Algebraic Combinatorics in Geometric Complexity Theory

Greta Panova

University of Southern California

Graduate Student Meeting on Applied Algebra and Combinatorics, Leipzig 2019
Combinatorics and Representation Theory basics

Symmetric group S_n: Permutations $\pi : [1..n] \mapsto [1..n]$ under composition.

Integer partitions $\lambda \vdash n$:

$$\lambda = (\lambda_1, \ldots, \lambda_\ell), \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0, \lambda_1 + \lambda_2 + \cdots = n$$

Young diagram of λ:

Here $\lambda = (5, 3, 2)$
Combinatorics and Representation Theory basics

Symmetric group S_n: Permutations $\pi : [1..n] \rightarrow [1..n]$ under composition.

Integer partitions $\lambda \vdash n$:

$\lambda = (\lambda_1, \ldots, \lambda_\ell)$, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0$, $\lambda_1 + \lambda_2 + \cdots = n$

Young diagram of λ:

Here $\lambda = (5, 3, 2)$

Representations of S_n: group homomorphisms $S_n \rightarrow GL(V)$,

Example: if $V = \mathbb{C}^3$, $\pi \in S_3$, set $\pi(e_i) := e_{\pi(i)}$ for $i = 1..3$, so e.g. $231 \rightarrow \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
Combinatorics and Representation Theory basics

Symmetric group S_n: Permutations $\pi : [1..n] \mapsto [1..n]$ under composition.

Integer partitions $\lambda \vdash n$:

$\lambda = (\lambda_1, \ldots, \lambda_\ell), \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0$, $\lambda_1 + \lambda_2 + \cdots = n$

Young diagram of λ: Here $\lambda = (5, 3, 2)$

Representations of S_n: group homomorphisms $S_n \to GL(V)$,

Example: if $V = \mathbb{C}^3$, $\pi \in S_3$, set $\pi(e_i) := e_{\pi(i)}$ for $i = 1..3$, so e.g. $231 \to \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Irreducible decomposition: minimal S_n-invariant subspaces V_i, so $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, e.g. $V = \mathbb{C}\langle e_1 + e_2 + e_3 \rangle \oplus \mathbb{C}\langle e_1 - e_2, e_2 - e_3 \rangle$

The **irreducible modules (representations)** (up to equivariant isomorphisms) of S_n are the **Specht modules** S_λ, indexed by all $\lambda \vdash n$, e.g. $V_1 \simeq S_\begin{array}{ll} 3 \\ 2 \end{array}$ and $V_2 \simeq S_\begin{array}{ll} 3 \\ 1 \end{array}$
Combinatorics and Representation Theory basics

Symmetric group S_n: Permutations $\pi : [1..n] \mapsto [1..n]$ under composition.

Integer partitions $\lambda \vdash n$:

$\lambda = (\lambda_1, \ldots, \lambda_\ell), \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0, \lambda_1 + \lambda_2 + \cdots = n$

Young diagram of λ:

Here $\lambda = (5, 3, 2)$

Representations of S_n: group homomorphisms $S_n \to GL(V)$,

Example: if $V = \mathbb{C}^3$, $\pi \in S_3$, set $\pi(e_i) := e_{\pi i}$ for $i = 1..3$, so e.g. $231 \mapsto \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Irreducible decomposition: minimal S_n-invariant subspaces V_i, so $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, e.g. $V = \mathbb{C}\langle e_1 + e_2 + e_3 \rangle \oplus \mathbb{C}\langle e_1 - e_2, e_2 - e_3 \rangle$

The irreducible modules (representations) (up to equivariant isomorphisms) of S_n are the Specht modules S_λ, indexed by all $\lambda \vdash n$, e.g. $V_1 \simeq S_\begin{array}{ccc} 1 \\ 2 \end{array}$ and $V_2 \simeq S_\begin{array}{cc} 2 \\ 4 \end{array}$

Basis for S_λ: Standard Young Tableaux of shape λ: $\lambda = (3, 2)$

1 2 3 4 5
1 2 4 3 5
1 2 5 3 4
1 3 4 2 5
1 3 5 2 4
Young Tableaux and Schur functions

Irreducible representations of the symmetric group S_n: *Specht modules* S_λ

![Young Tableaux](image)

Irreducible (polynomial) representations of the *General Linear group* $GL_N(\mathbb{C})$:

Weyl modules V_λ (aka W_λ), indexed by highest weights λ, $\ell(\lambda) \leq N$.
Young Tableaux and Schur functions

Irreducible representations of the symmetric group S_n: Specht modules S_λ

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 2 & 5 \\
4 & 5 & 2 & 4 \\
\end{array}
\]

Irreducible (polynomial) representations of the General Linear group $GL_N(\mathbb{C})$:

Weyl modules V_λ (aka W_λ), indexed by highest weights λ, $\ell(\lambda) \leq N$.

Schur functions: characters of V_λ

$Tr_{V_\lambda}(\text{diag}(x_1, \ldots, x_N)) = s_\lambda(x_1, \ldots, x_N)$

Weyl’s determinantal formula:

\[
s_\lambda(x_1, \ldots, x_N) = \frac{\det \left[x_i^{\lambda_j + N - j} \right]_{ij=1}^N}{\prod_{i<j}(x_i - x_j)}
\]

Semi-Standard Young tableaux of shape λ:

$s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1 x_2 x_3 + x_2^2 x_3^2 + x_1 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2$.

\[
\begin{array}{cccc}
1 & 1 & 2 & 2 \\
1 & 1 & 3 & 3 \\
2 & 2 & 3 & 3 \\
1 & 2 & 2 & 3 \\
1 & 2 & 3 & 3 \\
\end{array}
\]
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

\(GL_N(\mathbb{C}) \) acts on \(V_\lambda, V_\mu \) and their tensor product:

\[
V_\lambda \otimes V_\mu = \bigoplus \nu V_\nu^{\oplus c_{\lambda \mu}^\nu}
\]

\(c_{\lambda \mu}^\nu \) – **Littlewood-Richardson coefficients**, the number of isotypic components.
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

$GL_N(\mathbb{C})$ acts on V_λ, V_μ and their tensor product:

$$V_\lambda \otimes V_\mu = \bigoplus \nu V_\nu \oplus c_\nu^\lambda \mu$$

$c_\nu^\lambda \mu$ – Littlewood-Richardson coefficients, the number of isotypic components.

Theorem [Littlewood-Richardson, 1934] The coefficient $c_\nu^\lambda \mu$ is equal to the number of LR tableaux of shape ν/μ and type λ.
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

\(GL_N(\mathbb{C}) \) acts on \(V_\lambda, V_\mu \) and their tensor product:

\[
V_\lambda \otimes V_\mu = \bigoplus_\nu V_\nu^{c_{\lambda \mu}^\nu}
\]

\(c_{\lambda \mu}^\nu \) -- Littlewood-Richardson coefficients, the number of isotypic components.

Theorem [Littlewood-Richardson, 1934] The coefficient \(c_{\lambda \mu}^\nu \) is equal to the number of LR tableaux of shape \(\nu/\mu \) and type \(\lambda \).

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 2 \\
2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 3 & 3 \\
\end{array}
\]

(LR tableaux of shape \((7, 4, 3)/(3, 1)\) and type \((4, 3, 2)\). \(c_{(3,1)(4,3,2)}^{(7,4,3)} = 2 \))
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

$GL_N(\mathbb{C})$ acts on V_λ, V_μ and their tensor product:

$$V_\lambda \otimes V_\mu = \bigoplus \nu V_\nu \bigoplus \lambda\mu c_{\nu}^{\lambda\mu}$$

$c_{\lambda\mu}^{\nu} -$ Littlewood-Richardson coefficients, the number of isotypic components.

Theorem [Littlewood-Richardson, 1934] The coefficient $c_{\lambda\mu}^{\nu}$ is equal to the number of LR tableaux of shape ν/μ and type λ.

S_n tensor products decomposition (diagonal action):

$$S_\lambda \otimes S_\mu = \bigoplus \nu\vdash_n S_\nu \bigoplus (\ldots)$$
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

$GL_N(\mathbb{C})$ acts on V_λ, V_μ and their tensor product:

$$V_\lambda \otimes V_\mu = \bigoplus_\nu V_\nu \oplus \lambda\mu$$

$c_{\nu}^{\lambda\mu}$ – **Littlewood-Richardson coefficients**, the number of isotypic components.

Theorem [Littlewood-Richardson, 1934] The coefficient $c_{\nu}^{\lambda\mu}$ is equal to the number of LR tableaux of shape ν/μ and type λ.

S_n tensor products decomposition (diagonal action):

$$S_\lambda \otimes S_\mu = \bigoplus_{\nu \vdash n} S_\nu \oplus g(\lambda, \mu, \nu)$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of S_ν in $S_\lambda \otimes S_\mu$

E.g.: $S_{(2,1)} \otimes S_{(2,1)} = S_{(3)} \oplus S_{(2,1)} \oplus S_{(1,1,1)}$ and so $g((2, 1), (2, 1), \nu) = 1$ for $\nu = (3), (2, 1), (1, 1, 1)$.

Greta Panova 4
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

$GL_N(\mathbb{C})$ acts on V_λ, V_μ and their tensor product:

$$V_\lambda \otimes V_\mu = \bigoplus \nu V_\nu^{c^\nu_{\lambda\mu}}$$

$c^\nu_{\lambda\mu}$ – Littlewood-Richardson coefficients, the number of isotypic components.

Theorem [Littlewood-Richardson, 1934] The coefficient $c^\nu_{\lambda\mu}$ is equal to the number of LR tableaux of shape ν/μ and type λ.

S_n tensor products decomposition (diagonal action):

$$S_\lambda \otimes S_\mu = \bigoplus \nu \bigoplus g(\lambda, \mu, \nu) S_\nu$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of S_ν in $S_\lambda \otimes S_\mu$

In terms of $GL(\mathbb{C}^m)$ modules V_λ, V_μ, V_ν (Schur-Weyl duality):

$$\text{Sym}(\mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m) = \bigoplus \lambda, \mu, \nu g(\lambda, \mu, \nu) V_\lambda \otimes V_\mu \otimes V_\nu$$
Products and compositions

Von Neumann et al, ca. 1934, representations of Lie groups:

$GL_N(\mathbb{C})$ acts on V_λ, V_μ and their tensor product:

$$V_\lambda \otimes V_\mu = \bigoplus \nu V_\nu^{c^\nu_{\lambda\mu}}$$

c$^\nu_{\lambda\mu}$ – Littlewood-Richardson coefficients, the number of isotypic components.

Theorem [Littlewood-Richardson, 1934] The coefficient $c^\nu_{\lambda\mu}$ is equal to the number of LR tableaux of shape ν/μ and type λ.

S_n tensor products decomposition (diagonal action):

$$S_\lambda \otimes S_\mu = \bigoplus_{\nu \vdash n} S_\nu^{g(\lambda, \mu, \nu)}$$

Kronecker coefficients: $g(\lambda, \mu, \nu)$ – multiplicity of S_ν in $S_\lambda \otimes S_\mu$

In terms of $GL(\mathbb{C}^m)$ modules V_λ, V_μ, V_ν (Schur-Weyl duality):

$$\text{Sym}(\mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m) = \bigoplus_{\lambda, \mu, \nu} g(\lambda, \mu, \nu) V_\lambda \otimes V_\mu \otimes V_\nu$$

Plethysm coefficients in GL-representation compositions:

$$GL_N \to GL(V_\mu) \to GL(V_\nu) \iff GL_N \to V_\nu[V_\mu] = \bigoplus \lambda V_\lambda^{\oplus a_\lambda(\nu[\mu])}$$
The Algebraic Combinatorics problems

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $O_{\lambda, \mu, \nu}$ s.t. $g(\lambda, \mu, \nu) = \#O_{\lambda, \mu, \nu}$. Alternatively, show that KRON ("Input: (λ, μ, ν), output: $g(\lambda, \mu, \nu)$") is in $\#P$.
The Algebraic Combinatorics problems

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for \(g(\lambda, \mu, \nu) \), i.e. a family of combinatorial objects \(O_{\lambda, \mu, \nu} \), s.t. \(g(\lambda, \mu, \nu) = \#O_{\lambda, \mu, \nu} \). Alternatively, show that KRON ("Input: \((\lambda, \mu, \nu)\), output: \(g(\lambda, \mu, \nu)\)"") is in \#P.

Classical motivation: (Littlewood–Richardson: for \(c^\nu_{\lambda, \mu} \),
\(O_{\lambda, \mu, \nu} = \{ \text{LR tableaux of shape } \nu/\mu, \text{ type } \lambda \} \))

Theorem [Murnaghan] If \(|\lambda| + |\mu| = |\nu|\) and \(n > |\nu| \), then

\[
g((n + |\mu|, \lambda), (n + |\lambda|, \mu), (n, \nu)) = c^\nu_{\lambda, \mu}.
\]
The Algebraic Combinatorics problems

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for $g(\lambda, \mu, \nu)$, i.e. a family of combinatorial objects $O_{\lambda, \mu, \nu}$, s.t. $g(\lambda, \mu, \nu) = \# O_{\lambda, \mu, \nu}$. Alternatively, show that $KRON$ ("Input: (λ, μ, ν), output: $g(\lambda, \mu, \nu)$") is in $\#P$.

Classical motivation: (Littlewood–Richardson: for $c^{\nu}_{\lambda, \mu}$, $O_{\lambda, \mu, \nu} = \{ \text{LR tableaux of shape } \nu/\mu, \text{ type } \lambda \}$)

Theorem [Murnaghan] If $|\lambda| + |\mu| = |\nu|$ and $n > |\nu|$, then

$$g((n + |\mu|, \lambda), (n + |\lambda|, \mu), (n, \nu)) = c^{\nu}_{\lambda, \mu}.$$

Modern motivation:
1. A positive combinatorial formula " \iff " Computing Kronecker coefficients is in $\#P$.
2. Geometric Complexity Theory.
3. Invariant Theory, moment polytopes [see Bürgisser, Christandl, Mulmuley, Walter, Oliveira, Garg, Wigderson etc]
The Algebraic Combinatorics problems

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for \(g(\lambda, \mu, \nu) \), i.e. a family of combinatorial objects \(\mathcal{O}_{\lambda, \mu, \nu} \), s.t. \(g(\lambda, \mu, \nu) = \# \mathcal{O}_{\lambda, \mu, \nu} \). Alternatively, show that KRON (“Input: \((\lambda, \mu, \nu)\), output: \(g(\lambda, \mu, \nu)\)”) is in \#P.

Classical motivation: (Littlewood–Richardson: for \(c^\nu_{\lambda, \mu}\), \(\mathcal{O}_{\lambda, \mu, \nu} = \{ \text{LR tableaux of shape } \nu/\mu, \text{ type } \lambda \} \))

Results since then:
Combinatorial formulas for \(g(\lambda, \mu, \nu) \), when:

- \(\mu \) and \(\nu \) are hooks \((\usebox{hooks}) \), [Remmel, 1989]
- \(\nu = (n - k, k) \) \((\usebox{hooks}) \) and \(\lambda_1 \geq 2k - 1 \), [Ballantine–Orellana, 2006]
- \(\nu = (n - k, k) \), \(\lambda = (n - r, r) \) [Remmel–Whitehead, 1994; Blasiak–Mulmuley–Sohoni, 2013]
- \(\nu = (n - k, 1^k) \) \((\usebox{hooks}) \), [Blasiak 2012, Blasiak-Liu 2014]
- Other special cases [Colmenarejo-Rosas, Ikenmeyer-Mulmuley-Walter, Pak-Panova].
The Algebraic Combinatorics problems

Problem (Murnaghan, 1938, then Stanley et al)

Find a positive combinatorial interpretation for \(g(\lambda, \mu, \nu) \), i.e. a family of combinatorial objects \(\mathcal{O}_{\lambda, \mu, \nu} \), s.t. \(g(\lambda, \mu, \nu) = \# \mathcal{O}_{\lambda, \mu, \nu} \). Alternatively, show that KRON (“Input: \((\lambda, \mu, \nu) \), output: \(g(\lambda, \mu, \nu) \)” is in \(\#P \).

Bounds and positivity:

[Pak-P]: \(g(\lambda, \mu, \mu) \geq |\chi^\lambda(2\mu_1 - 1, 2\mu_2 - 3, \ldots)| \) when \(\mu = \mu^T \). Corollaries:

\[
g(\lambda, \mu, \mu) > c \frac{2^{\sqrt{2k}}}{k^{9/4}} \quad \text{for} \quad \lambda = (|\mu| - k, k), \quad \text{and} \quad \text{diag}(\mu) \geq \sqrt{k}.
\]

[Saxl conjecture]: For every \(n > 9 \) there exists a self-conjugate partition \(\lambda \vdash n \), s.t. \(g(\lambda, \lambda, \mu) > 0 \) for all \(\mu \vdash n \). When \(n = \binom{m+1}{2} \), then \(\lambda = (m, m - 1, \ldots, 1) \). [Partial results: Pak-P-Vallejo, Ikenmeyer, Luo–Sellke]

Complexity results:

[Bürgisser-Ikenmeyer]: KRON is in GapP.

(Littlewood-Richardson, i.e. KRON’s special case, is \(\#P \)-complete)

[Pak-P]: If \(\nu \) is a hook, then KronPositivity is in P. If \(\lambda, \mu, \nu \) have fixed length there exists a linear time algorithm for deciding \(g(\lambda, \mu, \nu) > 0 \).

[Ikenmeyer-Mulmuley-Walter]: KronPositivity is NP-hard.

[Bürgisser-Christandl-Mulmuley-Walter]: membership in the moment polytope is NP and coNP.
Basic properties and formulas

From representation theory:

\[g(\lambda, \lambda, (n)) = g(\lambda, \lambda', (1^n)) = 1 \]

Semigroup property: If \(\alpha, \beta, \gamma, \lambda, \mu, \nu \) are such that \(g(\alpha, \beta, \gamma) > 0 \) and \(g(\lambda, \mu, \nu) > 0 \) then \(g(\alpha + \lambda, \beta + \mu, \gamma + \nu) \geq \max\{g(\alpha, \beta, \gamma), g(\lambda, \mu, \nu)\} \)
Basic properties and formulas

From representation theory:

\[g(\lambda, \lambda, (n)) = g(\lambda, \lambda', (1^n)) = 1 \]

Semigroup property: If \(\alpha, \beta, \gamma, \lambda, \mu, \nu \) are such that \(g(\alpha, \beta, \gamma) > 0 \) and \(g(\lambda, \mu, \nu) > 0 \) then \(g(\alpha + \lambda, \beta + \mu, \gamma + \nu) \geq \max\{g(\alpha, \beta, \gamma), g(\lambda, \mu, \nu)\} \)

Via Schur functions \(s_\lambda \):

\[
s_\lambda(x) = \sum_{T: \text{SSYT}, \text{sh}(T) = \lambda} x^T
\]

\[
s_\lambda[x \cdot y] = \sum_{\mu, \nu} g(\lambda, \mu, \nu) s_\mu(x) s_\nu(y)
\]

x_1 y_1, x_1 y_2, ..., x_2 y_1, ...

Triple Cauchy identity:

\[
\prod_{i,j,k} \frac{1}{1 - x_i y_j z_k} = \sum_{\lambda, \mu, \nu} g(\lambda, \mu, \nu) s_\lambda(x) s_\mu(y) s_\nu(z)
\]

A GAP formula via Contingency Arrays: (in [Christandl-Doran-Walter, Pak-Panova])

\[
g(\alpha, \beta, \gamma) = \sum_{\sigma^1, \sigma^2, \sigma^3 \in S_\ell} \text{sgn}(\sigma^1 \sigma^2 \sigma^3) CA(\alpha + 1 - \sigma^1, \beta + 1 - \sigma^2, \gamma + 1 - \sigma^3),
\]

\[
CA(u, v, w) = \text{is # of } \ell \times \ell \times \ell \text{ contingency arrays } [A_{i,j,k}] \in \mathbb{N}^{k \times k \times k}:
\]

\[
\sum_{j,k} A_{i,j,k} = u_i, \quad \sum_{i,k} A_{i,j,k} = v_i, \quad \sum_{i,j} A_{i,j,k} = w_k
\]
“Example”: when $\nu = (n - k, k) – two rows

\[\ell(\nu) = 2: \]

\[g(\lambda, \mu, \nu) = \sum_{\sigma \in S_2} \text{sgn}(\sigma) \sum_{\alpha^i \vdash \nu_i - i + \sigma_i, i = 1, 2} c_{\alpha^1 \alpha^2}^\lambda c_{\alpha^1 \alpha^2}^\mu \]

\[= \sum_{\alpha \vdash k, \beta \vdash n-k} c_{\alpha \beta}^\lambda c_{\alpha \beta}^\mu a_k(\lambda, \mu) \]

\[- \sum_{\alpha \vdash k-1, \beta \vdash n-k+1} c_{\alpha \beta}^\lambda c_{\alpha \beta}^\mu a_{k-1}(\lambda, \mu) \]

Corollary (Pak-P, Vallejo)

The sequence $a_0(\lambda, \mu), a_1(\lambda, \mu), \ldots, a_n(\lambda, \mu)$ is unimodal for all $\lambda, \mu \vdash n$, i.e.

\[a_0(\lambda, \mu) \leq a_1(\lambda, \mu) \leq \ldots \leq a_{\lfloor n/2 \rfloor}(\lambda, \mu) \geq \ldots \geq a_n(\lambda, \mu). \]
When $\nu = (n - k, k)$ – two rows

$$p_n(\ell, m) = \# \{ \lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_1 \leq m \}$$

$$\sum_{n \geq 0} p_n(\ell, m) q^n = \prod_{i=1}^{\ell} \frac{1 - q^{m+i}}{1 - q^i} = \binom{m + \ell}{m}_q$$
When \(\nu = (n - k, k) \) – two rows

\[
p_n(\ell, m) = \# \{ \lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_1 \leq m \}
\]

\[
\sum_{n \geq 0} p_n(\ell, m)q^n = \prod_{i=1}^{\ell} \frac{1 - q^{m+i}}{1 - q^i} = \binom{m + \ell}{m}_q
\]

Theorem (Sylvester 1878, Cayley’s conjecture 1856)

The sequence \(p_0(\ell, m), \ldots, p_{\ell m}(\ell, m) \) is unimodal, i.e.

\[
p_0(\ell, m) \leq p_1(\ell, m) \leq \cdots \leq p_{\lfloor \ell m/2 \rfloor}(\ell, m) \geq \cdots \geq p_{\ell m}(\ell, m)
\]
When \(\nu = (n - k, k) \) – two rows

\[
p_n(\ell, m) = \# \{ \lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_1 \leq m \}
\]

\[
\sum_{n \geq 0} p_n(\ell, m) q^n = \prod_{i=1}^{\ell} \frac{1 - q^{m+i}}{1 - q^i} = \left(\begin{array}{c} m + \ell \\ m \end{array} \right)_q
\]

Theorem (Sylvester 1878, Cayley’s conjecture 1856)

The sequence \(p_0(\ell, m), \ldots, p_{\ell m}(\ell, m) \) is unimodal, i.e.

\[
p_0(\ell, m) \leq p_1(\ell, m) \leq \cdots \leq p_{\lfloor \ell m/2 \rfloor}(\ell, m) \geq \cdots \geq p_{\ell m}(\ell, m)
\]

“I am about to demonstrate a theorem which has been waiting proof for the last quarter of a century and upwards. [...] I accomplished with scarcely an effort a task which I had believed lay outside the range of human power.”

J.J. Sylvester, 1878.
When $\nu = (n-k, k) - \text{two rows}$

$$p_n(\ell, m) = \#\{\lambda \vdash n, \ell(\lambda) \leq \ell, \lambda_1 \leq m\}$$

$$\sum_{n \geq 0} p_n(\ell, m)q^n = \prod_{i=1}^{\ell} \frac{1 - q^{m+i}}{1 - q^i} = \binom{m + \ell}{m}_q$$

Theorem (Sylvester 1878, Cayley's conjecture 1856)

The sequence $p_0(\ell, m), \ldots, p_\ell m(\ell, m)$ is unimodal, i.e.

$$p_0(\ell, m) \leq p_1(\ell, m) \leq \ldots \leq p_{\lfloor \ell m/2 \rfloor}(\ell, m) \geq \ldots \geq p_\ell m(\ell, m)$$

Proof via Kronecker:[Pak-P]

$$0 \leq g(\lambda, \mu, \nu) = \sum_{\alpha \vdash k, \beta \vdash n-k} c_{\alpha \beta}^\lambda c_{\alpha \beta}^\mu - \sum_{\alpha \vdash k-1, \beta \vdash n-k+1} c_{\alpha \beta}^\lambda c_{\alpha \beta}^\mu$$

$$a_k(\lambda, \mu) = \sum_{\alpha \vdash k, \beta \vdash m\ell-k} 1(\beta_i = m - \alpha_{\ell+1-i}, i = 1 \ldots \ell) = p_k(\ell, m)$$

+Corollary – $a_k(\lambda, \mu)$ unimodal

More corollaries: strict unimodality via semigroup property, exponential lower bounds via characters...
(Boolean) Complexity

Input: string of n bits, i.e. $\text{size}(input) = n$.

Decision problems:

Is there an object, s.t.... ?

P = solution can be found in time $\text{Poly}(n)$

NP = solution can be verified in $\text{Poly}(n)$ (polynomial witness)

NP–Complete = in NP, and every NP problem can be reduced to it poly time;

Counting problems:

Compute $F(input) =$?

FP = solution can be found in time $\text{Poly}(n)$

#P = NP counting analogue; informally $F(input)$ counts Exp-many objects, whose verification is in P.
Input: string of \(n \) bits, i.e. \(\text{size}(input) = n \).

Decision problems:

Is there an object, s.t.….?

- **P**: solution can be found in time \(\text{Poly}(n) \)
- **NP**: solution can be verified in \(\text{Poly}(n) \) (polynomial witness)
- **NP-Complete**: in NP, and every NP problem can be reduced to it poly time;

Counting problems:

Compute \(F(input) = ? \)

- **FP**: solution can be found in time \(\text{Poly}(n) \)
- **#P**: NP counting analogue; informally \(F(input) \) counts Exp-many objects, whose verification is in P.

The P vs NP Millennium Problem:

Is \(P = NP \)? Algebraic version: is \(VP = VNP \)?
(Boolean) Complexity

Input: string of n bits, i.e. $\text{size}(\text{input}) = n$.

Decision problems:

Is there an object, s.t.... ?

\mathbf{P} = solution can be found in time $\text{Poly}(n)$

\mathbf{NP} = solution can be verified in $\text{Poly}(n)$ (polynomial witness)

\mathbf{NP} –Complete = in \mathbf{NP}, and every \mathbf{NP} problem can be reduced to it poly time;

Counting problems:

Compute $F(\text{input}) =$?

\mathbf{FP} = solution can be found in time $\text{Poly}(n)$

\mathbf{NP} = NP counting analogue; informally – $F(\text{input})$ counts Exp-many objects, whose verification is in \mathbf{P}.

The \mathbf{P} vs \mathbf{NP} Millennium Problem:

Is $\mathbf{P} = \mathbf{NP}$? Algebraic version: is $\mathbf{VP} = \mathbf{VNP}$?

An approach [Mulumley, Sohoni]: **Geometric Complexity Theory**
VP vs VNP: determinant vs permanent

Arithmetic Circuits:

\[
y = 3x_1 + x_1x_2
\]

Polynomials \(f_n \in \mathbb{F}[X_1, \ldots, X_n] \). Circuit – nodes are +, \(\times \) gates, input – \(X_1, \ldots, X_n \) and constants from \(\mathbb{F} \).

Class VP (Valliant’s P):
polynomials that can be computed with \(\text{poly}(n) \) large circuit (size of the associated graph).

Class VNP:
the class of polynomials \(f_n \), s.t. \(\exists g_n \in \text{VP} \) with
\[
f_n = \sum_{b \in \{0,1\}^n} g_n(X_1, \ldots, X_n, b_1, \ldots, b_n).
\]
VP vs VNP: determinant vs permanent

Arithmetic Circuits:

\[
y = 3x_1 + x_1x_2
\]

Polynomials \(f_n \in \mathbb{F}[X_1, \ldots, X_n] \). Circuit – nodes are +, \(\times \) gates, input – \(X_1, \ldots, X_n \) and constants from \(\mathbb{F} \).

Class VP (Valliant’s P):

polynomials that can be computed with \(\text{poly}(n) \) large circuit (size of the associated graph).

Class VNP:

the class of polynomials \(f_n \), s.t. \(\exists g_n \in \text{VP} \) with

\[
f_n = \sum_{b \in \{0,1\}^n} g_n(X_1, \ldots, X_n, b_1, \ldots, b_n).
\]

Theorem[Bürgisser]: If VP = VNP, then P = NP if \(\mathbb{F} \) - finite or the Generalized Riemann Hypothesis holds.
VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:
For every polynomial \(p(X) \) there exists some \(n \) s.t.

\[
p(X) = \det(A),
\]

where \(A = [\ell_{i,j}(X)]_{i,j=1}^n \) with \(\ell_{i,j}(X) \in \{a_0 + a_1 X_1 + \cdots + a_k X_k | a_i \in \mathbb{F}\} \).

The smallest \(n \) possible is the determinantal complexity \(dc(p) \).

Example: \(p = x_1^2 + x_1 x_2 + x_2 x_3 + 2x_1 \), then

\[
p = \det \begin{bmatrix} x_1 + 2 & x_2 \\ -x_3 + 2 & x_1 + x_2 \end{bmatrix}, \quad dc(p) = 2
\]
VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:
For every polynomial $p(X)$ there exists some n s.t.

$$p(X) = \det(A),$$

where $A = [\ell_{i,j}(X)]_{i,j=1}^n$ with $\ell_{i,j}(X) \in \{a_0 + a_1 X_1 + \cdots + a_k X_k | a_i \in \mathbb{F}\}$.

The smallest n possible is the *determinantal complexity* $\text{dc}(p)$.

Theorem: [Valiant] $p \in \text{VP} \iff \text{dc}(p) - \text{poly in deg}(p), k$.

Universality of the determinant [Cohn, Valiant]:
For every polynomial $p(X)$ there exists some n s.t.

$$p(X) = \det(A),$$

where $A = [\ell_{i,j}(X)]_{i,j=1}^n$ with $\ell_{i,j}(X) \in \{a_0 + a_1 X_1 + \cdots + a_k X_k | a_i \in \mathbb{F}\}$.

The smallest n possible is the *determinantal complexity* $dc(p)$.

Theorem: [Valiant] $p \in \text{VP} \iff dc(p) - \text{poly in } \deg(p), k.$

The permanent:

$$\text{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m X_{i,\sigma(i)}$$

Theorem: [Valiant] per_m is VNP-complete.

Conjecture (Valiant, $\text{VP} \neq \text{VNP}$ equivalent)

$dc(\text{per}_m)$ *grows superpolynomially in* m.
VP vs VNP: determinant vs permanent

Universality of the determinant [Cohn, Valiant]:
For every polynomial $p(X)$ there exists some n s.t.

$$p(X) = \det(A),$$

where $A = [\ell_{i,j}(X)]_{i,j=1}^n$ with $\ell_{i,j}(X) \in \{a_0 + a_1 X_1 + \cdots + a_k X_k | a_i \in \mathbb{F}\}$.

The smallest n possible is the *determinantal complexity* $dc(p)$.

Theorem: [Valiant] $p \in VP \iff dc(p) - \text{poly in } \deg(p), k$.

The permanent:

$$\text{per}_m := \sum_{\sigma \in S_m} \prod_{i=1}^m X_{i,\sigma(i)}$$

Theorem: [Valiant] per_m is VNP-complete.

Conjecture (Valiant, VP \neq VNP equivalent)

$d\text{c}(\text{per}_m)$ grows superpolynomially in m.

Known: $d\text{c}(\text{per}_m) \leq 2^m - 1$ (Grenet 2011), $d\text{c}(\text{per}_m) \geq \frac{m^2}{2}$ (Mignon, Ressayre, 2004).

Ryser’s formula:

$$\text{per}_m(X) = (-1)^m \sum_{S \subseteq [1..m]} (-1)^{|S|} \prod_{i=1}^m (\sum_{j \in S} X_{i,j})$$
Geometric Complexity Theory

GL_N action on polynomials:
$A \in GL_N(\mathbb{C}), \, \nu := (X_1, \ldots, X_N), \, f \in \mathbb{C}[X_1, \ldots, X_N],$
then $A f = f(A^{-1}\nu)$ (replaces variables with linear forms)

$GL_{n^2}\det_n := \{g \cdot \det_n \mid g \in GL_{n^2}\}$ – determinant orbit.

$\Omega_n := \overline{GL_{n^2}\det_n}$ - determinant orbit closure.

$\text{per}_n^m := (X_1, 1)^{n-m}\text{per}_m$ – the padded permanent.
Geometric Complexity Theory

GL_N action on polynomials:
$A \in GL_N(\mathbb{C}), \; v := (X_1, \ldots, X_N), \; f \in \mathbb{C}[X_1, \ldots, X_N],$
then $A.f = f(A^{-1}v)$ (replaces variables with linear forms)

$GL_{n^2}\det_n := \{ g \cdot \det_n \mid g \in GL_{n^2} \}$ – determinant orbit.

$\Omega_n := \overline{GL_{n^2}\det_n}$ - determinant orbit closure.

$\text{per}_n^m := (X_{1,1})^{n-m}\text{per}_m$ – the padded permanent.

Proposition (Lower bounds via geometry)
If $\text{per}_n^m \notin \overline{GL_{n^2}\det_n}$, then $dc(\text{per}_m) > n.$
Geometric Complexity Theory

\(GL_N \) action on polynomials:

\[A \in GL_N(\mathbb{C}), \quad \nu := (X_1, \ldots, X_N), \quad f \in \mathbb{C}[X_1, \ldots, X_N], \]

then \(A.f = f(A^{-1}\nu) \) (replaces variables with linear forms)

\[GL_{n^2}\det_n := \{ g \cdot \det_n \mid g \in GL_{n^2} \} \text{ – determinant orbit.} \]

\[\Omega_n := GL_{n^2}\det_n - \text{determinant orbit closure.} \]

\[\text{per}_n := (X_{1,1})^{n-m}\text{per}_m \text{ – the padded permanent.} \]

Proposition (Lower bounds via geometry)

If \(\text{per}_n \not\in GL_{n^2}\det_n \), then \(\text{dc}(\text{per}_m) > n. \)

Conjecture (GCT: Mulmuley and Sohoni)

\[\max\{ n : \text{per}_n \not\in GL_{n^2}\det_n \} (\leq \text{dc}(\text{per}_m)) \text{ grows superpolynomially.} \]

\[\text{per}_m \in GL_{n^2}\det_n \iff GL_{n^2}\text{per}_m \subseteq GL_{n^2}\det_n. \]

\[=:\Gamma^n_m \subseteq \Omega_n. \]
Geometric Complexity Theory

Proposition (Lower bounds via geometry)
If \(\text{per}_m^n \not\in \overline{GL}_n \text{det}_n \), then \(\text{dc}(\text{per}_m) > n \).

Conjecture (GCT: Mulmuley and Sohoni)
\(\max\{n : \text{per}_m^n \not\in \overline{GL}_n \text{det}_n\}(\leq \text{dc}(\text{per}_m)) \) grows superpolynomially.

\[\text{per}_m^n \in \overline{GL}_n \text{det}_n \iff \overline{GL}_n \text{per}_m^n \subseteq \overline{GL}_n \text{det}_n \]
Proper Proposition (Lower bounds via geometry)
If \(\operatorname{per}^n_m \notin \text{GL}_{n^2} \text{det}_n \), then \(\text{dc}(\operatorname{per}^n_m) > n \).

Conjecture (GCT: Mulmuley and Sohoni)
\[
\max \{ n : \operatorname{per}^n_m \notin \text{GL}_{n^2} \text{det}_n \} \leq \text{dc}(\operatorname{per}^n_m) \quad \text{grows superpolynomially.}
\]

\[
\operatorname{per}^n_m \in \text{GL}_{n^2} \text{det}_n \iff \text{GL}_{n^2} \operatorname{per}^n_m \subseteq \text{GL}_{n^2} \text{det}_n
\]

Exploit the symmetry! Coordinate rings as \(\text{GL}_{n^2} \) representations:
\[
\mathbb{C}[\text{GL}_{n^2} \text{det}_n]_d \cong \bigoplus_{\lambda \vdash nd} V^{\delta_{\lambda, d, n}}, \quad \mathbb{C}[\text{GL}_{n^2} \operatorname{per}^n_m]_d \cong \bigoplus_{\lambda \vdash nd} V^{\gamma_{\lambda, d, n, m}}.
\]

Definition (Representation theoretic obstruction)
If \(\delta_{\lambda, d, n} < \gamma_{\lambda, d, n, m} \), then \(\lambda \) is a representation theoretic obstruction. Its existence shows \(\text{GL}_{n^2} \operatorname{per}^n_m \not\subseteq \text{GL}_{n^2} \text{det}_n \) and so \(\text{dc}(\operatorname{per}^n_m) > n \)!
(Non)existence of obstructions

\[\mathbb{C}[GL_n^2 \det_n]_d \simeq \bigoplus_{\lambda \vdash nd} V^{\delta_{\lambda,d,n}}_\lambda, \]

\[\mathbb{C}[GL_n^2 \text{per}_m]_d \simeq \bigoplus_{\lambda \vdash nd} V^{\gamma_{\lambda,d,n,m}}_\lambda, \]

Obstructions \(\lambda \): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m} \) for \(n > \text{poly}(m) \) \(\Rightarrow \) \(\mathsf{VP} \neq \mathsf{VNP} \).
(Non)existence of obstructions

\[\mathbb{C}[GL_n^2 \det_n]_d \cong \bigoplus_{\lambda \vdash nd} V^\lambda \oplus \delta_{\lambda,d,n}^{}, \quad \mathbb{C}[GL_n^2 \per_m^n]_d \cong \bigoplus_{\lambda \vdash nd} V^\lambda \oplus \gamma_{\lambda,d,n,m}^{},\]

Obstructions \(\lambda\): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}^{}\) for \(n > \text{poly}(m)\) \(\implies\) \(\text{VP} \neq \text{VNP}\).

Conjecture (GCT: Mulmuley-Sohoni)

There exist representation theoretic obstructions that show superpolynomial lower bounds on \(\text{dc}(\text{per}_m)\).
(Non)existence of obstructions

\[\mathbb{C}[GL_{n^2}\text{det}_n]_d \cong \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \quad \mathbb{C}[GL_{n^2}\text{per}_m]_d \cong \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}}, \]

Obstructions λ: if $\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m}$ for $n > \text{poly}(m)$ \implies $\text{VP} \neq \text{VNP}$.

Conjecture (GCT: Mulmuley-Sohoni)

There exist representation theoretic obstructions that show superpolynomial lower bounds on $\text{dc}(\text{per}_m)$.

If also $\delta_{\lambda,d,n} = 0$, then λ is an **occurrence obstruction**.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show superpolynomial lower bounds on $\text{dc}(\text{per}_m)$.
(Non)existence of obstructions

\[\mathbb{C}[GL_{n^2 \det}]_d \cong \bigoplus_{\lambda \vdash nd} V^\lambda_{\delta_{\lambda,d,n}}, \quad \mathbb{C}[GL_{n^2 \per}]_d \cong \bigoplus_{\lambda \vdash nd} V^\lambda_{\gamma_{\lambda,d,n,m}}, \]

Obstructions \(\lambda \): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m} \) for \(n > \text{poly}(m) \) \(\implies \) \(\text{VP} \neq \text{VNP} \).

Conjecture (GCT: Mulmuley-Sohoni)

There exist representation theoretic obstructions that show superpolynomial lower bounds on \(\text{dc(\per)} \).

If also \(\delta_{\lambda,d,n} = 0 \), then \(\lambda \) is an occurrence obstruction.

Conjecture (Mulmuley and Sohoni)

There exist occurrence obstructions that show superpolynomial lower bounds on \(\text{dc(\per)} \).

Theorem (Bürgisser-Ikenmeyer-P(FOCS’16, JAMS’18))

This Conjecture is false. There are no such occurrence obstructions.
(Non)existence of obstructions

\[\mathbb{C}[GL_{n^2}\det_n]_d \cong \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \delta_{\lambda,d,n}}, \quad \mathbb{C}[GL_{n^2}\per_m]_d \cong \bigoplus_{\lambda \vdash nd} V_\lambda^{\oplus \gamma_{\lambda,d,n,m}}, \]

Obstructions \(\lambda \): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m} \) for \(n > \text{poly}(m) \) \(\implies \) \(\text{VP} \neq \text{VNP} \).

What are these \(\delta_{\lambda,d,n} \) and \(\gamma_{\lambda,d,n,m} \)?

Kronecker coefficients:

\[\delta_{\lambda,d,n} \leq sk(\lambda, n^d) \leq g(\lambda, n^d, n^d) \]

(Symmetric Kronecker: \(sk(\lambda, \mu) := \dim \text{Hom}_{S_{|\lambda|}}(S^\lambda, S^2(S^\mu)) = \text{mult}_\lambda \mathbb{C}[GL_{n^2}\det_n]_d \))

Plethysm coefficients: of \(GL \).

\[a_\lambda(d[n]) := \text{mult}_\lambda Sym^d(Sym^n(V)) \geq \gamma_{\lambda,d,n,m}. \]
(Non)existence of obstructions

\[\mathbb{C}[GL_{n^2 \text{det}}]_d \cong \bigoplus_{\lambda \vdash nd} V_\lambda^{\delta_{\lambda,d,n}}, \quad \mathbb{C}[GL_{n^2 \text{per}}]_d \cong \bigoplus_{\lambda \vdash nd} V_\lambda^{\gamma_{\lambda,d,n,m}}, \]

Obstructions \(\lambda \): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m} \) for \(n > \text{poly}(m) \) \(\implies \) \(\text{VP} \neq \text{VNP} \).

What are these \(\delta_{\lambda,d,n} \) and \(\gamma_{\lambda,d,n,m} \)?

Kronecker coefficients:

\[\delta_{\lambda,d,n} \leq sk(\lambda, n^d) \leq g(\lambda, n^d, n^d) \]

(Symmetric Kronecker: \(sk(\lambda, \mu) := \dim \text{Hom}_{S_{|\lambda|}}(S^\lambda, S^2(S^\mu)) = \text{mult}_\lambda \mathbb{C}[GL_{n^2 \text{det}}]_d \))

Plethysm coefficients: of \(GL \).

\[a_\lambda(d[n]) := \text{mult}_\lambda \text{Sym}^d(\text{Sym}^n(V)) \geq \gamma_{\lambda,d,n,m}. \]

Conjecture (GCT, Mulmuley and Sohoni)

There exist \(\lambda \), s.t. \(g(\lambda, n^d, n^d) = 0 \) and \(\gamma_{\lambda,d,n,m} > 0 \) for some \(n > \text{poly}(m) \).
(Non)existence of obstructions

\[\mathbb{C}[GL_{n^2\det_n}]_d \cong \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \quad \mathbb{C}[GL_{n^2\per_m}]_d \cong \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}}, \]

Obstructions \(\lambda \): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m} \) for \(n > \text{poly}(m) \) \(\implies \) \(\text{VP} \neq \text{VNP} \).

What are these \(\delta_{\lambda,d,n} \) and \(\gamma_{\lambda,d,n,m} \)?

Kronecker coefficients:

\[\delta_{\lambda,d,n} \leq sk(\lambda, n^d) \leq g(\lambda, n^d, n^d) \]

(Symmetric Kronecker: \(sk(\lambda, \mu) := \dim \text{Hom}_{S_{|\lambda|}}(S^\lambda, S^2(S^\mu)) = mult_\lambda \mathbb{C}[GL_{n^2\det_n}]_d \))

Plethysm coefficients: of \(GL \).

\[a_\lambda(d[n]) := mult_\lambda \text{Sym}^d(Sym^n(V)) \geq \gamma_{\lambda,d,n,m}. \]

Conjecture (GCT, Mulmuley and Sohoni)

There exist \(\lambda \), s.t. \(g(\lambda, n^d, n^d) = 0 \) and \(\gamma_{\lambda,d,n,m} > 0 \) for some \(n > \text{poly}(m) \).

Theorem (Ikenmeyer-P (FOCS’16, Adv.Math.’17))

Let \(n > 3m^4, \lambda \vdash nd \). If \(g(\lambda, n^d, n^d) = 0 \) (so \(mult_\lambda \mathbb{C}[GL_{n^2\det_n}] = 0 \)), then \(mult_\lambda(\mathbb{C}[GL_{n^2(X_{1,1})^{n-m}\per_m}]) = 0 \).

For any \(\rho \), let \(n \geq |\rho|, d \geq 2, \lambda := (nd - |\rho|, \rho) \). Then \(g(\lambda, n \times d \times n \times d) \geq a_\lambda(d[n]) \).
(Non)existence of obstructions

\[\mathbb{C}[GL_{n^2 \cdot \text{det} n}]_d \cong \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \delta_{\lambda,d,n}}, \quad \mathbb{C}[GL_{n^2 \cdot \text{per} m}]_d \cong \bigoplus_{\lambda \vdash nd} V_{\lambda}^{\oplus \gamma_{\lambda,d,n,m}}, \]

Obstructions \(\lambda \): if \(\delta_{\lambda,d,n} < \gamma_{\lambda,d,n,m} \) for \(n > \text{poly}(m) \) \(\implies \) \(\text{VP} \neq \text{VNP} \).

Conjecture (Mulmuley and Sohoni 2001)

For all \(c \in \mathbb{N}_{\geq 1} \), for infinitely many \(m \), there exists a partition \(\lambda \) occurring in \(\mathbb{C}[GL_{n^2 X_{11}^{n-m} \cdot \text{per} m}] \) but not in \(\mathbb{C}[GL_{n^2 \cdot \text{det} n}] \), where \(n = m^c \).

Theorem (B"urgisser-Ikenmeyer-P (FOCS’16, JAMS’18))

Let \(n, d, m \) be positive integers with \(n \geq m^{25} \) and \(\lambda \vdash nd \). If \(\lambda \) occurs in \(\mathbb{C}[GL_{n^2 X_{11}^{n-m} \cdot \text{per} m}] \), then \(\lambda \) also occurs in \(\mathbb{C}[GL_{n^2 \cdot \text{det} n}] \). In particular, the Conjecture is false, there are no “occurrence obstructions”.
No occurrence obstructions I: positive Kroneckers

Theorem (Ikenmeyer-P)

Let $n > 3m^4$, $\lambda \vdash nd$. If $g(\lambda, n \times d, n \times d) = 0$, then

$$\text{mult}_\lambda(\mathbb{C}[GL_{n^2}(X_{1,1}^{n-m}\text{per}_m)]) = 0.$$

Proof:

$\bar{\lambda} := (\lambda_2, \lambda_3, \ldots) \vdash |\lambda| - \lambda_1$

Theorem (Kadish-Landsberg)

If $\text{mult}_\lambda \mathbb{C}[GL_{n^2}X_{11}^{n-m}\text{per}_m] > 0$, then $|\bar{\lambda}| \leq md$ and $\ell(\lambda) \leq m^2$.

Theorem (Degree lower bound, [IP])

If $|\bar{\lambda}| \leq md$ with $a_\lambda(d[n]) > g(\lambda, n \times d, n \times d)$, then $d > \frac{n}{m}$.

Greta Panova
No occurrence obstructions I: positive Kroneckers

Theorem (Ikenmeyer-P)

Let \(n > 3m^4 \), \(\lambda \vdash nd \). If \(g(\lambda, n \times d, n \times d) = 0 \), then
\[
\text{mult}_\lambda(\mathbb{C}[\text{GL}_{n^2}(X_{1,1})^{n-m}\text{per}_m]) = 0.
\]

Proof:
\[
\bar{\lambda} := (\lambda_2, \lambda_3, \ldots) \vdash |\lambda| - \lambda_1
\]

Theorem (Kadish-Landsberg)

If \(\text{mult}_\lambda(\mathbb{C}[\text{GL}_{n^2}X_{11}^{n-m}\text{per}_m]) > 0 \), then \(|\bar{\lambda}| \leq md \) and \(\ell(\lambda) \leq m^2 \).

Theorem (Degree lower bound, [IP])

If \(|\bar{\lambda}| \leq md \) with \(a_\lambda(d[n]) > g(\lambda, n \times d, n \times d) \), then \(d > \frac{n}{m} \).

Theorem (Kronecker positivity, [IP])

Let \(\lambda \vdash dn \). Let \(\mathcal{X} := \{(1), (2 \times 1), (4 \times 1), (6 \times 1), (2, 1), (3, 1)\} \).

(a) If \(\bar{\lambda} \in \mathcal{X} \), then \(a_\lambda(d[n]) = 0 \).

(b) If \(\bar{\lambda} \notin \mathcal{X} \) and \(m \geq 3 \) such that \(\ell(\lambda) \leq m^2 \), \(|\bar{\lambda}| \leq md \), \(d > 3m^3 \), and \(n > 3m^4 \), then
\[
g(\lambda, n \times d, n \times d) > 0.
\]
Kronecker positivity I: hook-like λs

Proposition (Ikenmeyer-P)

If there is an a, such that $g(\nu^k(a^2), a \times a, a \times a) > 0$ for all k, s.t. $k \notin H^1(\rho)$ and $a^2 - k \notin H^2(\rho)$ for some sets $H^1(\rho), H^2(\rho) \subset [\ell, 2a + 1]$, then $g(\nu^k(b^2), b \times b, b \times b) > 0$ for all k, s.t. $k \notin H^1(\rho)$ and $b^2 - k \notin H^2(\rho)$ for all $b \geq a$.

Proof idea:
Kronecker symmetries and semigroup properties:
Let $P_c = \{k : g(\nu^k(c^2), c \times c, c \times c) > 0\}$, we have
Claim: Suppose that $k \in P_c$, then $k, k + 2c + 1 \in P_{c+1}$.
Kronecker positivity I: hook-like λs

Proposition (Ikenmeyer-P)

If there is an a, such that $g(\nu^k(a^2), a \times a, a \times a) > 0$ for all k, s.t. $k \not\in H^1(\rho)$ and $a^2 - k \not\in H^2(\rho)$ for some sets $H^1(\rho), H^2(\rho) \subset [\ell, 2a + 1]$, then $g(\nu^k(b^2), b \times b, b \times b) > 0$ for all k, s.t. $k \not\in H^1(\rho)$ and $b^2 - k \not\in H^2(\rho)$ for all $b \geq a$.

Proof idea:
Kronecker symmetries and semigroup properties:
Let $P_c = \{ k : g(\nu^k(c^2), c \times c, c \times c) > 0 \}$, we have
Claim: Suppose that $k \in P_c$, then $k, k + 2c + 1 \in P_{c+1}$.

Corollary
We have that $g(\lambda, h \times w, h \times w) > 0$ for $\lambda = (hw - j - |\rho|, 1^j + \rho)$ for most “small” partitions ρ and all but finitely many values of j.

Greta Panova
Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)

Let $\nu \notin \mathcal{X}$ and $\ell = \max(\ell(\nu) + 1, 9)$, $a > 3\ell^{3/2}$, $b \geq 3\ell^2$ and $|\nu| \leq ab/6$. Then $g(\nu(ab), a \times b, a \times b) > 0$.

Proof sketch: decomposition + regrouping

$$\nu = \rho + \xi + \sum_{k=2}^{\ell} x_k((k - 1) \times k) + \sum_{k=2}^{\ell} y_k((k - 1) \times 2).$$
Kronecker positivity II: squares, and decompositions

Theorem (Ikenmeyer-P)

Let $\nu \notin \mathcal{X}$ and $\ell = \max(\ell(\nu) + 1, 9)$, $a > 3\ell^{3/2}$, $b \geq 3\ell^2$ and $|\nu| \leq ab/6$. Then $g(\nu(ab), a \times b, a \times b) > 0$.

Proof sketch: decomposition + regrouping

$$\nu = \rho + \xi + \sum_{k=2}^{\ell} x_k((k - 1) \times k) + \sum_{k=2}^{\ell} y_k((k - 1) \times 2).$$

Crucial facts:

- $g(k \times k, k \times k, k \times k) > 0$ [Bessenrodt-Behns].
- Transpositions: $g(\alpha, \beta, \gamma) = g(\alpha, \beta^T, \gamma^T)$ (with $\beta = \gamma = w\times h$)
- Hooks and exceptional cases: $g(\lambda, h \times w, h \times w) > 0$ for all $\lambda = (hw - j - |\rho|, 1^j + \rho)$ for $|\rho| \leq 6$ and almost all js.
- Semigroup property for positive triples:
 $$g(\alpha^1 + \alpha^2, \beta^1 + \beta^2, \gamma^1 + \gamma^2) \geq \max(g(\alpha^1, \beta^1, \gamma^1), g(\alpha^2, \beta^2, \gamma^2)).$$
Kronecker vs plethysm: inequality of multiplicities

Stability [Manivel]: \(g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d) \), as \(n \to \infty \).

\(\text{St}^1(\rho) := \{(n, d) \mid g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_\rho(d) \).
Kronecker vs plethysm: inequality of multiplicities

Stability[Manivel]: \(g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d), \) as \(n \to \infty. \)
\[\text{St}^1(\rho) := \{(n, d) | g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_\rho(d).\]

Proposition (Ikenmeyer-P)

*Fix \(\rho, \) and let \((n, d) \in \text{St}^1(\rho), \) which is true in particular if \(n \geq |\rho|. \) Let \(\lambda = (nd - |\rho|, \rho). \) Then \(g(\lambda, n \times d, n \times d) \geq a_\lambda(d[n]). \)
Kronecker vs plethysm: inequality of multiplicities

Stability [Manivel]: \(g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d) \), as \(n \to \infty \).

\(St^1(\rho) := \{(n, d) \mid g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_\rho(d) \).

Proposition (Ikenmeyer-P)

Fix \(\rho \), and let \((n, d) \in St^1(\rho) \), which is true in particular if \(n \geq |\rho| \). Let \(\lambda = (nd - |\rho|, \rho) \). Then \(g(\lambda, n \times d, n \times d) \geq a_\lambda(d[n]) \).

Proof: \(\lambda = \mu + d(n - m) \). Suppose \(g(\lambda, n \times d, n \times d) < a_\lambda(d[n]) \):

KL’14: If \(\mu \vdash md \) then \(mult_{\mu + d(n-m)}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}V_m]) \geq a_\mu(d[m]) \), where \(V_m := Sym^m\mathbb{C}^{m^2} \).
Kronecker vs plethysm: inequality of multiplicities

Stability [Manivel]: \(g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d) \), as \(n \to \infty \).

\(\text{St}^1(\rho) := \{ (n, d) \mid g((nd - |\rho|, \rho), n \times d, n \times d) \} = a_\rho(d) \).

Proposition (Ikenmeyer-P)

Fix \(\rho \), and let \((n, d) \in \text{St}^1(\rho) \), which is true in particular if \(n \geq |\rho| \). Let \(\lambda = (nd - |\rho|, \rho) \). Then \(g(\lambda, n \times d, n \times d) \geq a_\lambda(d[n]) \).

Proof: \(\lambda = \mu + d(n - m) \). Suppose \(g(\lambda, n \times d, n \times d) < a_\lambda(d[n]) \):

KL’14: If \(\mu \vdash md \) then \(\text{mult}_{\mu+d(n-m)}(\mathbb{C}[\text{GL}_{n^2}(X_{1,1})^{n-m}V_m]) \geq a_\mu(d[m]) \), where

\(V_m := \text{Sym}^m \mathbb{C}^{m^2} \).

Stability: \(g(\lambda, n \times d, n \times d) = g(\mu, m \times d, m \times d) \).
Kronecker vs plethysm: inequality of multiplicities

Stability [Manivel]: \(g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d), \) as \(n \to \infty. \)

\[\text{St}^1(\rho) := \{(n, d) \mid g((nd - |\rho|, \rho), n \times d, n \times d)\} = a_\rho(d). \]

Proposition (Ikenmeyer-P)

Fix \(\rho \), and let \((n, d) \in \text{St}^1(\rho) \), which is true in particular if \(n \geq |\rho| \). Let \(\lambda = (nd - |\rho|, \rho) \). Then \(g(\lambda, n \times d, n \times d) \geq a_\lambda(d[n]). \)

Proof: \(\lambda = \mu + d(n - m) \). Suppose \(g(\lambda, n \times d, n \times d) < a_\lambda(d[n]): \)

KL’14: If \(\mu \vdash md \) then \(\text{mult}_{\mu + d(n-m)}(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}V_m]) \geq a_\mu(d[m]), \) where \(V_m := \text{Sym}^m \mathbb{C}^{m^2}. \)

Stability: \(g(\lambda, n \times d, n \times d) = g(\mu, m \times d, m \times d). \)

GCT: If \(\text{mult}_\lambda(\mathbb{C}[GL_{n^2}(X_{1,1})^{n-m}V_m]) \geq g(\lambda, n \times d, n \times d) \) then \(dc(f_m) > n \) for some \(f_{m,n} \in V_m. \)
Kronecker vs plethysm: inequality of multiplicities

Stability [Manivel]: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d)$, as $n \to \infty$.
Stability: $g((nd - |\rho|, \rho), n \times d, n \times d) = a_\rho(d)$.

Proposition (Ikenmeyer-P)

Fix ρ, and let $(n, d) \in St^1(\rho)$, which is true in particular if $n \geq |\rho|$. Let $\lambda = (nd - |\rho|, \rho)$. Then $g(\lambda, n \times d, n \times d) \geq a_\lambda(\lambda)$.

Proof: $\lambda = \mu + d(n - m)$. Suppose $g(\lambda, n \times d, n \times d) < a_\lambda(\mu)$:

KL'14: If $\mu \vdash md$ then $mult_{\mu+d(n-m)}(\mathbb{C}[GL_n^2(X_1,1)^{n-m}V_m]) \geq a_\mu(d[m])$, where $V_m := \text{Sym}^m \mathbb{C}^{m^2}$.

Stability: $g(\lambda, n \times d, n \times d) = g(\mu, m \times d, m \times d)$.

GCT: If $mult_{\lambda}(\mathbb{C}[GL_n^2(X_1,1)^{n-m}V_m]) \geq g(\lambda, n \times d, n \times d)$ then $dc(f_m) > n$ for some $f_{m,n} \in V_m$.

$\implies mult_{\lambda}(\mathbb{C}[GL_n^2(X_1,1)^{n-m}V_m]) \geq a_\mu(d[m]) = a_\lambda(d[n]) > g(\lambda, n \times d, n \times d)$

$\implies \max_{f \in V_m} dc(f_{m,n}) > n \to \infty$
Thank you!

Algebraic Geometry

\[[X_{1,1}X_{2,2} - X_{1,2}X_{2,1}] \]

Representation Theory

Statistical Mechanics/

Complexity Theory

P vs NP

Algebraic Combinatorics

\[s_{(2,2)}(x_1, x_2, x_3) = x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2 + x_1^2x_2x_3 + x_1x_2^2x_3 + x_1x_2x_3^2 \]

\[
\begin{array}{ccc}
1 & 1 & 2 \\
2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
2 & 2 & 2 \\
3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 1 & 2 \\
2 & 2 & 3 \\
3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 2 \\
2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 2 \\
2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 2 \\
2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 2 \\
2 & 3 & 3 \\
\end{array}
\]