_q < \infty \) and admits a finite constant subdivision.

Example. \(k_0 \oplus k[R^2] \) admits constant regions \(\{0\} \) and \(\mathbb{R}^2 \setminus \{0\} \)
Tameness

Finiteness conditions: • \(\mathbb{Z}^n \)-modules: finitely generated \(\Leftrightarrow \) noetherian
• \(Q \) = partially ordered group: ??

Def \([-]\). \(M \) admits a constant subdivision if \(Q \) is partitioned into
• constant regions \(A \rightsquigarrow \) vector space \(M_A \cong M_a \) for all \(a \in A \) with
• no monodromy: all comparable pairs \(a \preceq b \) with \(a \in A \) and \(b \in B \) induce the same composite \(M_A \rightarrow M_a \rightarrow M_b \rightarrow M_B \).

\(M \) is tame if \(\dim_k M_q < \infty \) and admits a finite constant subdivision.

Example. \(k_0 \oplus k[\mathbb{R}^2] \) admits constant regions \(\{0\} \) and \(\mathbb{R}^2 \setminus \{0\} \)
Tameness

Finiteness conditions: • \(\mathbb{Z}^n \)-modules: finitely generated \(\Leftrightarrow \) noetherian
• \(Q \) = partially ordered group: ??

Def [–]. \(M \) admits a constant subdivision if \(Q \) is partitioned into
• constant regions \(A \) \(\rightsquigarrow \) vector space \(M_A \sim M_a \) for all \(a \in A \) with
• no monodromy: all comparable pairs \(a \preceq b \) with \(a \in A \) and \(b \in B \) induce
 the same composite \(M_A \to M_a \to M_b \to M_B \).

\(M \) is tame if \(\dim_k M_q < \infty \) and admits a finite constant subdivision.

Example. \(k_0 \oplus k[\mathbb{R}^2] \) admits constant regions \(\{0\} \) and \(\mathbb{R}^2 \setminus \{0\} \)
Primary decomposition

Def. Fix a partially ordered group Q. A **face** of Q_+ (or of Q itself) is
- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 [–]. Q is **polyhedral** if it has only finitely many faces.

Thm [–]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a **primary decomposition**: $M \hookrightarrow \bigoplus \limits_{\text{faces } \tau} M_{\tau}$ with M_{τ} coprimary.

Remark. $0 = \bigcap_{\tau} \ker(M \to M_{\tau})$ with $\ker(M \to M_{\tau})$ primary in M

Example.

Thm [–]. Canonical for monomial quotients M
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is
- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 [−]. Q is polyhedral if it has only finitely many faces.

Thm [−]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\text{faces } \tau} M_\tau$ with M_τ coprimary.

Remark. $\iff 0 = \bigcap_\tau \ker(M \to M_\tau)$ with $\ker(M \to M_\tau)$ primary in M

Example.

Thm [−]. Canonical for monomial quotients M
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is
- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 [–]. Q is polyhedral if it has only finitely many faces.

Thm [–]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\text{faces } \tau} M_\tau$ with M_τ coprimary.

Remark. $\iff 0 = \bigcap_\tau \ker(M \to M_\tau)$ with $\ker(M \to M_\tau)$ primary in M

Example.

Thm [–]. Canonical for monomial quotients M
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is

- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 [–]. Q is polyhedral if it has only finitely many faces.

Thm [–]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\text{faces } \tau} M_{\tau}$ with M_{τ} coprimary.

Remark. $\iff 0 = \bigcap_{\tau} \ker(M \rightarrow M_{\tau})$ with $\ker(M \rightarrow M_{\tau})$ primary in M

Example.

Thm [–]. Canonical for monomial quotients M
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q (or of Q itself) is
- a submonoid $\sigma \subseteq Q$ such that
- $\bar{\sigma} = Q \setminus \sigma$ is an ideal of the monoid Q (so $\bar{\sigma} + Q \subseteq \bar{\sigma}$).

Answer 2. Q is polyhedral if it has only finitely many faces.

Thm. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\text{faces } \tau} M_\tau$ with M_τ coprimary.

Remark. $0 = \bigcap_{\tau} \ker(M \to M_\tau)$ with $\ker(M \to M_\tau)$ primary in M

Example.

Thm. Canonical for monomial quotients M
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is
- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2. Q is polyhedral if it has only finitely many faces.

Thm. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\tau} M_{\tau}$ with M_{τ} coprimary.

Remark. $\iff 0 = \bigcap_{\tau} \ker(M \to M_{\tau})$ with $\ker(M \to M_{\tau})$ primary in M

Example.

Thm. Canonical for monomial quotients M
Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is
- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 \[\text{-}\]. Q is polyhedral if it has only finitely many faces.

Thm \[\text{-}\]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\tau} M_\tau$ with M_τ coprimary.

Remark. $\iff 0 = \bigcap_{\tau} \ker(M \to M_\tau)$ with $\ker(M \to M_\tau)$ primary in M

Example.

$$
\begin{bmatrix}
 y \\
v \\
x
\end{bmatrix}
\hookrightarrow
\begin{bmatrix}
y \\
v \\
x
\end{bmatrix}
\oplus
\begin{bmatrix}
y \\
v \\
x
\end{bmatrix}
\oplus
\begin{bmatrix}
y \\
v \\
x
\end{bmatrix}
\oplus
\begin{bmatrix}
y \\
v \\
x
\end{bmatrix}
$$

Thm \[\text{-}\]. Canonical for monomial quotients M
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is

- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 [–]. Q is polyhedral if it has only finitely many faces.

Thm [–]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\tau} M_{\tau}$ with M_{τ} coprimary.

Remark. $\iff 0 = \bigcap_{\tau} \ker(M \to M_{\tau})$ with $\ker(M \to M_{\tau})$ primary in M

Example.

Thm [–]. Canonical for monomial quotients M, but redundant!
Primary decomposition

Def. Fix a partially ordered group Q. A face of Q_+ (or of Q itself) is

- a submonoid $\sigma \subseteq Q_+$ such that
- $\overline{\sigma} = Q_+ \setminus \sigma$ is an ideal of the monoid Q_+ (so $\overline{\sigma} + Q_+ \subseteq \overline{\sigma}$).

Answer 2 [–]. Q is polyhedral if it has only finitely many faces.

Thm [–]. Fix a polyhedral partially ordered group Q. Any tame Q-module M has a primary decomposition: $M \hookrightarrow \bigoplus_{\text{faces } \tau} M_\tau$ with M_τ coprimary.

Remark. $\Leftrightarrow 0 = \bigcap_{\tau} \ker(M \to M_\tau)$ with $\ker(M \to M_\tau)$ primary in M

Example.

Thm [–]. Canonical for monomial quotients M, but redundant!

Remark. Minimality needs \mathbb{Z}^n or \mathbb{R}^n [arXiv:2008.03819] or other geometric control
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \nsubseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is
1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\bar{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\bar{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of $Q_+ \ (or \ of \ Q \ itself)$ is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\overline{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\overline{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\bar{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\bar{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\overline{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\overline{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is
1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\overline{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\overline{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprima

Def [—]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [—]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [—]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\overline{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\overline{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [—]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\bar{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\bar{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\overline{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\overline{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

\[x y \cdots \mapsto \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\end{array} \]

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Coprimary modules

Def [–]. In a partially ordered group Q, a ray of Q_+ (or of Q itself) is a face that is totally ordered as a partially ordered submonoid of Q.

Answer 3 [–]. Q is closed if the complement $Q_+ \setminus \tau$ of each face τ is generated as an ideal of Q_+ by $\rho \setminus \{0\}$ for the rays $\rho \not\subseteq \tau$.

Def [–]. If Q is closed and τ is a face, then a Q-module element is

1. τ-persistent if it lives when pushed up arbitrarily along τ;
2. $\bar{\tau}$-transient if it dies when pushed up sufficiently along any ray $\not\subseteq \tau$;
3. τ-coprimary if it is τ-persistent and $\bar{\tau}$-transient.

A Q-module is τ-coprimary if every element divides a coprimary element.

Example.

Thm [–]. Fix a face τ of a closed polyhedral partially ordered group Q. The Q-module M is τ-coprimary \iff every element divides a τ-coprimary element.
Future directions

Computation. Given a tame module, compute

- primary decomposition
- indecomposable decomposition ← in progress with undergrad Joey Li

Betti numbers.

- analogue of Hochster’s formula for real-exponent monomial ideals
- Does \(k[\mathbb{R}^n_+] \) have finite global dimension in the usual sense?
 - in progress with undergrad Nathan Geist

Bar codes / QR codes

- descriptions of modules in terms of “birth” and “death” (generators and cogenerators)
- bears on indecomposable decomposition, so
- in progress with undergrad Joey Li
Future directions

Computation. Given a tame module, compute

- primary decomposition
- indecomposable decomposition ← in progress with undergrad Joey Li

Betti numbers.

- analogue of Hochster’s formula for real-exponent monomial ideals
- Does $k[R^n]$ have finite global dimension in the usual sense?
 - in progress with undergrad Nathan Geist

Bar codes / QR codes

- descriptions of modules in terms of “birth” and “death”
 (generators and cogenerators)
- bears on indecomposable decomposition, so
- in progress with undergrad Joey Li
Future directions

Computation. Given a tame module, compute

- primary decomposition
- indecomposable decomposition ← in progress with undergrad Joey Li

Betti numbers.

- analogue of Hochster’s formula for real-exponent monomial ideals
- Does $k[R^n]$ have finite global dimension in the usual sense?
- in progress with undergrad Nathan Geist

Bar codes / QR codes

- descriptions of modules in terms of “birth” and “death” (generators and cogenerators)
- bears on indecomposable decomposition, so
- in progress with undergrad Joey Li
Future directions

Computation. Given a tame module, compute

- primary decomposition
- indecomposable decomposition ← in progress with undergrad Joey Li

Betti numbers.

- analogue of Hochster’s formula for real-exponent monomial ideals
- Does $k[\mathbb{R}^n_+]$ have finite global dimension in the usual sense?
- in progress with undergrad Nathan Geist

Bar codes / QR codes

- descriptions of modules in terms of “birth” and “death” (generators and cogenerators)
- bears on indecomposable decomposition, so
- in progress with undergrad Joey Li

Thank You
Future directions

Computation. Given a tame module, compute

- primary decomposition
- indecomposable decomposition ← in progress with undergrad Joey Li

Betti numbers.

- analogue of Hochster’s formula for real-exponent monomial ideals
- Does $k[\mathbb{R}^n_+]$ have finite global dimension in the usual sense?
- in progress with undergrad Nathan Geist

Bar codes / QR codes

- descriptions of modules in terms of “birth” and “death” (generators and cogenerators)
- bears on indecomposable decomposition, so
- in progress with undergrad Joey Li

Thank You