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ON VARIATION OF SETS

MirosLAav CHLEBIK

INTRODUCTION

A set A C R” is said to be of finite perimeter if it is Lebesgue measurable and the gradient in the sense
of distributions Dx4 = (81x4, 82x4,...,0,x?) of its characteristic function x4 is an R™ valued Borel
measure on R™ with finite total variation. The value of the perimeter of A, denoted by P(A), is then the
total variation || Dx?|| of the vector valued measure Dx“. Otherwise, let the perimeter of A be equal to
+ o0. (Another equivalent definition of perimeter was given in [DG1], see also [DG2] and [FH2].)

Given a direction 7 € S® 1, a set A C R" is said to have bounded variation at the direction 7 if it
is Lebesgue measurable and the directional derivative 9, x4 of its characteristic function x is a signed
Borel measure on R™ with finite total variation. The value of the variation at direction 7 of A, denoted by
var, (A), is then the total variation ||0,x*|| of the signed measure d,x“. Otherwise, let var,(A) = +oc.

It is well known that for a Lebesgue measurable set A and 7 = ¢;

var;(A) = /mf(z) dz

where m#(z) is the infimum of the variations in z; of all functions defined on the line L;(z) (parallel

to the z; axis and meeting z) which are equivalent to x“|L;(z) and the integration is over the (n — 1)
dimensional linear subspace of R" orthogonal to the z; axis.

It is known that the perimeter of A, if this is finite, is equal to the (n — 1) measure (Hausdorff
or, equivalently, integralgeometric) of the set fr.A that is called the reduced boundary (see [FH2]) or
equivalently it is equal to (n — 1) measure of the essential boundary fr.A of A (see [VA] or [FH3, 4.5.6]).
Specifically, € fr.A iff there is an (n — 1) plane 7 through x such that the symmetric difference of
A and one of the halfspaces determined by m has density zero at x. Further, z € fr.A iff both A and
complement of A have positive outer upper density at z.

Moreover, if (n — 1) measure of fr.A is finite then A is of finite perimeter ([FH3,4.5.11]). Hence (n—1)
measure of fr.A is equal to the perimeter of A for a general set A C R™. (Our method offers also simple
proof of this fact for an integralgeometric (n — 1) measure.)

The main purpose of this paper is to show that the directional variation of a set A C R™ (without
any assumptions on regularity of A) is equal to the measure of projection (with multiplicities taken into
account) of the measure-theoretic boundary of A.

1. NOTATION AND TERMINOLOGY

Throughout the whole paper we deal with the sets in the n-dimensional Euclidean space R". We
tacitly assume that n > 2 but results trivially hold in the case n = 1.

Let e1, e, ..., e, stand for the orthonormal base in R", e; = (1,0,0,...,0),es =(0,1,0,...,0),...,
and e, = (0,0,0,...,1) .

For z,y € R™ we denote by |z| the euclidean norm of z and by x oy the inner product of z and y. The
symbol [z, y] stands for the convex hull of the set {z,y} and ]z,y[ means [z,y] \ {z,y} .

Whenever z € R" and r > 0 B(z,r) and U(z,r) stand for the closed and open balls, respectively,
with center « and radius r and Q(z, ) stands for the cubic interval { y € R": |y; —a;| <r,1<i<n}.
We put

S"l={zeR" |z|=1} and L, (z)={xz+tr:t€R} for z€R" and 7€S"'.

The paper in this form was prepared while I visited Max-Planck Institute at Leipzig. I am indebted to directors of MPI
and their colleagues for letting me visit the Institute during April-June 1997.



For 7 € S"~! we denote by R"!(7) the orthogonal complement in R™ to the one dimensional subspace
{tT : t € R} and by p, the orthogonal projection of R" onto R" (7). We write briefly L;(z), R"~1(:)
and p; in the case 7 = ¢; .

For any A C R” we denote by A¢ the complement of A and by x* the characteristic function of A.

For an open set 2 C R™ we will denote by C§°(92) (and C§°(€2, R™)) the space of all infinitely differ-
entiable real valued functions with compact support in  (and the space of all infinitely differentiable
R™ valued vector functions with compact support in €2, respectively). These spaces are considered to be
equipped with the “sup norm”.

For any function f, any set A and any value y, the multiplicity N(f, A,y) is defined as the number of
elements (possibly +o00) of the set {z € A: f(z) =y} .

1.1. Hausdorff measures. For an integer k such that 0 < k < n let Hy, stand for the k-dimensional
Hausdorff outer measure on R™, which is normalized in such a way that

Hf{zeR":0<z;<1 for 1<i<k andz; =0 for k<i<n}=1.

In particular, Hy is a counting measure and H,, coincides with the Lebesgue outer measure on R"”.

The constant V (n— 1) stands for the volume of the unit ball in R"~! (with V(0) = 1) and the constant
A(n) means the area of S"~!.

We define the equivalence ~ for subsets of R™ by the prescription

A~B iff H,[(A\B)U(B\A4)]=0.

1.2. Projection measures pu,. For 7 € S" ! the result of Caratheodory‘s construction (see e.g.
[FH3,2.10.1]) from the set function

B+— Hn—l[p‘r(B) ]

which is defined on the covering family of all Borel sets in R™ will be called the projection measure at
the direction 7 and denoted by .. Then p, is a Borel regular outer measure on R” and p, < H,,_;.
From Fubini’s theorem it follows that H,(C) = 0 whenever C C R" is such that p,(C) < oo.

1.3. Integralgeometric measure 377 '. The result of Caratheodory’s construction from the set

function

B / Hr[ po(B) | dHpy (7)

n—1

1
T Wmo1)
S

which is defined on the covering family of all Borel sets in R™ is usually termed (n — 1) dimensional
integralgeometric measure with exponent 1 and denoted by S *. (For the existence of the above integral
see e.g. [FH3, 2.10.5].)

37 ts a Borel regular outer measure on R and obviously 2V (n — 1)37* < A(n)H,_;. Moreover

371 < H,_, by [FH3, 3.2.26, 3.3.14 and 3.3.16].

1.4. Densities. For every set A C R™ and each z € R" we define the upper outer density d(x, A) and
the lower outer density d(z, A) of A at = by the formulas

H,[A N B(z,r)]
H,[B(z,r)]
H,[A N B(z,r)]

H,[B(xz,7)]

E(ﬁ, A) = mr_>0+

d(z,A) =lim, o4

In the case d(z,A) = d(x,A) this common value is denoted by d(z, A). A point  for which d(x, A) = 1
is termed the outer density point of A. (We will drop the adjective “outer” in our terminology whenever
A is H, measurable.)



1.5. Essential and preponderant interior and boundary. We define the essential interior int. A,
the essential boundary fr.A, the preponderant interior int,, A and the preponderant boundary frp,.A of
A C R"™ by the formulas

inttA={zeR": d(z,A°) =0},
freA={zeR": d(z,A) >0 and d(z,A°) >0},

- 1
intprA = {iL‘ S R™: d(l‘,AC) < 5} ,

fropnA = {ac eR": d(x,A) > and d(z,A) > %} )

DN | =

It is easy to see that int, ANint.(A) =0, freA = [ inte A Uint.(A) | int,, ANint,, (A¢) =0, frprA=
[intyr A Uint,,(A) ], int. A is of type Fys, freA is of type Gos , intp,A is of type F, and frp.A is of
type Gs. In particular, all these sets are Borel.

1.6. BV functions. For a nonempty open set Q C R” and for any 7 € S”~! we define the space
BV (2, 1) of all locally (in ) H,, summable functions g for which there exists a finite signed Borel measure
®¢,  on Q with the equality

/g(:c) Togradp(z)dr = — /cp(:c) deg, , (z)

Q Q

whenever ¢ € C§°(2) .
BV (Q) is defined as the space of all locally (in Q) H,, summable functions g such that there exist the
finite signed Borel measures ®¢) |, ®, 5, ..., ®¢, ,, with the equality

/ go) divep(z)do = -y / i) Y, ()
Q i=lq
whenever 1/} = (¢1;¢2;-~-;¢n) € CSO(QJ]RH) .

1.7. Directional variation and perimeter of sets. For a nonempty open set 2 C R" and for any
7 € 8"7! the set functions varg , and Py are defined for any subset A of R™ as follows:

(1) If AN is H, measurable then we put

varg,r(A) = sup /XA(m) Togradp(z)de: ¢ € C5°(R) and |p| <1p,
Q

Po(A) = sup /XA(x) divep(x)de: ¢ € C3°(Q,R") and |9 <1
Q

(2) If AN is not H, measurable then we put

varg,r(A) = Po(A) = o0 .

The value varq ;(A) is termed the variation at direction 7 of the set A in the open set Q and Pq(A) is
the perimeter of A in Q.
In the case varg,; (A) < oo the symbol @éj stands for the (uniquely determined) signed Borel measure
on () such that
[ @rograderdo= - [ o) dvd, @)
Q Q

holds whenever ¢ € C§°(2). We write briefly q)é,i in the case 7 = e;.



2. AUXILIARY RESULS

2.1. Lebesgue outer density theorem. For any set A C R" H,, almost every point of A is an
outer density point of A.

2.2. Remark. Let 2 C R™ be nonempty open and A C R™ be arbitrary. Using Lebesgue density
theorem and Borel regularity of Lebesgue outer measure one can easily show that the following statements
are true:

(i) If AnQis H, measurable then
QNninteA~QNintp, A~QNA and H,(QN freAd) = Hy(QN frprA) =0
(if) If ANQ is not H, measurable then
H{zeQ:dz,A)=1 and d(z,A°)=1}>0

and especially
H,Qn fred) > H, (2N frppA) > 0.

2.3. Observations.

(1) If g € BV(Q) then g € BV (Q,7) for every T € S™ L.

(2 Ifrj € S"Yaj e Rge BV(Q,15) (j=12,...,r) and T =Y, a;7; € S* ! then g €
BV(Q,7) and g . =31, ;@ .

(3) If r1,72,...,7n € 8"t are linearly independent and g € BV (Q,7;) (j = 1,2,...,n) then g €
BV ().

(4) varg r(A) < oo holds if and only if xa|Q2 € BV (Q, 7). In this case varg (A) = |<I>67T (Q) holds.

(5) Pqo(A) < oo holds if and only if x4|Q € BV (Q). In this case Po(A) = |®4](Q), where &4 =
(@, O B

(6) If Po(A) = 4o then the set {T € S"~!: varg ,(A4) < <} is contained in an (n — 1)-dimensional
linear subspace of R™.

2.4. Lemma. Let B C R" be a Borel set.

(i) For any 7 € S™~! the function z — N(p,, B, z) defined on R"~'(7) is H,_; measurable and

ur(B) = / N(p;,B,z)dHp,_1(z) .
Rn=1(7)
(ii) The function T — pu.(B) defined on S"~' is H,_, measurable and
1
- B)dH,_,(7) .
= | B )
Snfl
Proof. See [FH3, 2.10.10 and 2.10.15].

2.5. Definition. Let Ly be a line in R™ and let L C Lg be relatively open in Lg. For any set A C R"
the point « € L is termed a hit of L on A provided both LN ANU(z,r) and (L\ A) NU(z,r) have a
positive H; measure for every r > 0.

For Q) C R™ nonempty open , A C R?, z € R® and 7 € S™!, the symbol Mér(z) stands for the set

of all hits of L.(z) N on A, méJ(z) stands for the number of elements ( possibly 400 ) of Mé‘J(z) and
we put
M&, =U{ My (2):z€R" }.

We write briefly M&i(z), mévi(z) and M&i in the case 7 = e;.
The starting point to our results is the following well known lemma.

2.6. Lemma. Let Q2 C R"™ be nonempty open and A C R"™ be such that AN Q is H, measurable.
Then for every 7 € S"~* the function z — mg (z) defined on R"~!(7) is H,_1 measurable and

VarQ;r(A) = / méﬂ.(Z) danl(Z) .
R™—1(7)

Proof. See e.g. [MJ] and Chap. 7 of [KK] .



3. CHARACTERIZATION OF DIRECTIONAL VARIATION OF SET

3.1. Notation. Let Q C R™ be nonempty open and A C R™ be such that A N is H,, measurable.
Let us identify R™ with R®»~! x R. For any a, 3 such that —oo < a < 3 < 400 put

Ea(a,8;4) = {z € R" " : {2} x (0, 8) € © and Hy ({2} x (a, ) \ 4) = 0}.

It is easy to show using Fubini’s theorem that these sets are H,,_; measurable.

3.2. Lemma. Let Q) C R"™ be nonempty open and A C R"™ be such that AN is H,, measurable. Then
there is an H, 1 null set N C R"! such that every z € R" '\ N has the following properties:

a) If a,f € QU {£oo} (Q being the set of rationals) with —oo < a < f < +oo are such that
2 € Eq(a,B; A) (z € Eq(a, B; A€), respectively) then z is a density point in R"~! of Eq(a, 3; A)
(Fa(a, B A4%)).

b) If —co < a < B < +o00 are such that {z} X (a,8) C Q and Hi({z} x (o, 5) \ 4) =0 (H1({z} %
(a, B) \ A°) = 0, respectively) then {z} x (a, 8) Cint. A ({z} % (a, B) C int.(A°)).

c) {zeQn freA :pp(z) =2} C Mén.

Proof. For any H,,_, measurable set B C R" ! put B = {z € B : z is not a density point of B}. Due to
Lebesgue density theorem B is Hy,_; null set. Hence the set

N:U{E(a,,@;A)UE(a,,@;AC):a,,@e(@u{:i:oo},—ooga<,8§+oo}

is H, 1 null set and each z € R*~!\ N has the property a).

If z€ R"'\ N and —oo < a < 8 < +o0 are such that {z} x (a,3) € Q and H;({z} x (o, 8) \ 4) =0
(H1({z} x(a, B)\A®) = 0, respectively), then z is a density point in R"~! of Eq (a1, £1; A) (Eq (a1, B1; A°))
whenever a3, 81 € QU{xoo} with a < a3 < 1 < . From Fubini’s theorem it follows that {2} x (a, 3) C
int.A ({2} x (a, B) C int.(A°)), hence b) holds true.

To prove c) let us fix z € R""! \ N and assume that we can find z € Q\ Mg‘in such that p,(z) = 2.
Our aim is to prove that then necessarily z ¢ fr.A. As z € Q\ Mél,n we can find real numbers a < 3
such that x € {z} x (a, 8) C Q and either H;({z} x (o, 8) \ A) =0 or H;({z} x (a, 8) \ A°) = 0. From
b) it follows that x € int.A or x € int.(A°), hence x ¢ fr.A. This completes the proof.

3.3. Lemma. Let X,Y C R be two disjoint sets of type F, such that every x € X is a bilateral
accumulation point of R\Y and everyy € Y is a bilateral accumulation point of R\ X. Then]a,c[\ (XU
Y) is nonempty whenever a € X and c €Y.

Proof. We have X = U2, X and Y = U2, Y, where X1 CXo C X3 C ... andY; CYo CY5C ...
are closed. Let a € X and ¢ € Y be arbitrarily chosen. Suppose, if possible, that X UY Dla,c[. Our
assumptions imply that XN]a,c[# 0, YN]a,c[# 0, every © € XN]a,c| is a bilateral accumulation point
of X, and every y € YN]a,c[ is a bilateral accumulation point of Y. We can construct by induction an
infinite sequence of nonnegative integers {k,}2, and the sequences {a,}>2 and {¢, }22, of real numbers
such that ag = a, ¢ = ¢, kg = 0 and, for every positive integer r,

ar € Xp,.N]ar—1,¢r-1[ 5 ¢r € Yi,N]ar—1,¢p—1 [ and (Xy, UYr, ) N]ar,c.[ = 0,

as follows:
Put ap = a,co = cand kg = 0. If a,_1,¢,—1 and k,_; have been constructed choose @, € XNJa,_1,¢,—1 [
and é. € YN|a,_1,c,—1 [ arbitrarily, and an integer k, so large that k. > k,_1, a, € X, and é, € Yj,.. As
[ar, &) N X}, and [, é]NYy,. are two disjoint nonempty compact sets, we can choose their points a, and
¢r, respectively, such that they realize the distance of these sets. Then we have a, € Xy N]apr—1,¢r-1 [,
¢r € Yp,N]ar—1,c—1 [ and (Xg, UYr.) N]ar, e[ = 0.

Now it is easy to see that for the sequence {[a,,c,]}22, of intervals with the above properties we have

[o.9]

0 # m [ar,cr] = ﬂ lar,er [ Cla,e[\ (X UY).

= r=1

That completes the proof.



3.4. Definition. As the density of the ball B(0,1) C R” is equal to % at every point of its boundary,

we can fix for any positive integer k the constant (k) (depending only on k and on dimension n ) such
that 0 < 0(k) <1 and

1, [B(ex, (k) N B0,1)] > L1 (1 - %) " -

As the function
y — Hy[B(y,d(k)) N B(0,1)]

is continuous on R™ we can fix for k£ and d(k) as above the constant (k) > 0 such that

Vin) 1

H[5(0,800) 0 50,1] 2“0 (1= 1) 306

whenever y € [e1, (1 +e(k))eq] .
According to the homogenity and the invariance under Euclidean isometries of H,, we see that

H (B0 0 BGen)] = 2 (1= 32 ) BT

whenever k is a positive integer, 0 < r < 0o,z € R" and y € B(z, (1 +¢(k))r) \ U(z,r) .
3.5. Theorem. Let 2 C R"be nonempty open, A C R™ be arbitrary and 7 € S"~*. Then

varg,r (A) = (2N fred) = p (2N frp.A) .

Proof. We may assume that 7 = e,,. Since frp, A C fr.A, it is sufficient to prove the inequalities

(2N freA) < vargn(A4) < pp (N frpA) .

(i) To prove the first inequality we may assume varg ,(A) < oo and then AN Q is H, measurable.
According to Lemma 3.2 we have,

N(pn, QN fred, z) < mém for H,_; ae z€R"(n).

Using Lemma 2.4 and 2.6 and integrating the above inequality we get

1 (@0 frod) = / N(pn Q0 frod, 2) dHy 1 (2) < / m () dHo—1 (=) = varg (4).
Rr-1(n) Rr-1(n)

(if) To prove the inequality
varg,n(4) < p, (2N frp,A)

we may assume that
Un (2N frppA) < oo .

Then obviously H,, (2N frp,A) = 0, the set QN A is H, measurable according to the Remark 2.2
and ANQ ~ QnNinty A Hence

varg n(A) = varg, , (int,,A)
and due to the Lemma 2.6 and 2.4 it is sufficient to prove that
(1) mgtif”A(z) < N(pn, QN frpA,z) for H, , ae. z€R"(n).

6



For any positive integer k we put
1 1
A(k):{xER":HMB(:c,r)\A)S@<1—E>r" if T€<O’E> },
1 1
C(k):{xER”:HAB(:c,r)ﬁA)S@<1—E>r" if T€<O’E> }

Obviously A(k) and C(k) are closed and A(k) 1 inty, A, C(k) 1 intpr(A°) with k£ 1 +o00. For any
pair of positive integers (k,m) we put

N
=

At (k,m) = { € A(k): Q (m, T,z + %en - C intpr(A°) } ,

Cintpr(A) } ,

IN
=
—
8
|
|
@
3

A (k,m) =4 z € A(k): Q (m,

- g
s, + —epn| CintprA } ,
m

—en [ Cintpr A } ,

= G G At (k,m)UA (k,m)UCt(k,m)UC (k,m)].

Sloo Sfoo S| F|o
N~
IN
2

N
=
&
&

zeCk):Q <x

To prove (1) it is sufficient to prove that
mg e (2) N(pn, Q0 frped,2) if 2 € R }(n) \ pu(B), and
Hya[pn(B)] =0

First we make the following observation :
If z € R"1(n) \ pn(B) then the assumptions of lemma 3.3 are fulfilled with L, (z), L,(2) N QN
intpr A and Ly (z) NQNinty,.(A°) instead of R, X and Y, respectively. Therefore for such z there
exists b € Ja,c[ N frp, A whenever a € L,(2) Nintp, A and ¢ € Ly (z) Nint,(A°) are such that
[a,c] C Q.

To prove(2) we fix 2 € R"~!(n) \ p,(B). We may assume that

N(pn, QN frppA, z) < 00.
Then even the inclusion
M4 (z) € QN fry,A

holds. To prove it we fix a point © € (L,(2) N Q) \ frprA . According to (4) we may fix € > 0
such that

[z —cen,x+ee,] CQ and [z —cep,x+ce,| N frppA=0.
According to the observation made above, we get either
[x — cen,x +cey] CintprA or [z —cep,x + cep] Cinty, (A°) C (inty, A)°.

Both cases imply that  does not belong to Mmt”A( ). This completes the proof of (5) and (2).

To prove (3) we fix the positive integers k, m and we will prove that

Hy 1 { pn[AT(k,m)] } =0 .

(In the same way one can prove that p,[A~ (k,m)], p,[CT (k,m)] and p,[C~ (k,m)] are H,,_; null
sets.)
To prove (6) we put for any integer s

-1
At (k,m,s) = { x € AT (k,m) : ST <zp < =l }

m

7



and assume, on the contrary, that for some fixed s we have
Hyr{ pulA (k,m,8)] } > 0.

Due to Lebesgue outer density theorem we can fix zg € p,[AT (k,m, s)] which is an outer density
point ( in the space R"~*(n) ) of p,[AT (k,m, s)].

For every z € p,[A™ (k,m, s)] obviously one can choose a point x € A" (k, m, s) such that p,(x) =
z. Then

7
st en{g}x,zﬁ-
m

8 7
Q (m, —> CQ and ]z + ez il en { C inty.(A°).
m m m

s+1
m

IN

We put 1 = 29 + en. According to the choice of zg we can fix positive ¢ such that rq

%,rg < % and
V(n)

L cHyy 1 { pulU(21,70)] N puAT (k,m, 8)] } > 11— m[‘s(’mn

V(n—1)ry™
where d(k) is the constant from 3.4. Putting S = p,[U(z1,10)] from (8) we get

H, 1 { SNpu[AT(k,m,s)] } > H, 1(S) — %[5(/4)]"7{}’1 .

According to the choice of z1 and ro we see that U(zy,70) N At (k, m,s) = 0. We can define the
number ¢y € | &L, £t1] by the formula

m ’ m

—1 1
tO:sup{t€<S ,S+ }:U(zo-i—ten,ro)ﬂA"‘(k,m,s);é@}
m m

and we put xo = zo + toen. The ball U(xg,ro) has the following properties :
L,(2)NU(zg,m0) Cinty.(A°) whenever z € p,[AT(k,m,s)]
U(zo,m0) C Q, especially ANU(zo,r9) is H,, measurable,
AF(k,m,5) N [B(zo, (1+)ro) \U(zo,70) | # 0
whenever € >0 .

We fix some y € A1 (k,m, s) N[ B(xo, (1 + &(k))ro) \ U(zo,r0) ], where (k) is as in 3.4.
From (3.4) it follows that

Ha (B0, 6070) 0 Blan,r0)] 1> 02 (1= ) 806"

We define the function
g:R"7(n) — [0, 27¢]

by the formula
g(2) = Hi{ [Ln(2) NU(x0,70) ]\ intpr(A°) } 2z € R" 1(n).
According to remark 2.2 we have
[U(zo,r0) \intyr (A°)] ~  [U(zg,m0) N A]
and using Fubini’s theorem we get that ¢ is H,_; measurable and
Hyy [U (20, 70) N A] = / g(2) dHy 1 (2) -
Rr—1(n)

8



From (10) we see that
g(2) =0 whenever z € p,[AT(k,m,s)], and obviously
g() =0 whenever z¢€ R"'(n)\S .
Especially the set
{z€R"(n):g(x)>0}=8\{z€85:9() =0}
is Hy_1 measurable and from (9) we get

Hy 1 {zeR"(n): g(z2) >0} =H,_1(S) — Hy_1{z € S: g(z) =0} <

(13) n
< H, 1(S) — H, 1{SNp,[AT (k,m,s)]} < %[5(1@]”1"0"*1
From (12) and (13) we see that
(14) Hy[U(zo,70) N A] < 2rgHp_1{z € R"*(n) : g(z) >0} < &:)[5(19)7“0]" .

It is obvious that
(15) Hn[B(y,0(k)ro) \ A] = Hn[ B(wo,m0) N B(y,(k)ro) | = Ho[ANU(zo,r0)] -
According to (11), (14) and (15) we eventually get

(16) H B8 \ 4] 2 5 (1= 5 ) Bkl

Asy € AT (k,m,s) C A(k) and 6(k)rg < 79 <
definition of A(k). Hence the assumption made in (7
(6) and (3) hold. This completes the proof.

the inequality (16) contradicts with our

1
k>
) leads to the contradiction and consequently

3.6. Corollary. Let Q C R" be nonempty open and A C R"™ be arbitrary. Then the following are
equivalent :

(1) Po(A) < o0
(ii) There exist linearly independent vectors 11,7, ... , 7, € S™ ! such that p., (X N fr,.A) < oo for
i=1,2,....n

3.7. Lemma. Let Q C R" be a nonempty open set and ® = (1, ®s,...,P,,) be an R™ valued Borel
measure on Q) with finite total variation. For any T = (11, 72,...,Ts) € S~ let ®, stand for the signed
Borel measure 2?21 7:®;. Then

1
Pll= ——— P H,_ .
191 = gy [, I#rllaHaa ()

Proof. Let v: = R™ be the Radon-Nikodym derivative of ® with respect to its variational measure
|®|. Then v is a |®| measurable R™ valued function and |v(z)| = 1 for |®| a.e. z € Q (see [FH3, 2.5.12]).
As ®.(B) = [z 7 ov(x)d|®|(x) for any Borel set B C €, clearly

||<I>T||=/Q|Tov<w>|d|<1>|<w>.

Integrating over S"~! and using Fubini’s theorem we get

/Sn_l 1@~ || dHyn—1(7) = /Q </5n—1 ITov(w)|dHn1(T)> d|®|(z).

As S™~! and H,,_; are invariant under orthonormal transformations of R",
/ |7 o w|dH,—1 (1) = |w| |71|dHp—1(7) =2V (n — 1)|w| for any w € R".
Sn—1 Sn—1
(See [FH3, 3.2.13] for an exact computation of constants V(n — 1) and [g,_, |71|dH, 1(7).) Hence

e ldt ) = 2V =1) [ o) del@) = 2V - D],

that completes the proof.



3.8. Lemma. Let Q) CR" be nonempty open and A C R"™ be arbitrary. Then

1

Pod) = 5 /5 v (4) dHy i (7).

Proof. If Pq(A) = +oo then clearly varg ,(A) = +oc for H,,_1 a.e. 7 € S"! and the statement holds.
If Po(A) < +oc then Dy, as the distribution over €2, is an R” valued Borel measure on () with finite
total variation. As Pq(A) = ||Dx?|| and varg .(A) = ||7 o Dx*||, the result follows from the lemma
above.

3.9. Theorem. Let ) C R"™ be nonempty open and A C R™ be arbitrary. Then the following equalities
hold :

1

Po(A) = W1

/ varo, (A) dHp_i (1) = ST 1 QN freA) = ST 1(Q A frpp A).
S’nfl

Proof. Integrating equalities from Theorem 3.5 over S"! and using Lemma 2.4(ii) we get

1

— —_gn—1 — qn-1
2V (n — 1) /Sn_l varg - (A) dH, (1) = S H(QN fred) = 771N fryA)

Due to Lemma 3.8 the first term is equal to Pq(A). That completes the proof.

Remark. The result Po(A4) = ST (2N fr.A) for an arbitrary set A C R™ is known (see e.g. [FH3,
4.5.6 and 4.5.11]), but our simple proof does not use deep results of De Giorgi, Federer and Volpert on
sets with finite perimeter. Combining our results with their we could replace integralgeometric measure
by Hausdorff measure in the theorem above.
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