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1 Introduction

Let us start by discussing L?-cohomology groups (see [16] for a useful overview).
Let M be a complete Riemannian manifold. The L2—cohomol(ﬂl group
HY(M), where L? stands for ”square integrable”, is defined as Z%/B¢, where

Z9 := {u g-form of class L? with du = 0}
(closed L? g-forms)
(1.1) B? := {u g-form of class L? with u = dv

for some L? (q — 1)-form v}
(exact L? g-forms)

and where B¢ is the L?-closure of BY in Z9. If M is compact, B? is closed
in Z9, i.e. B? = B9, and the L?-cohomology is the same as the ordinary
de Rham cohomology. In the compact case, in turn we have Hodge theory
representing each de Rham cohomology class by a harmonic form. In this
sense, L?-cohomology is the appropriate extension to the noncompact case
inasmuch as here every L2-cohomology class can be represented by an L*-
harmonic form, see [2]. In the noncompact case, B? need not be closed in Z7,
essentially because the spectrum of the Laplacian need not have a positive
lower bound, or equivalently, the Poincaré inequality need not hold. An
example is Euclidean space. For hyperbolic spaces, however, we do have such
inequalities, and consequently B? is closed. In any case, however, in order to
have a uniform theory, one considers B¢ in place of BY. Besides offering the
possibility to extend Hodge theory to the noncompact case, there is another,
probably more compelling reason for considering L2-cohomology. Namely, it
can be used to obtain topological information about compact quotients of
M, as we shall now explain, following Atiyah [2].

Let I be a discrete cocompact group of isometries acting freely on our
noncompact manifold M. ”Cocompact” means that the quotient M/T is
compact. As the action of I' is free, M/I" thus is a compact Riemannian man-
ifold. As I' commutes with the Laplace operator, the Hilbert spaces H4(M)
of L?-harmonic ¢-forms on M are I'-moduli. On the basis of constructions
in the theory of Von Neumann algebras, Atiyah defines real valued L2-Betti
numbers

(1.2) BY(M) := dimp HY(M),

satisfying Poincaré duality, i.e. BL(M) = BY™Y~9()1), and the correspond-
ing L?-Euler characteristic

(1.3) X(M,T) == (~1)"BE(M).
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Atiyah shows that x(M,T") equals the ordinary Euler characteristic of M /T
which is an integer, and this is the basis of the relation between L?-cohomolo-
gy of M and the topology of M/T" alluded to above.

More precisely, Hopf asked whether the sign of the sectional curvature
determines the Euler characteristic of a compact Riemannian manifold. For
example, if M s a compact manifold of dimension 2m with negative sec-
tional curvature, one should have
)

(1.4) (=1)"x (M) > 0.

Since the sign of the sectional curvature does not determine the sign of the
Gauss-Bonnet integrand (see Geroch [12]), this cannot be deduced from alge-
braic considerations alone. Therefore, Dodziuk [10] and Singer [17] suggested
to use L2-cohomology to approach this problem as follows: Show

(1.5) HI(M) ={0} forq#m
— which implies BA(M) = 0 for ¢ # m —

and

(1.6) H™ (M) # {0}

— which implies B[*(M) # 0 because BE # 0 can be seen to be equiva-
lent to HP(M) # {0}. However, Anderson [1] constructed simply connected
complete negatively curved Riemannian manifolds on which this does not
hold, thus indicating a certainly difficulty with this approach. This difficulty
might be of a purely technical nature as Anderson’s examples do not admit
compact quotients. In a positive direction, Donnelly-Xavier [11] showed that
(1.5) holds provided the sectional curvature of M satisfies a certain nega-
tive pinching condition, by using a certain integral identity for L?-harmonic
forms. However, as far as the Hopf problem is concerned, stronger results
follow from the local analysis of the curvature tensor of Bourguignon-Karcher
[7]. In the present paper, we take up the question of vanishing of L? har-
monic forms by using a general integral identity for p-forms with values in
a vector bundle based on the stress-energy tensor introduced by Baird-Eells
[3] (all the material about the stress-energy tensor needed for our purposes
is developed in the monograph [19]). Our results are stronger than the ones
of Donnelly-Xavier inasmuch as we need a pinching condition that is strictly
weaker than theirs, and, when applied to the Hopf problem, comparable to
those of Bourguignon-Karcher.

In order to put this paper into the proper perspective, we should also
discuss other cases where such results are known. In the case of Kahler man-
ifolds, the vanishing result (1.5) was shown independently by M. Stern [18]
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if the sectional curvature is pinched between any two negative numbers and
more generally by Gromov [13] for so-called Kédhler hyperbolic manifolds.
Gromov was also able to show the nonvanishing result (1.6), thus completely
settling the Hopf problem in the Kéhler case. Recently, Jost-Zuo [14] showed
the vanishing result (1.5) in the Kéhler case even for all metrics of nonposi-
tive sectional curvature. Finally, Borel [6] showed the vanishing theorem for
all symmetric spaces of noncompact type and rank 1, i.e. for those symmet-
ric spaces that have negative sectional curvature. His analysis depends on
the deep work of Harish-Chandra. Here, we shall indicate a more elementary
approach to Borel’s result by verifying that our pinching condition is gen-
eral enough to include most Hermitian symmetric spaces. It seems that our
method could be refined to handle all cases. On the other hand, vanishing of
L?-Betti numbers for Hermitian symmetric spaces also follows from Gromov’s
work mentioned above. Our point thus is that we have a method that does
not need a Kéhler form. As a final application we also show the vanishing of
the L?-Betti numbers of a semi-simple Lie group G in those cases where the
corresponding symmetric space G/K (K a maximal compact subgroup of G)
satisfies our preceding assumptions. The point is that our integral formula
on G can be pushed down to G/K. The results can be considered as an
L*-version of Matsushima’s vanishing term for the first Betti number [15].

Acknowledgements:
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The second author thanks the Max Planck Institute for Mathematics in the
Sciences in Leipzig for providing good working conditions during the prepa-
ration of this paper, and also NNSFC and SFECC for support.

2 Vanishing theorems for L?-Betti numbers
for negatively curved manifolds

Let M be a complete simply connected Riemannian manifold with nonpos-
itive sectional curvature. Let w be a differential p-form with values in a
Riemannian vector bundle F over M. Its symmetric square w ® w is defined
by

wOwX,Y) = (iyw, iyw),

where X,Y € I'(T'M),ixw is the inner product of w with the vector field X.
The stress-energy tensor is defined by

1
(2.1) Sy 1= §|w|29—w®w,
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where ¢ is the Riemannian metric tensor of M. Take a compact domain
D C M whose boundary is 9D is a smooth hypersurface in M. Let eq,..., e,
be a local orthonormal frame field along 0D in M, such that e,..., e, €
T(0D) and e,, =n € N(9D). The following integral identity then holds:

(2.2) /aD %|w|2<X, ny 1= / (divS,)(X) *1

D
+/<SW,VX>*1+/ (ixw,ipw) * 1,
D oD

where X is a vector field in D; VX can be viewed as 1-form with values in
T*M defined by VX(e;)(e;) = (Ve X,e;). If w is harmonic, i.e. is closed
and co-closed, div.S, = 0. The derivation of (2.2) can be found in [19], pp.
49-52.

Theorem 2.1. Let M be a Cartan-Hadamard manifold of dimension m > 2
whose sectional curvature satisfies —a®? < K < 0 and whose Ricci curvature
is bounded from above by —b%, where a,b are positive constants. If b > 2pa,
then the L*-Betti number BL.(M) vanishes, provided p # 2.

Proof. Choose D = Bp(xg), a geodesic ball of radius R with its center in
xo € M. Tts boundary is a geodesic sphere Sg(zo). The square of the
distance function r? in M from any point z is smooth. Hence, X = 7“8% is a
smooth vector field in M, where % denotes the unit radius vector which is the
unit normal vector field to the geodesic sphere Sg(z). For any L*-harmonic

p-form w, we have

1
/ —|w|2(X,n>*1—/ (ixw,inw) %1
op 2 oD

1
(2.3) = / “Rlw]* x 1 — / R{iow,iow)x1
SR(mo) 2 SR(wo or ar

R/ |wl]? * 1.
Sr(zo)

~

<

[N

On the other hand,

0
Vo X = P V.. X =rHess (r)(es, e)eq,

divX = 1+ 7rHess(r)(eses),

where {e,} = {es, 2} is an orthonormal frame field in D. We agree that the
range of the indices is as follows

a,=1,....,m; s,t=1,...,m— 1.
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We also use the summation convention. Therefore

(WOw,VX) = ‘z’aa_rwf + (ie,w, 1e,w)r Hess (1) (es, €1).

and hence
1
(2.4) (S VX) = S[w[*(1 + r Hess (r) (e, €4)) - liowl
—(le,w, te,w)r Hess (r)(es, €;).
Noting
1
|w|2 = 27!<w(6a17 7€ap)7w(€a17 ;eap»
1 0 0
- H<w(8_76527 7esp)7w(a y €595 ;esp)>
1
+—|<w(651, 7esp)7w(€s17 7€sp)>
p—1)! 0 0
= ( p|) Z <w(aaezw >€Zp)7w(8_76227 7€Zp)>

(2.4) becomes

(S,,VX) = 1 ( i + Z(ietw,iet@) (1 + ZrHess (r)(es,es))

% i%w s
2
—liow| — ZT Hess () (e, €;) (e, w, ie,w)
s,t
1 1 2
(2.5) = <% ;rHess (r)(es, e5) + i 1) iow

1 1
+ ; (% + %TAT> (le,W, Te,w)
— Z r Hess (1) (es, ;) (ie,w, Ge,w).
s,t

Since M is a Cartan-Hadamard manifold with Ricci curvature < —b?%, we
have

Ar > bceoth(br).
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(See, for example, Theorem 2.15 of [19].). Since the sectional curvature
satisfies —a? < K < 0, the Hessian comparison theorem yields

1
—0st < Hess (r)(es, €;) < a coth(ar)dg.
,

Hence
_9 2
(S, VX) > m2p P ié%w
(2.6) + Z < +a br coth(br) — ar coth ar> (le W, le,W).
Let H(r) = rcothr and K(r) = 2— %H(br) H(ar). We have

H(0) = limzcothx =1

z—0

() — (sinh z)(coshz) — x >0
sinh® z -

and H'(xz) = 0 only when x = 0. Differentiating again gives
2(z cothx — 1)

S >0
sinh” x

juiy Y

HII(:L‘) —

and H"(z) = 0 only when x = 0. Both H(z) and H'(x) are nondecreasing

functions. Obviously, K (0) = 1%”

b
K'(r) = —H'(br) — aH'(ar).
2p
Hence, in the case of b > 2pa, K'(r) > 0 and the equality occurs if and only

if r = 0. Therefore

K> 1=P__5

p
and there exists r(a, b, p) with K(r) > 0 > 0 if » > r;. We assume

m — 2p

0y <
2 %

Therefore,

=i |w|? forr <
(S,, VX) >

do|lw|* forr >ry
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and for any R > r; and any xy € M.

/ <SM,VX>*1 Z —61/ |W|2+/ 62|W|2
B (20) By (20) Br(z0)\Bry (o)

(27) = (52/ |(,<)|2 - (61 + (52)/ |w|2.
Br(z0) Br, (x0)

If w is of class L?,

/ lw|? * 1 =: ¢ < oo.
M

If |w|? # 0, then ¢ > 0. There exists 7, such that

(520
w1 < .
AJ\BTO(wO) 2(01 + d2)

Take z € M with
dist (z, xg) > 19 + 11

then
626

2.8 / w2*1</ WPkl < — 2
29 B (w)' | M\Bm(mo)' | 2(61 + 62)

and for any R > 7y, (2.7) and (2.8) imply

1

5
/ (S,,VX) > 52/ w|? — Ze.
Ba(x) B(z) 2

Taking R sufficiently large, we have

(2.9) / (Su, VX)x1 > 6—30.
Bpr(z) 3

For an L?*-harmonic p-form, dw = dw = 0, so div.S, = 0. Thus, (2.2), (2.3)

and (2.9) give
/ lw|? x1 > 20,0
Sgr(x) 3R

/ w1 > / dR/ lw]? * 1
M € Sgr(z)
2

—5C/R@—oo
3°) R

and

v



This is a contradiction. So ¢ has to be zero, namely, w = 0 in the case
m > 2p. By the L?-Hodge theorem, then H?(M) = 0. The same holds for
m < 2p by Poincaré duality.

q.e.d.

Remark. If M is Euclidean space R™ it is easily seen that (2.5) becomes

m— 2p 2

(5, VX) = "o <

m—2p| |2
w| .
2

10 W
or

+ <iesw7 7;esc")>>

Then, the conclusion follows similarly.

If p =1 we can refine the result as follows.

Theorem 2.2. Let M be as in Theorem 2.1. If m > 3 and b > /2a, then
BL(M) = 0.

Proof. By L?>-Hodge theory it is only necessary to prove that any L?-harmomic
1-form w vanishes. In this case, (2.5) reduces to

1

(S,,VX) = (§ZrHess(r)(es,es)—

NP
iz

(2.10) + Z(% + % Z r Hess (7) (e, €1)) (le,w, fe,w)

t

- Z r Hess (1) (e, €;) (le,w, e, w).
s,t

Choose a local orthonormal frame field {e;} near x in S,(zo), such that
Hess (r) is diagonalized at x. By parallel translating along the radial geodesics
from xq we have a local orthonormal frame field in M. We have at x

(2.11)
(S., VX) = (33, rHess(r)(ese;) — 1)

2
1o W

or

+>°, (% + % >, Hess (1)(e;, e;) — r Hess (7)(es, es)) (le W, le,W).
First of all, by the Hessian comparison theorem

m— 2
2

1 1
(2.12) 5 zs:rHess (r)(es, €5) — 5 > > 0.
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To estimate the coefficients of the second term of (2.11) let

A, = Z Hess (7)(et, e;) — 2 Hess (1) (es, €5).

Since
Vo H = (VaV 0
2 ess (1)(es, e5) = ( 2 85§’€s>
0 0 0
= —<R(§7 es)g, es) + <V[g,es}§7 es)
0 0 0 0
= _<R(5768)§765> - <ves§7ves§>a
which gives
%(Ar) = — Ric (=, =) — | Hess (1)|
we have
dAg(r) .0 0 0 0 0 0
L) = (Ric (g, o) [ Hess (1)) 4 2(R(5- ) 5 €0+ 2(Ve, o Ve o)
> b — 24 + 2<V65§,V65§) — | Hess ()|
0 0
> _
> 29 L V0 D) s ()

= 2 Z Hess (7)(es, ;) Hess () (e, €;) Z Hess () (ey, €,) Hess (r)(ey, €y)

= (Hess (r)(es,e,))” = > Hess (r)(eu,eU)Hess (r)(€u, €)-
Noting that the sectional curvature of M is nonpositive and each
Hess (1) (e, €;) > + > 0,

d/i;n(?“) > (Hess (r)(es,es))2 _ (Z Hess (r)(et,et))

(2.13) = (Hess (r)(es, €5) — Z Hess (r)(et,et)> Ar

= —As(r)Ar.

Since A4(0) > 0 because the dimension is at least 3, we may deduce from
(2.13) that As(r) > 0 for all » > 0. Altogether, we conclude that

(S,,VX) > const. |w|?
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for a positive constant, and the proof is completed as the one of Thm. 2.1.
q.e.d.

As for manifolds with sectional curvature pinched between two negative con-
stants, we can improve a result in [11] as follows.

Theorem 2.3. Let M be a complete simply connected Riemannian manifold
of dimension m with sectional curvature —a? < K < —b?, where a and b are
positive constants. Then BE =0, when p # 2 and b > ff;—:;a. Furthermore,
let T' be a discrete compact subgroup of the isometries of M. Then the Euler
characteristic satisfies

(2.14) (—1)¥x(M/T) = 0,

provided g > Z—:g and m is even.
Proof. Noting that Hess (r)(es, €;) can be viewed as the second fundamental

form of the geodesic sphere of S,(xg), the Hessian comparison theorem
(2.15) b coth(br)(g — dr @ dr) < Hess (r) < a coth(ar)(g — dr ® dr)

means that the principal curvatures of S,.(xy) lie in the interval
[b coth(br), a coth(ar)]. Choose alocal orthonormal frame field {e,} in S, (zy),
such that each ey is a principle direction of x € S, (o) and Hess (r) is diag-
onal at z. So, (2.5) reduces to

1 1
2—ZTA7"+2_—1)

P4 P

2

ToW
or

(%NMZZ(
(2.16) + Z (% + %TAT — r Hess (r)(es, es)> (e, W, e W).

Since

L Ar = Hess (r)(en, es) = %Z Hess (r)(es, 1) — (1 — 2i) Hess () (cs, €5)

2p t#£s D
1 1
> —(m =2k — (1 — —)k
1 1
> %(m —2)b coth(br) — (1 — %)a coth(ar),
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where k; and ks denote the minimal and maximal principal curvature at the
concerned point, (2.16) reduces to

1 1 2
(S,, VX) > (m br coth(br)+——1> iow
2p ar
+ 1 + m= 2[;7« coth(br) — (1 — i)(Jm" coth(ar) Z(z W, le,w)
2p 2p 2p - €s ) Y€s
_9 2
> m_ep low
2p ar
1 — 2 1
n <% n {mzp b—(1-— %)a} r coth(br)) Z:(iesw,iesw>
> §lw|?

for certain 0 > 0 in the case of b > %a and 2p < m. Then, a similar

argument leads to w = 0 for any L2-harmonic p-form w when p # 2. This
proves the first part of the theorem. The later part follows from the Atiyah
L*-index theorem [2] whose special case states that

X(M/T) =) (~1)'B(M).
q.e.d.

Remark. In the present notation, the vanishing condition for L2-Betti num-
bers in [11] is b > —22-a, which is more restrictive than that of Theorem 2.3.
Furthermore, then condition for (2.14) is comparable to that of [7] and better
than the latter when m < 6.

When m = 4 and —1 < K < —i, Theorem 2.3 would ensure Bf = 0.
It seems that the Dodziuk-Singer conjecture would be true under such a
negative i—pinching condition.

3 Symmetric spaces of noncompact type

The following example may be instructive for understanding those parts of
the geometry of symmetric spaces that are relevant for our analysis.

Let R be an (m + n)-dimensional pseudo-Euclidean space of index n,
namely the vector space R™™" endowed with the metric

d82 - (dl‘1)2 +...+ (dmm)2 - (d$m+1)2 Toee e T (d$m+n)2-

The set of all m-dimensional space-like subspaces constitutes the pseudo-
Grassmannian manifold G, which is the irreducible symmetric space

m,n

SO(m,n)/SO(m) x SO(n).
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Let {ej e} (i, =1,....omya,f=m~+1,.... m+n;a,b=1,...,m+n)
be a local Lorentzian orthonormal frame field in R”™*". Let {w;,w,} be its
dual frame field, so that the metric ¢ = >, w? — > w2. The Lorentzian

connection forms wgy, of R are uniquely determined by the equations

dw;, = Wij N Wj — Wig N\ Wa,
(3.1) dwy, = waj Nwj— wep A\ wg,
dwab = EcWqc N\ Wep,
Wah + Wha = 07
where ; = 1, ¢, = —1. The canonical metric on G7, , is given by

(3.2) ds® = Z(wai)2.

7,0
From (3.1) and (3.2) it is easily seen that its curvature tensor is

(3.3) Ruigjkor = —0030760ik0j1 — 0ary0350i50k1
+0050750i10k; + 0050800kt

and the Ricci tensor is
(34) Rﬂjgl = —(m +n — 2)5,6’65]1-

We thus obtain an Einstein manifold with Ricci curvature —(m + n — 2).
From (3.3) one can show that the range of the sectional curvature is [-2, 0.
Therefore, in this case, by Theorem 2.1 and Theorem 2.2, when m+n > 6
the first L?-Betti number is zero. When m +n > 8p? + 2,p > 2 the p-th
L?-Betti number is zero.
When n = 2, Gfm belongs to the fourth type of bounded symmetric
domains.

Remark. For the symmetric spaces Sp (m,n)/Sp (m) x Sp (n) we can obtain
a similar result.

The bounded symmetric domains were classified by E. Cartan. There are
altogether 6 types, 4 classical types and two exceptional types.

To prove vanishing theorems for compact quotients of bounded symmetric
domains, Calabi-Vesentini [8] defined a self-adjoint linear transformation @
as follows. Choose a local orthogonal Hermitian frame field {e,é,} in a
Kéhler manifold M, where e, € TH°M. Define

(3.5) Q(&ap) = Roas5lasr  Eap = &pas

12



where R, ;53 are components of the Riemannian curvature tensor of the
Kahler metric in M. It is a linear self-adjoint tranformation on symmet-
ric tensors. All the eigenvalues of ) are real numbers. Calabi-Vesentini
calculated all eigenvalues for the four classical types and A. Borel calculated
those for the two exceptional types [5]. Let A; be the minimum eigenvalue of
Q. Suppose Z = £%4, >, [€%|* = 1. Any holomorphic sectional curvature

<R(Za Z)Za Z) = Raﬁygéagﬂf’ygd
= (Q(&P€%),€87)
> NP I =N

For a Kihler manifold with nonpositive sectional curvature [4], the lower
bound of the sectional curvature is attained on some holomorphic 2-plane.
Hence, from table 1 in [8], we have

V

Table 3.1:
Type dimg Sec. Curvature | Ric. Curvature

Im (min(m,n) > 2) 2mn -2<K<0 —(m +n)
11, (m > 3) m(m — 1) —2<K<O0 —2(m —1)
111, (m > 2) m(m + 1) —-4<K<O0 —2(m+1)

IV, (m >2) 2m —-2<K<0 —m

4 32 ~1<K<0 —6

VI 54 -1<K<0 -9

Remark. For classical bounded domains one can also use the moving frame
method to calculate their curvature tensors, as described at the beginning of
this section. Note that the curvature table for classical bounded domains in
[[19], § 2.4] uses a different normalization.

Using the theorems of the last section and the above table we can list the
result as follows.
4 L2-Betti numbers of semi-simple Lie groups

Let G be a semi-simple Lie group, all of whose simple factors are non-
compact. Let g be its Lie algebra of all left invariant vector fields on G
and K C G the Lie subgroup of G whose image in the adjoint group ad

13



Table 3.2:

Type Bl=0 B =0,p >2
Lim m+n>4 m +n > 8p?
11, m>3 m > 4p? + 1
I, m >3 m > 8p? — 1
IV, m >4 m > 8p?
V 0.K

VI 0.K

G is a maximal compact subgroup of ad GG. Let k be the subalgebra of g
corresponding to K and m the orthogonal complement of k in g with respect
to the killing form B(X,Y) of g. Then

(4.1) g=m-+k [kk Ck [mm Ck [km Cm

It is known that the restriction of B to m (resp. k) defines a positive (resp.
negative) definite bilinear form on m (resp. k). Hence we can choose a base
{X,...,X,} of k and a base {X,,1,..., X, } of k with

(4.2) B(X;, X;) = 6,
B(Xa,Xg) = —(Sa/g;

here and in the sequel we employ the following range of indices

1< 45,k,... <r
r+1< o,83,7... <n
1< a,be,... <n.

Let
[(Xo, Xo) = ¢, X

c . . can be

By (4.1), among the structure constants c,, only cgﬂ, c ;a, o

# 0.
Let B(X,Y) be the Killing form of g. It is defined by

Q
177

(4.3) By, = B(X,, Xp) = trace (ad X, ad X,) = cgecgf.
Multiplying the Jacobi identity

e .f e .f e _
CabCee + CeaChe + CbcCae =

14



by cg; and summing over the index f, we have

C?lf CZbcge + Cgf Ciacl{e + Cgf Cgccg:e
= _CZdee + Cgfciacl{e + Cgfcgccg:e =0.

Denoting
(44) CZdee = Cdab;
we have

_ e . f c e .f

Cdab =  CgrCeaCpe T CarCpcCoe
= CzjiceC;aCZc + C?lf Cgccge

_ f
- CZC(CdeC(]:”a + C?lfcgzce%

which is anti-symmetric in a,d. Hence cg,. is anti-symmetric in all indices.
(4.2), (4.3) and (4.4) give

1
(45) Zkzcaikcajk = 5(5”
and
(4.6) Z CiajCigj + Z CyadCyBs = 6ag.
Y] 7,0

Now let {w”} be invariant forms dual to {X,}. We have the Maurer-Cartan
equations

1
(4.7) dw® = —Ecgewb A wC.

We define the Riemannian metric ds? on G by

(4.8) ds® = Z(w“)Q.

Its induced Levi-Civita connection is defined by

VxXj = _%CijaXa

Vx,Xoe = —%cijj
(4.9) Vx, X = gcainj

Vx,Xg = —%CQMXW.
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By a direct computation, it can be verified that the VX, are skew-symmetric.
All X, are Killing vector fields.
Let w be a harmonic 1-form and

(4.10) w = 5w’ + oW,
For any X,, X,
dw(Xq, Xp) = Xasp — Xpsa — Cgp5e,

ow = —Xg8,.
We then have
Xosy — XpSq = CopSe,
(4.11) {Xasa _ 0

For any fixed v, let us consider the form
d(ix,w).
Is is closed, and
Sd(ix,w) = 6(ds,) = —(Vx,ds,) X,

—Vx,ds,(Xy) + ds,(Vx, X,)
= —X,Xgs,.

Noting (4.11),
_5d(iX7W) = Xo(Xy80+ Czysb)
= XoX, 50+ b, Xosy
X, Xasa + [Xa, Xosa + ¢, Xasy
cf’Wsza + ¢y XpSa
= ¢, X;si+ C’g,YXgSa + c;'-Wsti + ¢, Xpsa
= CjiyXjSi — CBayXpSa T CijyXjSi — CapyXpSa
= 0.
This means that each dix w is a harmonic 1-form. On the other hand,
i, <

Of course, dix,w = 0 as ix, wis a O-form. Thus ix w satisfies (d0+dd)ix w =
0. By L? Hodge theory

dz’Xvw =0.
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This means,
ds, =0, s, = const.
We recall that we assume that w is an L?-harmonic 1-form. Since,
wP=) s+ s
) «

each constant s, should be zero. Furthermore,

Xy E s? = 25X,s;
k
= 25;(Xisy + ¢};5%)
k
= QCﬂﬂ-SiSk = QClmisiSk = 0,

noting that the ¢y, are anti-symmetric in all indices.
In summary, we have shown that

W = S;w

and
w* =5

only depends on G/K.

There exists a G invariant metric on G/K, such that the quotient map
m: G — G/K is a Riemannian submersion with totally geodesic fibers. In
this terminology, any L? 1-form on G is a horizontal form and |w|? can be
considered as a function on G/K.

Take any unit vector field n in G/K and any function b in G/K. We
have the horizontal lift X of bn. X is the normal vector field of the fiber
submanifold whose lenght is constant along the fibers. Choose an orthonor-
mal frame field {€;} in G/K, and call its horizontal lift {e;}. {e,} is an
orthonormal frame on the fiber. Thus, {e;, €5} is an orthonormal frame field
on G. Therefore (V. X, e,) is a multiple of the mean curvature with respect
to the normal direction n. It is zero since the fibers are totally geodesic.
div X can be computed in the base manifold G/ K. Since w is horizontal,

(WO w, VX) =5;51(Ve, X, €)).
(Ve, X, €;) also descends to G/K. Hence
1
(S,, VX) = 5|w|2oqu —(woOw, VX)

can be computed in G/K, provided X is of the above type.
We are now in a position to prove the following result.
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Theorem 4.1. Let G be a simple non-compact Lie group with center reduced
to {e}, and K its mazimal compact subgroup. Suppose that the center of K
is not finite. Then BL(G) = 0, provided the dimension of G/K satisfies the
corresponding conditions in Table 3.2.

Proof. Choose D = Bp(x), a geodesic ball in G/K of radius R with center
in zp € G/K. Its boundary isa geodesic sphere Sg(zy) in G/K. Let
D = 77YD) C G. 9D is compact since K is compact. Let X = ra%,
which is a smooth vector field in G/K. Let X be the horizontal lift of X.
Since the fiber submanifold is orthogonal to the horizontal vector field, X
is also a normal vector field on 0D. Its length is equal to . Thus, for any

L?-harmonic 1-form w, we also have

(4.12) /BD%|w|2<X,n)*1—/ (ixw,ipw) * 1

oD

1 1
:/ —R|w|2>k1—/ R(igw,igw>§—R/ |w|? % 1.
oD 2 op O 2 Jop

From the previous discussion of this section, (S,, VX) can be computed in
the base manifold G/K. On the other hand, G/K is a bounded symmetric
domain and hence satisfies a curvature pinching condition. By the proof of
Theorem 2.2, if |w| # 0, then there exist Ry > 0 and ¢ > 0, such that for
R > Ry and D = ' (Bg(zy)),

(4.13) / (S, VX)x1>c.

From (2.2), (4.12) and (4.13), we obtain

2
/ |w|2*12—c
oD R

/|w|2*12/ dR/ lw|? x 1 = o0
G € oD

which contradicts the L2-assumption. q.e.d.

and

Remark. The above result is not the most general one that can be obtained
with our method. It just has been selected to demonstrate the typical features

of our appraoch. In the same manner, we may obtain corresponding results
for SO(m,n) and Sp(m,n).
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