Stable set polytopes in differential algebra

Combinatorial differential algebra of x^p . arXiv:2102.03182 Joint work with Anna-Laura Sattelberger

Rida Ait El Manssour (MPI MiS Leipzig)

Differential Algebra

Let
$$\mathbb{C}[x^{(\infty)}, \partial_t] = \mathbb{C}[x, x', x^{(2)}, \cdots]$$
 and $I_{p,n} := \langle x^p, x^{(n+1)} \rangle^{(\infty)}$. $(\partial_t(I_{p,n}) \subseteq I_{p,n})$.

$\dim(\mathbb{C}[x^{(\infty)}]/I_{n,n})$

$$\begin{array}{ll} n=0; & \dim(\mathbb{C}[x^{(\infty)}]/I_{p,0})=p\\ n=1; & \dim(\mathbb{C}[x^{(\infty)}]/I_{p,1})=\frac{p^2}{2}+\frac{p}{2}\\ n=6; & \dim(\mathbb{C}[x^{(\infty)}]/I_{p,6})=\frac{17}{315}p^7+\frac{17}{90}p^6+\frac{53}{180}p^5+\frac{19}{72}p^4+\frac{13}{90}p^3+\frac{17}{360}p^2+\frac{1}{140}p. \end{array}$$

Question

For fixed n, Is dim($\mathbb{C}[x^{(\infty)}]/I_{p,n}$) a polynomial in p of degree n+1?

Jet scheme

Let X = Spec(k[x]/I), an m-jet on X is a k-algebra homomorphism

$$\varphi: k[x]/I \to k[t]/(t^{m+1}).$$

Let f_1, \ldots, f_k generators of I

$$x \longmapsto x_0 + x_1 t + \ldots + x_m t^m$$

$$f_i(x_0+x_1t+\ldots+x_mt^m)=0$$

$$f_i^0 + f_i^1 t + \ldots + f_i^m t^m = 0$$

The *m*-jet scheme of X is defined by the ideal generated by f_i^k .

Jet scheme of x^p

Let $X = Spec(\mathbb{C}[x]/\langle x^p \rangle)$ and let $R_n = \mathbb{C}[x_0, \dots, x_n]$.

$$f_{p,n} = (x_0 + x_1 t + \cdots + x_n t^n)^p.$$

Let $C_{p,n}$ the ideal generated by the coefficients of $f_{p,n}$. Then we have

$$R_n/C_{p,n} \stackrel{\cong}{\longrightarrow} \mathbb{C}[x^{(\infty)}]/I_{p,n}, \quad x_k \mapsto \frac{1}{k!}x^{(k)}.$$

This map sends the coefficient of t^k in $f_{p,n}$ to $(x^p)^{(k)}$.

Zobnin's Theorem

Let us consider the reverse lexicographic ordering \prec on $\mathbb{C}[x^{(\infty)}]$, the leading monomial of $(x^p)^{(k)}$ is of the form $(x^{(j)})^a(x^{(j+1)})^{p-a}$.

$$n = 4$$
, $p = 3$: $(x^3)^{(4)} = 3x'^2x'' + 3xx''^2 + 6xx'x^{(3)} + 3x^2x^{(4)}$

Theorem (Zobnin [3])

The family $\{(x^p)^{(k)}\}_k$ is a Gröbner basis of the differential ideal $\langle x^p\rangle^{(\infty)}$ in the ring $\mathbb{C}[x^{(\infty)}]$ w.r.t reverse lexicographic ordering.

Conclusion:

$$\begin{array}{l} \dim(\mathbb{C}[x^{(\infty)}]/I_{p,n}) = \\ \#\left\{(u_0,\ldots,u_n) \in (\mathbb{N})^{n+1} \middle| u_i + u_{i+1} \leq p-1 \text{ for all } 0 \leq i \leq n-1\right\} \end{array}$$

5 / 13

Stable set polytope and perfect graph

Definition

Let G = (V, E), we say G is *perfect* if for every subgraph, the chromatic number equals the clique number of that subgraph.

A subset $S \subseteq V$ of vertices is called *stable* if no two elements of S are adjacent.

The stable set polytope of G is the |V|-dimensional polytope

$$\mathsf{Stab}(\mathsf{G}) \coloneqq \mathsf{conv}\left\{\chi^{\mathsf{S}} \in \mathbb{R}^{V} \mid \mathsf{S} \subseteq \mathsf{V} \; \mathsf{stable}\right\},$$

where the incidence vectors $\chi^S = (\chi^S_v)_{v \in V} \in \mathbb{R}^V$ are defined as

$$\chi_{\mathbf{v}}^{\mathcal{S}} \coloneqq egin{cases} 1 & \text{if } \mathbf{v} \in \mathcal{S}, \\ 0 & \text{else}. \end{cases}$$

Fractional stable set polytope

The fractional stable set polytope of G is defined as

$$\mathsf{QStab}(\mathit{G}) \coloneqq \left\{ x \in \mathbb{R}^{\mathit{V}} \mid 0 \leq x(\mathit{v}) \, \forall \mathit{v} \in \mathit{V}, \, \, \sum_{\mathit{v} \in \mathit{Q}} x(\mathit{v}) \leq 1 \, \, \text{for all cliques} \, \, \mathit{Q} \, \, \text{of} \, \, \mathit{G} \right\}.$$

Theorem ([2])

A graph G is perfect if and only if Stab(G) = QStab(G).

Let
$$G = (\{0, 1, ..., n\}, \{[i, i+1]\}_{i=0,...,n-1})$$
. We have

$$\mathsf{QStab}(\mathit{G}) = \left\{ (u_0, \dots, u_n) \in (\mathbb{R}_{\geq 0})^{n+1} \middle| u_i + u_{i+1} \leq 1 \text{ for all } 0 \leq i \leq n-1 \right\}$$

Since G is perfect, QStab(G) is a lattice polytope whose vertices are binary vectors with no consecutive 1s.

Ehrhart polynomial

Theorem (Ehrhart polynomial)

Let P be a d-dimensional lattice polytope with integer vertices, denote by $L_P(t) := \#(tP \cap \mathbb{Z}^n)$. Then $L_P(t)$ is a polynomial in t of degree d.

Theorem ([1])

 $\dim(\mathbb{C}[x^{(\infty)}]/I_{p,n})$ is the Ehrhart polynomial of $\operatorname{QStab}(G)$ computed at p-1.

< ロ ト ∢ @ ト ∢ 重 ト ∢ 重 ト → 重 → か Q (~)

Two-dimensional case

Consider $\mathbb{C}[x^{(\infty,\infty)}; \partial_t, \partial_s]$ and $I_{p,(m,n)} = \langle x^p, x^{(m+1,0)}, x^{(0,n+1)} \rangle^{(\infty,\infty)}$. Denote by $R_{m,n}$ the polynomial ring in the (m+1)(n+1) many variables $\{x_{k,\ell}\}_{0 \le k \le m, 0 \le \ell \le n}$ and let $f_{p,(m,n)}$ be as follow

$$f_{p,(m,n)}:=\left(\sum_{k=0}^m\sum_{\ell=0}^nx_{k,\ell}t^ks^\ell\right)^p\in R_{m,n}[s,t].$$

Let $C_{p,(m,n)} \triangleleft R_{m,n}$ denote the ideal generated by the the coefficients of $t_{p,(m,n)}$. Then

$$R_{m,n}/C_{p,(m,n)} \stackrel{\cong}{\longrightarrow} \mathbb{C}[x^{(\infty,\infty)}]/I_{p,(m,n)}, \quad x_{k,\ell} \mapsto \frac{1}{k!\ell!} \cdot x^{(k,\ell)}.$$

m = n = 2

There are 64 regular unimodular triangulations of the 2×2 -square in total, four of which give rise to a Gröbner basis.

n = 2, m arbitrary

Consider the reverse lexicographic ordering on $R_{m,2}$ where the variables are ordered as $x_{00} \prec x_{01} \prec x_{02} \prec x_{10} \prec x_{11} \cdots$.

Theorem ([1])

The leading monomial of $(x^p)^{(k,\ell)}$ is supported on the triangles of $T_{m,2}$ below. Moreover the family $\{(x^p)^{(k,\ell)}\}_{k\leq mp,\ell\leq 2p}$ is a Gröbner basis of $I_{p,(m,2)}$.

$\dim(\mathbb{C}[x^{(\infty,\infty)}]/I_{p,(m,2)})$

$$\begin{aligned} \mathsf{QStab}(T_{m,2}) = & \big\{ (u_{00}, \dots, u_{m2}) \in (\mathbb{R}_{\geq 0})^{3(m+1)} \big| u_{k_1, l_1} + u_{k_2, l_2} + u_{k_3, l_3} \leq 1 \\ & \text{for all indices s.t. } \big\{ (k_1, l_1), (k_2, l_2), (k_3, l_3) \big\} \text{ is a triangle of } T_{m,2} \big\} \end{aligned}$$

Theorem ([1])

 $\dim(\mathbb{C}[x^{(\infty,\infty)}]/I_{p,(m,2)})$ is the Ehrhart polynomial of QStab $(T_{m,2})$ computed at p-1.

Proposition ([1])

For all $n \geq 3$, $\{(x^p)^{(k,\ell)}\}_{k,\ell}$ is NOT a Gröbner basis of $I_{p,(m,n)}$.

R. Ait El Manssour and A.-L. Sattelberger.

Combinatorial differential algebra of x^p , 2021.

V. Chvátal.

On certain polytopes associated with graphs.

J. Combin. Theory Ser. B, 18:138-154, 1975.

🔒 A. I. Zobnin.

One-element differential standard bases with respect to inverse lexicographical orderings.

J. Math. Sci. (N. Y.), 163(5):523-533, 2009.