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Differential Algebra

Let C[x (∞), ∂t ] = C[x , x ′, x (2), · · · ] and Ip,n := 〈xp, x (n+1)〉(∞) .
(∂t(Ip,n) ⊆ Ip,n ).

dim(C[x (∞)]/Ip,n)

n = 0; dim(C[x (∞)]/Ip,0) = p

n = 1; dim(C[x (∞)]/Ip,1) =
p2

2 + p
2

n = 6; dim(C[x (∞)]/Ip,6) =
17
315p

7 + 17
90p

6 + 53
180p

5 + 19
72p

4 + 13
90p

3 + 17
360p

2 + 1
140p.

Question
For fixed n , Is dim(C[x (∞)]/Ip,n) a polynomial in p of degree n + 1?
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Jet scheme

Let X = Spec(k[x ]/I ) , an m -jet on X is a k -algebra homomorphism

ϕ : k[x ]/I → k[t]/(tm+1).

Let f1, . . . , fk generators of I

x 7−→ x0 + x1t + . . .+ xmt
m

fi (x0 + x1t + . . .+ xmt
m) = 0

f 0
i + f 1

i t + . . .+ f mi tm = 0

The m -jet scheme of X is defined by the ideal generated by f ki .
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Jet scheme of xp

Let X = Spec(C[x ]/〈xp〉) and let Rn = C[x0, . . . , xn] .

fp,n = (x0 + x1t + · · ·+ xnt
n)p.

Let Cp,n the ideal generated by the coefficients of fp,n . Then we have

Rn/Cp,n
∼=−→ C[x (∞)]/Ip,n, xk 7→

1
k!

x (k).

This map sends the coefficient of tk in fp,n to (xp)(k) .
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Zobnin’s Theorem

Let us consider the reverse lexicographic ordering ≺ on C[x (∞)] , the
leading monomial of (xp)(k) is of the form (x (j))a(x (j+1))p−a .

n = 4, p = 3: (x3)(4) = 3x ′2x ′′ + 3xx ′′2 + 6xx ′x (3) + 3x2x (4)

Theorem (Zobnin [3])

The family {(xp)(k)}k is a Gröbner basis of the differential ideal 〈xp〉(∞)

in the ring C[x (∞)] w.r.t reverse lexicographic ordering.

Conclusion:
dim(C[x (∞)]/Ip,n) =
#
{
(u0, . . . , un) ∈ (N)n+1

∣∣ui + ui+1 ≤ p − 1 for all 0 ≤ i ≤ n − 1
}
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Stable set polytope and perfect graph

Definition
Let G = (V ,E ) , we say G is perfect if for every subgraph, the chromatic number
equals the clique number of that subgraph.
A subset S ⊆ V of vertices is called stable if no two elements of S are adjacent.

The stable set polytope of G is the |V | -dimensional polytope

Stab(G ) := conv
{
χS ∈ RV | S ⊆ V stable

}
,

where the incidence vectors χS = (χS
v )v∈V ∈ RV are defined as

χS
v :=

{
1 if v ∈ S ,

0 else.
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Fractional stable set polytope

The fractional stable set polytope of G is defined as

QStab(G ) :=

{
x ∈ RV | 0 ≤ x(v)∀v ∈ V ,

∑
v∈Q

x(v) ≤ 1 for all cliques Q of G

}
.

Theorem ([2])
A graph G is perfect if and only if Stab(G ) = QStab(G ) .

Let G = ({0, 1, . . . , n}, {[i , i + 1]}i=0,...,n−1) . We have

QStab(G ) =
{
(u0, . . . , un) ∈ (R≥0)

n+1∣∣ui + ui+1 ≤ 1 for all 0 ≤ i ≤ n − 1
}

Since G is perfect, QStab(G ) is a lattice polytope whose vertices are
binary vectors with no consecutive 1s.
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Ehrhart polynomial

Theorem (Ehrhart polynomial)
Let P be a d -dimensional lattice polytope with integer vertices, denote by
LP(t) := #(tP ∩ Zn) . Then LP(t) is a polynomial in t of degree d .

Theorem ([1])

dim(C[x (∞)]/Ip,n) is the Ehrhart polynomial of QStab(G ) computed at
p − 1 .
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Two-dimensional case

Consider C[x (∞,∞); ∂t , ∂s ] and Ip,(m,n) = 〈xp, x (m+1,0), x (0,n+1)〉(∞,∞).
Denote by Rm,n the polynomial ring in the (m + 1)(n + 1) many variables
{xk,`}0≤k≤m,0≤`≤n and let fp,(m,n) be as follow

fp,(m,n) :=

(
m∑

k=0

n∑
`=0

xk,`t
ks`

)p

∈ Rm,n[s, t].

Let Cp,(m,n) / Rm,n denote the ideal generated by the the coefficients of
fp,(m,n). Then

Rm,n/Cp,(m,n)

∼=−→ C[x (∞,∞)]/Ip,(m,n), xk,` 7→
1

k!`!
· x (k,`).
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m = n = 2

There are 64 regular unimodular triangulations of the 2× 2-square in
total, four of which give rise to a Gröbner basis.

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (2, 2)
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n = 2,m arbitrary

Consider the reverse lexicographic ordering on Rm,2 where the variables are
ordered as x00 ≺ x01 ≺ x02 ≺ x10 ≺ x11 · · · .

Theorem ([1])

The leading monomial of (xp)(k,`) is supported on the triangles of Tm,2
below. Moreover the family {(xp)(k,`)}k≤mp,`≤2p is a Gröbner basis of
Ip,(m,2) .

(0, 0) (1, 0) (2, 0)

(0, 1)

(0, 2) (1, 2) (2, 2) (3, 2) · · ·

(m, 1)

(m, 2)

(3, 0) · · · (m, 0)
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dim(C[x (∞,∞)]/Ip,(m,2))

QStab(Tm,2) =
{
(u00, . . . , um2) ∈ (R≥0)

3(m+1)
∣∣uk1,l1 + uk2,l2 + uk3,l3 ≤ 1

for all indices s.t. {(k1, l1), (k2, l2), (k3, l3)} is a triangle of Tm,2
}

Theorem ([1])

dim(C[x (∞,∞)]/Ip,(m,2)) is the Ehrhart polynomial of QStab(Tm,2) computed at
p − 1 .
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n ≥ 3

(0, 0)

(0, 1)

(0, 2)

...

(0, n)

(1, 0) (2, 0)
(m, 0)

(m, n)

Proposition ([1])

For all n ≥ 3, {(xp)(k,`)}k,` is NOT a Gröbner basis of Ip,(m,n) .
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