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ABSTRACT. The abelian Chern-Simons-Higgs model of Hong-Kim-Pac and Jackiw-
Weinberg leads to a Ginzburg-Landau type functional with a 6! order potential on
a compact Riemann surface. We derive the existence of two solutions with different
asymptotic behavior as the coupling parameter tends to 0, for any number of pre-
scribed vortices. We also introduce a Seiberg-Witten type functional with a 6" order
potential and again show the existence of two asymptotically different solutions on
a compact Kahler surface. The analysis is based on maximum principle arguments
and applies to a general class of scalar equations.

0. INTRODUCTION

Let ¥ be a compact Riemann surface with a line bundle L. For a unitary
connection D4 = d+ A on L with curvature Fs, and a section ¢ of L, we have the
Ginzburg-Landau functional

GL(A.) = [ (Dadl? + [Fal*+ (1= 9 5 1.

This functional can be rewritten as

GL(A. ) = [ ((Dr+iD2)? + (Fa= 51~ 67)) + 1+ 2mdeg I,

see e.g. [J; §9.1]! for details. This reformulation shows that absolute minimizers
satisfy the self duality equations

(Dy 4 iD3)$p =0

1
F=g01- |61%).

Key words and phrases. Chern-Simons-Higgs model, Ginzburg-Landau functional, Seiberg-
Witten functional, self duality equations, exponential nonlinearity.

1Here, however, in agreement with the physics literature A = —iA,dz?, Fog = 0aAg —0gAa,
Fy = —%Fagdma A dz‘f@, F = Fi3, Dy = 0o — itAn. We assume w.l.o.g. that the degree of L,
deg L, is nonnegative.
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2 SELF DUALITY EQUATIONS

The first equation says that ¢ is a holomorphic section of the line bundle L.
The self duality mechanism still works if we introduce a coupling parameter ¢ as
follows

GLA) = [ (Dadl + Pl + 151 = o)) 1

= [A1+iD2)of + (eF = 51— 6f2))?) 1
+ 27w deg L.
The self duality equations then are
(D14 iD3)p =0

1
€2F12 = 5(1 — |¢|2)

N := deg L is the degree of L and determines the number of zeroes p1,:--,pn
(counted with multiplicity) of ¢. With

u = log |¢|?,

the equations are reduced to the single scalar equation

N

Au = %(6“ -1)+ 4#2(51,”
i=1

where 9, is the Dirac functional based at p;.

It follows from the analysis of Taubes [T1] that there exists €. > 0 such that
for 0 < € < €., this equation has a unique solution u. for any prescribed set of
vortices p1, - -+, pn. Hong-Jost-Struwe [HJS]| carried out the asymptotic analysis of
ue for e — 0. In the limit, |¢.| tends to 1 away from the vortices, and the curvature
F4_ becomes a sum of delta distributions centered at the vortices. Thus, the line
bundle is degenerated into a flat bundle with a covariantly constant section with
N singular points where the curvature concentrates.

As described in [J; §9.1], the self duality mechanism works in still more generality,
namely, we may replace the parameter ¢ by an arbitrary real function y(¢) of ¢
and consider

GL, (A, ¢) = / (IDad? + ()2 Eal® + W“ B2+ 1

- / ((Dy +iD2)f* + (1) F — —

g = 1o «1
+ 27w deg L.

For the choice
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we obtain the Chern-Simons-Higgs functional introduced by Hong-Kim-Pac [HKP)]
and Jackiw-Weinberg [JW] for the time independent vortex solutions of an abelian
Chern-Simons-Higgs model on R?!, namely

CS(A. $) = / (Dad? + S |Fu? + 12|¢|2<1—|¢|2>2>*1

o
- / ((Dy + D)o + (=
+ 27w deg L.

Absolute minimizers satisfy the following self duality equations

(0.1) (D1 +iDs)$ = 0
(02) 2F = Lol (1 - l4]?)

The first authors to consider this problem on a compact Riemann surface, namely
a torus, were Caffarelli-Yang [CY]. They introduced a sub/supersolution method
to construct a solution (AL, ¢l) for every positive € below some critical threshold e,
above which no solution exists. For ¢ — 0, this solution has the same asymptotic
behavior as one of the Ginzburg-Landau model described above. Tarantello [Ta]
then showed the existence of a second solution (A2, ¢?) for 0 < ¢ < ¢, (as follows
from [DJLW1], there may exist more than two solutions). For the case of one vortex,
N = 1, she was able to analyze the asymptotic behavior of a second solution; ¢?
converges to 0 uniformly for ¢ — 0, and after rescaling, one obtains a solution
of an interesting mean field equation whose geometric significance remains to be
explored. The method was restricted to N = 1 because it was of a variational nature
and depended on the Moser-Trudinger inequality. The case N = 2 represents a
borderline case for this inequality and was treated in [DJLW1, DJLW2| and [NT].
In the present paper, we construct a second solution for which we are able to
perform the asymptotic analysis for an arbitrary number N of vortices, thereby
completing this line of investigation.
As in the quoted previous papers, by putting

= log |¢|?,

we reduce the above system to the single scalar equation

Av = —e(e’ — 1) +47T25p,

2
€
7=1

or with ug being the corresponding Green function, i.e. the solution of

N
47N
AUO = —W +47Tj;6pj,
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/UOZO,
by

4
(0.3) Ay = 6—2Ke“(Ke“ —1)+ A,

u = v — ug satisfies

with K = ¢e%, A = %. This is the equation we shall study in some generality,
namely on an arbitrary compact Riemannian manifold.

Our result for the Chern-Simons-Higgs problem then is

Theorem 0.1. For N > 0, p1,:-: ,pny € X and 0 < € < €., there are solutions
(AL L) and (A%, $?) of (0.1) - (0.2) such that for e — 0

(1) ¢ =1 on every Q CC T\ {p1, -, PN };

(2) |¢2| — 0 almost everywhere.

(1) of course is the result of Caffarelli-Yang [CY]. The first solution corresponds
to a topological, the second one to a non- topological solution of the field equations.

As already indicated, our method works in any dimension. Therefore, we now
introduce a functional on a 4-manifold, namely a generalization of the Seiberg-
Witten functional with 6?" order potential obtained by the same type of self duality
mechanism as above to which our method also applies, at least if the manifold is
Kahler.

First, we recall some facts from the Seiberg-Witten theory (for more details, see
[J], [JPW] and [S]). Let (X,g) be a compact, oriented four-dimensional manifold
with a Riemannian metric g, and Pso4) — X its oriented orthonormal frame
bundle. Let spin©(4) be the U(1) extension of SO(4), namely,

1 - U(1l) = spin®(4) — SO(4) — 1.

A spin®-structure on the Riemannian Manifold (X, g) is a lift of the structure group
SO(4) to spin(4), i.e. there is a principle spin®(4)-bundle Pypipea) — X such that
there is a bundle map

Ppineay — Psoy

i i

X — X

It is well-known that any compact, oriented four-manifold admits a spin-structure.

Let Q = Pypine(a)/spin(4) be a principle U(1)-bundle. W = Pypine(a) X spine (1) C*
and L = @ xy(1) C resp. is the associated spinor bundle and the line bundle resp..
W can be decomposed globally as W+ and W ™. Locally,

W* =5+ L2,

Here S* is a spinor bundle with respect to a local spin-structure on X. Both S*
and L'/2 are locally defined.
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There exists a Clifford multiplication
TX xWT W~

denoted by e-¢p € W~ fore € TX and ¢ € WT. Here T X is the tangent bundle of
X. A connection on the bundle W can be defined by the Levi-Civita connection
and a connection on L. The “twisted” Dirac operator Dy : T(W*) — I'(W™) is
defined by

4
DA = Z €; - VA.
i=1
Here, I'(W¥) is the space of sections of W+, {e;} is an orthonormal basis of TX and
V 4 is a connection on W7 induced by the Levi-Civita connection and a connection
A on the line bundle L. Let A(L) be the space of the hermitian connections of the
line bundle L.
The Seiberg-Witten functional is defined for pairs (A, ¢) € A(L) x T(WT):

R
SW(A.0) = [ (Va0 + IFFP + 10 + 510l 1.

where FX is the self-dual part of the curvature of A, and R is the scalar curvature
of X. Using the Weitzenbock formula, this can be rewritten as
1 S
SW(A,9) = [ (Dadl +|Ff = Jeiesond)e nel) 1,
X
where {e?} is the dual basis of an orthonormal basis {e;}. ;From this reformulation,

one directly sees the self duality involved: Absolute minimizers satisfy the Seiberg-
Witten equations

Dy¢ =0,
1 o
Fi= Z<eiej¢’ pyet Nel.

Now, first of all, the Seiberg-Witten functional may be perturbed by adding 2-forms
o, n in the functional:

SWon(4.0) = [ (DadP + 17 = 0) = {((eiesnd)e’ el =) 1

R
— [ (Vs +1ELE+ TloF
X

+ = (eiejp, p)e’ NP+ 2(Ff,n— o)) x 1.
Secondly, the self duality mechanism still works if we insert a real-valued function
v(¢) of ¢ in the following manner:

R
SWona(A.) = [ (Vadl? +9(@P L+ FloP

1 . )
+ WW— (eejp, d)e’ N[>+ 2(Ff,n—o)) %1

= [ (Dase

+ @) Ff —0) — ——
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In analogy with the Chern-Simons-Higgs functional discussed above, we choose
€

el

for a real parameter ¢ > 0. This choice seems to lead to the most natural and
interesting theory, and so we study the following Seiberg-Witten type functional
with 6! order potential

v()

2
L) = [ (DaoP +| S (FL - 0) = W eeson a1 ned ~ )] )1
2 R
= [ (Vadf + SalFA P + o

oP e
12— (eres0 006 AP - 2(E = o)) 1.

Given 1 € A2T* X, we thus consider the self duality equations that are satisfied by
minimizers of L(A, ¢), namely

Dy¢ =0,

0.4 . .

0 Fi—o= é|¢|2(<ei€j¢,¢>ez/\€] = ).

The Seiberg-Witten functional as described above exhibits a strong structural simi-
larity with the Ginzburg-Landau functional; namely it contains a squared covariant
derivative of the scalar field, a squared curvature of the vector field and a 4" order
potential term for the scalar field. In fact, the Ginzburg-Landau functional can
be considered as a dimensional reduction of the Seiberg-Witten functional. The
analogy goes further. In the Ginzburg-Landau functional with parameter €, one
sees that for ¢ — 0, the (unique) solution (A, ¢.) concentrates at the prescribed
vortices, in the sense that ¢. converges to 1 uniformly away from those vortices,
and the curvature F)y_ tends to a Delta distribution supported at the vortices, see
[HJS]. Taubes [T2, T3, T4] showed that on a symplectic manifold, with 7 being the
symplectic 2-form, the Seiberg-Witten functional with parameter ¢ (i.e. y(¢) = ¢ in
our above notation) for ¢ — 0 exhibits a similar limiting behavior in the sense that
now a concentration along a set of pseudo-holomorphic curves occurs. Recently,
Lin and Riviere [LR| were able to obtain such a concentration analysis in a general
context in arbitrary dimension.

As we discussed above, the Chern-Simons-Higgs functional exhibits a richer as-
ymptotic structure than the Ginzburg-Landau functional, in the sense that we are
able to show in this paper the existence of two very different types of asymptotic
solutions for € — 0, for any number of vortices. As the structural relation between
our functional L and the Chern-Simons-Higgs functional is completely analogous to
the one between the Seiberg-Witten functional and the Ginzburg-Landau one, we
also expect an analogously rich asymptotic behavior for L. In the present paper,
we perform the corresponding analysis in the case where X is a Kahler surface.
In this case, our self duality equations admit a reduction to a single scalar valued
equation of the same type as (0.3), to be derived in section 1. We shall prove



DING, JOST, LI, PENG, WANG 7

Theorem 0.2. Let (X,w) be a compact Kahler surface with a spin®-structure in-
duced by a hermitian line bundle E — X, and let K be the canonical line bun-
dle of the Kahler surface X. Let n = w, and 0 = Fa_, , where Acen is the
canonical connection on K* induced by the Kahler metric. There exists €. with
% > WG@TQ(E) - [w] such that for any € < e. the equation (0.4) admits two
solutions (AL, ¢1) and (A2, ¢?%), with the following asymptotic behavior:

(1) |¢p| = 1 almost everywhere, as e — 0;
(2) |92 — 0 almost everywhere, as € — 0.

Technically, our approach will be based on maximum principle arguments. Varia-
tional arguments do not seem to work already in the case of the Chern-Simons-Higgs
functional for more than two vortices, because the case of two vortices is the limit-
ing case for Moser-Trudinger inequality as explained above. For the functional L, a
6t" order potential term can not be controlled by a squared derivative via a Sobolev
type embedding theorem. In fact, in physical terms, our functional L will lead to
a nonrenormalizable theory, and so no general approach applies. Our point here,
however, is that although we are beyond the range of embedding theorems, there
still exists a finer internal structure that allows to draw interesting consequences.

We expect, however, that a similar result also holds in the general case of a
symplectic 4-manifold X; necessarily, the analysis needs to be some what different
as one has to deal with vector valued equations. We speculate that the expected
two types of asymptotic regimes will lead to topological applications by allowing to
relate topological quantities identified by the two different asymptotic solutions.

The paper is organized as follows. In Section 1, we derive the reduction to a
scalar valued equation of the equation (1.8), if X is a Kéhler surface. In Section
2, we show the existence of two solutions. The first solution is obtained by the
super/subsolution of Caffarelli-Yang [CY]. The second solution is constructed with
the help of the mountain pass method for some associated functional. We use a
heat flow to construct the required deformation. This constitutes the main technical
innovation of the present paper compared to previous works on the Chern-Simons-
Higgs functional. Section 3 then establishes the different asymptotic behavior of
the two types of solutions.

The research for this paper was carried out at the Max-Planck Institute for
Mathematics in the Sciences in Leipzig. The first, third, and fifth author thank the
institute for generous hospitality and good working conditions.

1. THE SELF DUALITY EQUATIONS ON A KAHLER SURFACE

In this section we shall derive the self duality equations for our generalized
Seiberg-Witten functional on Kahler surfaces.

Let (X,w,J) be a Kdhler surface with Kéhler metric ¢g(v,w) = w(v, Jw). The
tangent bundle of X carries a canonical spin® structure with

Wean = A"*T*X,  Lean = K* = A"2T* X,

where K is the canonical line bundle of X. The Levi-Civita connection of the
Kahler metric induces a canonical connection A.,, on the line bundle L.,,, and
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the curvature tensor considered as a 2-form Fy_, of type (1,1), represents the first
Chern class of the line bundle, namely,

(5 Fann) = e1(Lean) = —1(K).

Let E — X be a hermitian line bundle over X, and consider the spin®-structure
corresponding to the line bundle

Lg=K*® E%
Then we have the spinor bundles

Wg‘— — (/\0,0 D /\0,2) ® E,
W, =N""QE,
where A\P9 = APAT* X,

Let A(FE) be the space of hermitian connections on E. For B € A(E), we have
an induced connection

A= Acan + B2 € A(LE)
on the line bundle Ly = K* ® E?, with curvature 2-form given by

Fy=Fy + 2Fp.

can

The self duality equations (0.4) reduce to the following equations for the pair (B, @),
Ipdo + Opga = 0,
1 _
(1.1) A(Fp = )% = 5 doa|@° + 17,

) 1
4i(Fa,,, +2Fp —0), = (5.—2|‘p|2(|(/52|2 — o> + mw),

where ® = (¢g, ¢2) € (A*? ® E) x (A2 @ E), and the perturbations o, n € iA%T
are self-dual 2-forms with respect to the Kahler metric g. 7, is the component of
1 in the direction of w.

Remark 1.1. Without the |®|? term the equation (1.1) is exactly the Seiberg-Witten
equation on a Kéahler manifold. As in that case (see [S]), we have

Proposition 1.2. Let X be a connected Kdhler surface, and o, n € AV N AZT,
Then for any solution (B, ®) of the equation (1.1) either ¢g = 0 or ¢o = 0.

Proof. The proof is same as in the Seiberg-Witten case, since we need only the first
two equations of (1.1) to get the conclusion.

Applying the operator dp to the first equation of (1.1), and using 9pdp = Fg’2
and the second equation of (1.1), we have

- _ - 1
Op0ds = —0pOpdo = —Fppo = —4—€2|¢0|2|@|2¢2-
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Now take the L2-product with ¢ to get
- 1
[ 1mdal+ L ld0lla I =0,
X €
Then this yields

5%‘/52 — 07 5B¢O = 07 and |¢0|2|¢2|2 = 0.

By the unique continuation theorem for the Dirac operator, we obtain the conclu-
sion. U

As in the Seiberg-Witten case, which one of the two sections ¢, ¢ vanishes is
determined by the topology of the line bundle Lg, if c = 0, and n = 0.

Proposition 1.3. Let X be a connected Kdhler surface and let (B, ®) be a solution
of the equation (1.1) with 0 =0, n = 0. Then

(2¢1(F) — c1(K))|[w] <0 <= ¢o #0, ¢2=0;
(2c1(E) — c1(K))[w] >0 <= ¢o=0, ¢2#0.

Proof. Integrating the third equation of (1.1) over X,

wA\w

1
5 [ ot = 00lH %5

- / 2i(Fa.. +2F5) Aw
X

_ /X dr(e1 (K*) + 261(B)) A w

=47 (2¢1(F) — ¢1(K))[w],

where % is the volume form of the Kahler metric g. The conclusion follows
directly from the above equation. ([

Remark 1.4. The situation for n # 0 is different from the one of Proposition 1.3.
Let n = kw, if k >> 1 or e << 1, and (2¢1(E) — ¢1(K) — 0)[w] > 0. Then we shall
get another type of solution of the equations (1.1), see Theorem 2.1.

If we assume that ¢o = 0, n = kw € ALl and o € ALL, then the equations (1.1)
reduce to the following equations,

dpdo =0
0,2
(1.2) Fg”=0
. 1
4i(Fa,., +2Fp = 0)o = lbol*(=Igol* + k).

JFrom complex geometry, we know that the equations

dpdo =0

1.3 o
( ) Fg’2 =0pdp =0
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always admit a solution (B, ¢y).

The equations (1.2) and (1.3) are invariant under a unitary gauge transformation,
and the equations (1.3) are also invariant under a real gauge transformation, hence
(1.3) is invariant under the complexified gauge group C°° (X, C*). This fact can be
seen from the following computation.

Let u: X — C*; u acts on the pair (B, ¢g) by

uw*B=B+u 'ou—au"tou
w*do = u" o

Then we have

Oy (u*po) = u'Opu(u™"¢o)

(1.4) — o 18(60)

and
Fu*B = d(U*B)

=d(B +u'ou—a'on)

=Fp+ (0+0)(u'ou —u'on).
Let u be a real gauge, i.e. u=e"? 6: X — R. We have

uwlou —a"tou = —06 + 06,
and

Fyp=Fp+ (0+0)(—00 + 00)
(1.5) = Fp + 2000
= Fp — 2000.

JFrom (1.4) and (1.5), (u*B,u*¢p) is a solution of (1.3), if (B, ¢o) is a solution of
(1.3). Then (u*B,u*¢g) satisfies (1.2) if and only if

(1.6) 4i(Fy

can

1 * *
2B — o) = o Gol? + ).
;From (1.5),

4i(Fa,. +2F,p —0), = 4i(Fa

= 4i(Fy

+2FB _0-+2(Fu*B _FB))w
+2Fp — o), — 16i(009),,,

can can

can

on the other side B
4i(000), = —d*df = A9,

where A is the negative Laplace operator, i.e. A = —d*d.
Using the above computations, we rewrite the equation (1.6) in the following
way

1 .
(1.7) 4N0 = 6—2629|¢0|2(629|¢0|2 — k) + 4i(Fa,,, +2Fp — 0)..
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To simplify the equation (1.7), let us set

v =20

ug :=1In|go|?, or e = |¢po|?,

ug is the Green function for the divisor D defined by the zero set of ¢y, namely (see
[GH])
Aug = _47:(FB)w + 47ép.

Set A := 51y. The equation (1.7) assumes the following form:

(1.8) Av = Ae’TU (VT4 — k) + 2i(Fa,,, +2Fp — 0)y-

For simplicity, we put
W] 10 A
o-lw]:= — Aw.
X 2
Proposition 1.5. A necessary condition for the existence of a solution for (1.8)
18

167

k2
~ Vol(X)

(2¢1(F) — c1(K) — 0) - [w].

Proof. Rewrite the left side of (1.8)

Av = eV 40 (VT — k) +2i(Fya,,, — 0+ 2FB),

k A
= A(eVtuo — 5)2 — ZkZ +2i(Fga,,, — 0 +2Fg),.

Integrating the equation over X, we obtain

0= /X eVt — g)z — %1& Vol(X) + 47 (2¢1(E) — ¢1(K) — o)[w].

Hence we have
167

k2
~ Vol(X)

(2¢1(F) — c1(K) — 0)[w].

2. EXISTENCE OF SOLUTIONS

In this section, we consider the equation
(2.1)x Au = \etTuotvo(gituotvo 1) 4 A

for a constant A and a smooth function vy with

/’UOZO
X
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and the Green function ug corresponding to some subvariety D of real codimension
2. For example, equation (0.3) is of this type. Also, equation (1.8) is of this form

as we now wish to explain: Let A = %2, and put £ =1 for simplicity,

47
A=
Vol(X)

(2e1(B)[w] - c1(K)[w] — ofw]),

and let vy, vo be the solutions of

A’Ul = 4’L(FB)UJ — Al,
AUQ = Qi(FAcan — U)w — Ag,

with 4; = ﬁ&)cl(l@)[a}] and Ay = Voé%er) (—c1(K) — 0)[w], normalized by the
condition
/szo, for j = 1,2,
b'e
and put

Vg = V1 + V3.

Returning to the general case, the Green function ug satisfies an equation of the

type
Aug = —A + 4nwdp,

where A is smooth with A; := [, A = 47 Vol(D), and we let vy be the solution
of Av; = A — Ay with [ vy =0, Ay := A — Ay, vg := vg — v1. Since ug is the
Green function for the subvariety D, the method of Caffarelli-Yang [CY] yields the
existence of a first solution of (2.1):

Theorem 2.1. For A sufficiently large, the equation (2.1)) admits a mazimal so-
lution uy with uy + ug + vy < v, where U s a smooth function defined below.

Proof. Let v be a smooth function satisfying
(2.2) A(—vy + ) < Ag + Ae”(e” — 1).

Such v exists, and in fact we can choose v > 0.

Choose a constant K > 2\e?.

We want to use induction to construct a sequence wy, that converges to a solution
of the equation (2.1).

Put wg = —(up +v1) + (—v2 +v). It is clear that wo(z) — +o0, as & — xg € D.
We have

(A — K)’wo = A’wo — K’wo
= —A(UO + 1)1) + A(—Uz + 1_)) — KU)O

< —8mdp + A1 + Ay + Ae?(e” — 1) — Kwo.

Now set

(A _ K)wk — )\eUO‘f"UO‘f"wk—l(eUO‘f‘UO‘f‘wk—l _ 1) + Ay + As.
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Then we have
(A — K) (w1 — wo) =(A — K)wy — (A — K)wg
Z/\euo—f-vo-‘rwo (euo+vo+wo _ 1) + A+ Ay
— (—=8m0p + A1 + Ay + AeP(e” — 1))
=0,
for any x € X \ D.

Let B(D) = {z € X | dist(z,D) < €} be the e-neighborhood of D, and
Xe = X \ B<(D). Since

wo(z) = 400, as ¢ — xg € D,
we have
wy — wp < 0, on 0X..

The maximum principle implies that w; —wo < 0 on X.. This implies the first step
of the induction:
w1 — wo < 0 on X.

Next, by induction assumption wy —wg—1 < 0, and we want to prove wg41 —wy <
0.
We compute

(A = K)(wp41 — wg)
=\eWkttotvo (gwrtuotvo 1)

— AeWh—tttotuo (gwWh—1ttotvo 1) _ K (wy, — wy_1)
=20 Hv0) (p2Wk _ p2Wk-1) _ \eUoHv0 (W _ oWh-1) _ K () — wy_1)
> Ae(Zuo+v0) (o2Wk _ o2Wk-1) _ K (wy, — wp_1) since wy, — w1 < 0
=220 T 202 (4 app 1) — K (wp — wi_1)

for a w, with wr < w < wg_1 < -+ < wy
> 2o T200H2Wo (4 gy 1) — K (wy — wi—_1)
=2Xe?? (wy, — wy_1) — K (wy — wp_1)
=(2Xe*" — K)(wg — wy_1) > 0,

and again by the maximum principle, we get
Wi+1 — wi < 0.
We inductively get a monotonically decreasing sequence
W1 W < -+ - < wp < wo.
Let w_ be a subsolution of the equation

Aw_ > hetotvotw— (guotvotw— _ 1y 4 A 4 A4,
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Such a subsolution exists for sufficient large A, see Lemma 2.2 below.

Now we want to show that the subsolution w_ is a lower bound for the sequence
wy. We proceed by induction as above.

First we check that

A(w_ — ’wo) = A(w_ + ug + v1 + vy — ?7)
> )\elotvitvztw- (euO+v1+vz+w_ _ 1) _ )\617(65 _ 1)
= \eW-TwotY(eW-—wott _ 1) — XeV(e¥ — 1)

= A7 (e2W-—w0) _ 1) _ \eP(eW-"W0 — 1),
JFrom the maximum principle, we have
w_ — wo < 0.
By induction, we suppose that w_ —wj < 0. We want to prove that w_ —wy41 < 0.

(A — K)(w- — wr41)
> \etotvotw— (guotvotw— 1) 4 A} + Ay — Kw_

— Aetotrotwk (gUotvot W 1) A} — Ay + Kwy
:/\62(“04'“0)(62“’* — @2Wk) — ot (gW— _ oWk) _ K (w_ — wy,)
Z)\e2(“0+”0)(e2“’* — ®) — K (w_ — wy)
=22 (Wotv0) 20, ) — K (w_ — wy)

for a w with w_ <w <wg < -+ < wy
> \e2(woFvo)F2wo (o gy ) — K (w_ — wy,)

=(2Xe*” — K)(w_ — wy) > 0,

for any x € X \ D, where the third and last inequalities are from the inductive
assumption.
JFrom the maximum principle, we obtain the conclusion

W < Wg1-

Combining the two inductions, we get a monotonically decreasing sequence that is
bounded from both sides by smooth functions, namely

W < Wil < W < -+ < wp < Wp-

Then by the standard bootstrap argument, wy converges to a solution u, of the
equation (2.1) in C¥, for any k > 0. From the argument of Caffarelli-Yang and
Tarantello [Ta; p3776], this solution is the maximal one. O

We now proceed to derive the lemma utilized above.
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Lemma 2.2. For A sufficiently large, there exists a subsolution w_ of

Aw_ > Nelotvotw— (6U0+U0+w— _ 1) + A.

Proof. Recall that B.(D) is the e-neighborhood of D. Let f. be a smooth function
with 0 < f. <1, fo =1 on B.(D), and f. =0 on X \ Ba.(D).
Let ¢ > 0 be a constant, and define a new function

1
e,c — A € T X /v A €
The function g. . has the following properties:

(1) fX Je,c — 0;
(2) ge,c > A, on B.(D), for ¢ sufficiently small and ¢ sufficiently large.

The first one results from the definition of g. ., and the second one can be seen
from the following computation.

Gee> A+c— (A+C)%§§§7))
Vol(B, (D)) Vol(By.(D))
=A+c(l- T(X)) . W
> A,

if ¢ is sufficiently small, and c is sufficiently large.
A solution w of the equation

Aw = Je,c»

is unique up to additive a constant, and we may therefore choose a solution w_
with evotvot®w— <1 on X.
On B.(D),

> /\eu0+110+w7 (euo+vo+w7 _ 1) T A.

-’

Aw_ = Ge,c > A

~

<0
On X \ B.(D), let
po = inf{e“e V= | 3 € X \ B.(D)},
piy = sup{e" Tt | g € X\ B.(D)}.

Obviously
0<po<pr <l

Let ¢co = —p1(po — 1), then
elotvotw— (6U0+'U0+'w— _ 1) < ,Ul(,uo _ 1) = —¢p < 0.
Choosing A > 0 sufficiently large, we have
Ge o > )\eu0+'U0+'w7 (6U0+'U0+'w— _ 1) + A.

Hence, we get a subsolution w_ for A sufficiently large. ([
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Corollary 2.3. If 2i(Fy4,, — o), > 0, then there exists a critical value A\, > 4A
such that for every A > X, the equation (1.8) admits a mazimal solution u, with
uy + ug + vg < 0, while for A < A, the equation (1.8)x admits no solution.

Proof. 1f 2i(Fy,,, — o), > 0, then we can choose v = 0, since
A’Ug = Qi(FAcan — O')w — A2 Z —AQ.

This is the inequality (2.2) for v = 0.
Let
Ac = inf{\ > 4A | the equation (2.1), is solvable }.
If uy is a solution of (2.1)y, then uy is a subsolution of (2.1),, for any Ay > A, since

AuA — )\eUA+UO+UO (eUA+UO+UO _ 1) + A
— AleUA+uO+vo(em+uO+vo _ 1) + A

+ ()\ _ )\1)6“,\-1"&0-}-110 (eux-f-uo-l-’uo _ 1)

- -
'

>0
> AleUA+uO+vo(em+uO+vo _ 1) + A.

JFrom the proof of Theorem 2.1, the existence of the maximal solution of (2.1)y
depends on the existence of a subsolution of (2.1)). By the definition of A, the
equation (2.1), admits a maximal solution for any A > A., and admits no solution
for any A < A.. O

Tarantello [Ta] proved that in the two-dimensional case, (2.1) has a second solu-
tion, and this solution (or else a third one) is known to have a different asymptotic
behavior at least in the cases of one and two vortices, see [Ta], [DJLW1], [DJLW2],
[NT]. The method, however, does not extend to higher dimensions, because we then
do not have a Palais-Smale condition anymore. In this section, we develop a heat
equation method that yields a second solution of (2.1) in any dimension.

We recall the equation as

(2.3)x Ay = \etTHotvo(gutuotro 1) 4 A,

Let uy, be the solution obtained in Theorem 2.1 by using the super/subsolution
method, or the solution obtained in Corollary 2.3 for any A > A.. We choose a
fixed subsolution 1 of equation (2.3), for A sufficiently large, or A > A. in the case
of Corollary 2.3.

We define a partial ordering in L»2(X) N C°(X) by f1 > fa (resp. f1 > fo) if
fi(x) > fo(x) (vesp. fi(z) > fa(x)) for all x € X. If f1 > fo, we define

[fo, f1] :=={g € L"*(X)NCX) | f2 < g < f1},
and
[fo. f1) :=={g € L"*(X)NC°(X) | f2<g< f1}.

Here, possibly fi = 400 or fo = —oc.
Set
Sy = {u is a solution of (2.1)x | u € (o, u,]}-

Clearly, Sy # 0, since uy € Sj.
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Lemma 2.4. There exists uy € Sy such that Sx N (Yo, us] = {ul}, i.e. there is no
solution u of (2.3)x with u € (o, u}).

Remark 2.5. We believe that Sy = {u,}, at least for large A.

Proof of Lemma 2.4. For any u € Sy, define u(u) = mingex (u(z) — 1p(z)) and
po = infyes, p(u). By Lemma 2.9 below, it is easy to show that Sy is compact, see
also [Ta]. It follows that there is a u} € Sy such that gy = p(u}). Assume that
o = wi (wo) —tho(w0). We claim that Sy N (1, uy] = {u}}. Assume by contradiction
that there is another solution v € (1o, u}]. We have, by the definition of yq,

v(z) < ux(z) and v(wo) = ux (o).

The maximum principle implies that v = u}, a contradiction. O

By Lemma 2.4, we may assume Sy = {u,}. Now we consider the following
functional

1 1
(29) Jx(u) :/ 5|vu|2*_5)\(6u-i-u0+110 _1)2+AU
X

in
Xy = (—o0,uy ] N CH(X),
We want to show that u, is a strict local minimizer of Jy in X,. We first show

Lemma 2.6.

Ia(uy) = inf  Jx(9).
9E(Yo,uy]

Proof. Minimizing Jy in (1o, u, ], we can obtain a solution v by a standard method
(see Appendix in [Ta]) such that v € (¢p, u,]. (From the discussion above, v = u,.
Hence,

Ja(uy) = inf  Jx(9).
96(1/’072)\]

u

Remark 2.7. ;From Lemma 2.4, u, is a local minimizer of Jy in X, with respect
to the Cl-norm, i.e., there exists a dp such that if u € Xy with ||u, — ul|c1 < o,
then Jy(uy) < Ja(u). Actually, we shall show in the sequel that u, is a strict local
minimizer of .Jy.

To achieve this, we first discuss the heat equation with respect to (2.3)y,

{ up = Ay — AeTuotvo (6U+UO+UO — 1) — A

(255, u(-,0) = go

which will be also used to construct deformations below.
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Lemma 2.8. For any go € X, there exists a T € (0, 00] such that (2.5)x admits a
solution u(-,t) in [0,T), and either limy_,p Jx(u(t)) = —o0, or Jy(u(t)) > ¢ > —oo
forany t € [0,T), in this case T = +o00 and u(-,00) = limy_, oo u(+,t) is a solution
of the equation (2.3)x. Moreover, solutions of the equation (2.5) continuously
depend on initial functions.

To prove Lemma 2.8, we need the standard apriori estimates for parabolic equa-
tions. Here we first prove an auxiliary lemma.

Lemma 2.9. For any u € Xy, let f = Au — Ae¥tuotvo(gttuvotvo _ 1) — A [f
Ifllzz < c1, then ||Vul||g2 < es; If, in addition, |Jx(u)| < co, then ||ul|p12 < cq, for
some constants cz and cy4 depending only on the geometry of the manifold X, the
constants c1, c2, A\, A and ||9||~.

Proof. For simplicity, we set
h = AetTuotvo(gittotvo 1) 4 A
First we know
u—+ug+ v < uy +ug+vg < U, for any u € Xy,
hence we have
[hll e = [IAenuotoo (errtuotes — 1) 4 Aflp~ <,

where ¢ depends on A, A and ||v||f~.
Taking the L2-product of u with the equation f = Au — h yields

/fu:—/ |Vul? + hu.
b'e X

Integrating the equation f = Au — h, we have

(Af+h:&

“:wixyéu

be the mean value of u. Combining the two equations, we have

Jrvuk = [ g+

— [¢+m-a

X
1
gs/ﬁu—uﬁ+—/ﬁf+hﬁ
X €Jx

1
si/|w|2+—/|f+h|2,
A )x €Jx

Let
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where € is some positive constant, and A; is the first positive eigenvalue of the

Laplace operator A. Choosing an ¢ with ﬁ < %, we obtain

/ Vuf? < c(e,m/ FHhP<e
X X

On the other side,

1 A
I (u) :/ —|Vul? + —/ (et tuotvo —1)2+A/ u,
x 2 2 Jx b'e

and we rewrite the above equation

—_# _l 2_5 utuo+vo 2

to get
ul <c,

and our conclusion
Jullpra < o [ Va +0) <
X

where ¢ depends A, A, ||v]|p~, ¢1 and ca. O

Proof of Lemma 2.8. As in the proof of Lemma 2.9, we set
h = \e¥tuotvo (eu—i-uO—i-vo _ 1) + A.

Recall the equation (2.5)

(2.6) { uy = Au—h

U’('a 0) = 9o for go € X

First we know that if go € Xy, then u; € X, for any t € [0,7), where T is
the maximal existence time of the solution, since u, is a solution of the equation
Au — h = 0. If limy,p Jy(u(-,t)) = —oo, we have shown the first statement of
Lemma. So we assume that lim;_,p Jy(u(-,t)) = ¢g > —oo. Then by Lemma 2.9,
we have
sup_[[h(-, )z < c.
0<t<T

By the general theory of parabolic equations, one may have the following estimates
for a solution u of (2.6) (see e.g. [L]):

(2.7) [u(-t)[[cra < e sup [[A(-¢)[[Le + sup [lu(-t)||L2),
0<t<T 0<t<T
and

(2.8)  lu(, Olleze + |57 D)llce < el sup [[h(-t)][cx + sup [[u(-,8)[r2),
0<t<T 0<t<T
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where c is a constant independent of time ¢. By the bootstrap argument, from (2.7)
we have u € C1®, then from the definition of h, we have h € C®. Again from (2.8)
we have u € C%®, Then from the standard argument for the heat equation and the
estimate (2.8), we can get T' = +o00, namely, the equation (2.5) admits a unique
global solution wu(-,t).

Now we will prove the second conclusion of Lemma 2.8. First we note that it is
enough to prove

(2.9) |u(-, )| z2 < e, for all t,

where c¢ is independent of ¢. Since from (2.8) and (2.9) we have uniform estimates
of |lu(,t)|lc2.e and [|3%(-,t)||ce, then the limit limy oo u(-,¢) exists, and letting
u(-,00) = limy 00 u(-, t), u(-,00) is a solution of the equation (2.1).

7i L2 9

where ¢ is independent of .

First we assume that |Jy(u(-,%))| < ¢, otherwise u(-,¢) will go to —oo. Second,
by a simple computation the functional is decreasing along the flow, i.e.,

d
=
TR /‘

Integrating over the time ¢,

Ia(u(-,T)) = Ja(u //‘

By the assumption of the finiteness of the energy, we have

I,

In order to get inequality (2.7), we first differentiate ||u(-,¢)||3. with respect to t,

d 9 0%u Ou
(- ,=9( 2= =
9t 02 <8t2, 8t>

dxdt.

2
dxdt < c.

ou Oh Ou
(2.10) <AE ST E>
ou Oh Ou
— _2/ ‘v_ _ grow
X ot x Ot Ot

where the second equality comes from the differentiation of the equation (2.6). On
the other hand, by the definition of A

Oh
ot

ou

= )\e¥tuotvo (Qeu—i-uo—i-vo _ )
ot’
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Noting u(-,t) € Xy, i.e., u(-,t) + up +vp < v, we have the pointwise estimate

oh ou
- < | 2=
Gren| <l G|
consequently,
/ Oh Ou /
ot ot ’

Integrating the equation (2.10), we have the following estimate

ou ou r ou
155 DI = 15O < e [ [ 15 @ 0P o
/ / |— x,t)|2dxdt,

for any T' > 0. This proves the claim.
JFrom Lemma 2.9, we have

lu(-,t)||Lr2 < ¢, for all ¢,

since we have uniform bounds for [Jx(u(-,t))| and ||2%(-,t)|| 2 for all .
Hence, we prove Lemma 2.8. U

Lemma 2.10. There exists a 6 > 0, such that

inf J,\(u) > J)\(g)\).

lu—uyllcr=90

Proof. First choose a constant g > 0 such that for any v € X with ||u —u,||cr <
80, u € (o, uy]. Then we claim that for any u € X with 5y < ||u — uy||cr < do,

oo < ||Au — AetTHotvo(gltuotvo 1) _ A|lr. < e

Otherwise, we may obtain a solution in (9, u, ).

Assume
inf Ja(u) = Jy(uy).
(o1 B =gy ) = )
Let 5
U = {u(, ‘ lu — uyllor < (50 and t = 4—0},
c
and 5
I'=0U = {uf(, ‘ |lu —uy|lcr = —(50 and t = 4—0 .
c
It is easy to check
f Jy(u) < inf I (u) 50<J()
in U in u) — 09— U
uwel lu— u>\||cl—§50 A 040 AUy )

which contradicts Remark 2.7. ]
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Theorem 2.11. For any A > ., there exists another solution uy of the equation
(2.1) with the property that ay € (—o0,uy), but ax & (o, uy).

Proof. We want to prove the theorem by using the mountain pass argument.

It is clear that the heat flow (2.5) preserves X . It is trivial to see that Jy(u+c)
— —o0 as ¢ — —oo. Take a p > 0, such that

In(uy — p) < Ia(uy).
Let u(x,t; c) be the solution of the heat equation
du _ Aq — NeUtuotvo(gutuotvo _ 1) _ A

(2.11) { ot ( )

u(z,0;¢) =uy(x) —c, for ce|0,p]

We note that y
%J)\(u(',t; c)) <0,

Jx(u(-,t;¢)) is monotonically decreasing in ¢. In particular,
In(u(ert; 9) < Ta(u(0; p)) = Ja(u — p) < J(uy) for all £
and
Ty(u(-1£0)) = Ty () for all 1,
since u(x,t;0) = u, (x) for any t. We consider the curve u(-,¢; s), where s € [0, p] is
variable, and t is the deformation parameter. By Lemma 2.10, there is a positive
constant € such that for any ¢ there exists a ¢; € [0, p] with

(2.12) Ia(u(-st5¢0)) = Ia(uy) +e.
For a sequence t, — 400, we thus obtain a sequence ¢;, € [0, p]. Since [0, p] is
compact, we assume that ¢, converges to ¢o € (0, p). Then we have

Ix(u(-, +00;¢0)) = lim In(u(ctnicr,)) > Ia(uy) + €.

+oo
We claim that
Ia(u(-5t5c0)) = Ia(uy) + e,
for all ¢.
If the claim is not true, there is a ¢y such that
J)\(u(', to; C())) < J)\(Q)\) + €.
Jx(u(-,t;¢p)) is monotonically decreasing in ¢, and thus for any ¢t > ¢,
In(u(-,t;5c0)) < Ia(u(-tosco)) < Ia(uy) + €.
On the other side, u(-,t;¢) is continuous in ¢ and ¢, and thus for n large enough,
Ia(u(-;to;ee,)) < Ia(uy) + ¢,
and for ¢,, > ty, we have
In(ucs tnice,)) < Ia(u(-toscr,)) < Ia(uy) +e,
This contradicts the inequality (2.12). Thus, we prove the claim.
Let uy = limy o0 u(+,t;¢0). By Lemma 2.8 uy is a solution of the equation

(2.1), and
Ia(uy) = lim Jy(u(-,t;¢0)) > Ia(uy) +e.

t—+4o00
On the other side, from Lemma 2.4 uy & (v, u, ).
This finishes the proof of Theorem 2.11. U
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3. THE ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS

Let uy be the solution of the equation
(3.1)x Auy = Ae"rTuotvo(giatuotvo _ 1) 4 A

In this section, we will study the asymptotic behavior as A — oo of the solutions
of the equation (3.1)y obtained in sections 1 and 2. In this section for technical
reasons, we choose the perturbation 0 = Fy_, . From Corollary 2.3, any solution
uy of (3.1), satisfies the inequality uy 4+ uo + vo < 0. We will show the following
theorem.

Theorem 3.1. Let puy = %%(X)IX ux. If AeFr — oo then e Tuotvo 1 glmost

everywhere as A — oo; if et < ¢ then e tUotv s (O glmost everywhere as
A — o0,

We need the following Lemma.

Lemma 3.2. Let n =dim X. Then for any 1 < ¢ < 2=, ||[Vux||z« < c.

n—1’

Proof. Let ¢ = ﬁ > n. Then

32 [Vusles <supl] [ VusVal[¢ € 229X, [ 6= 0,6l = 1)
X X
By the Sobolev embedding theorem we have for ¢ as in (3.2)

[¢llee(x) < e

It is clear that

fsuse|-|f e

< ||¢||L00(X))\/ eUrtuotvo (euﬁ_uo_wo B 1)
X

<c

since uy + ug + vo < 0. This proves Lemma 3.2. Ol

Proof of Theorem 3.1. By the Sobolev embedding theorem, we may assume that
U\ — fa — U in LP(X)

for some p > 1.
Integrating the equation (3.1) on both sides, we get

/ ()\eux-i-uo—i—vo (eu>\+uo+vo _ 1)) + AVOl(X) =0,
X

hence
AeMr / euA+UO+'UO_H>\(1 — eMA eux—i-uo—kvo—ux) —A- VOI(X).
X
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If Ae#* < ¢, we have puy — —o0, so

etrtuotvo — ohix . glur—pa)tuotvo _y () g6 as A — 0

We consider now the case that Ae#* — oo. Because uy < —up—vp, by the maximum
principle we have ) < 1. Hence 0 < e#* < 1. We assume that e#* — «. By Fatou’s
Lemma, we have

/ euoo—i-uO—i-vo(l _ aeuoo—i-uo—i-vo) =0.
X

So we have
Uoo+Uo+vo — —
«Q

€ a.e.

and consequently

uoo+u0+v0:10ga.

It is clear that [y oo = [y (uo 4+ vo) = 0. Hence v = 1 and us, = uo + vo.
This proves the theorem. O

Theorem 3.3. There are two solutions uy and uy of the equation (3.1) with the
following properties:

(1) |exatuotvo| — 1 g.e., as X — oc;
(2) |etrtuotvo| — () g.e., as A — oo.

Proof. Tt is clear that the solution obtained by the super/sub-solution method sat-
isfies
letatuotto] 1 gee., as A — oo.

It suffices to show that the second solution we obtained satisfies
|efrtuotto| (0 g.e., as A — oo.

For simplicity, we just denote the second solution by uy. By Theorem 3.1, we need
only show that uy does not converge to —ug — vg in LP(X) for some p > 1. (Note
that, in the first case of Theorem 3.1, uy — uq in LP(X) for some p > 1). We
will show in the sequel that, if uy — —ug — vg in LP(X) for some p > 1, then
ux € [, —ug — vg] for large A\, where g is the subsolution used in the proof of the
existence for the second solution.

We first show that, for any ¢ > 0,

uy — —ug — v in C°(X \ Bo(D))

where B, (D) = {z € X|dist(z, D) < ¢}, and D is the zero set of ¢o.
In X \ B:(D), we have

£
2

A(U,)\ + Ug + ’Uo) S 0,

since v = 0 and v = 0. By Theorem 8.17 in [GT], we get

(u>\ + ug + vo)(:v) > —c(€)||u>\ + ug + ?)0||LP(X\B%(D))7
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for all z € X \ B.(D). Since ux(z) < —(up + vo) () for all z € X, we have

||U)\ + ug + UOHC’O(X\BE(D)) < C(€)||u>\ + ug + 'UOHLP(;c)

(3.3)
— 0, as A — oc.

We set my . = mingp_(pyux(z). It is clear that lim._,o limy_oc ma = c0. We
then consider uy(x) — my . in B.(D). Since, for n = dim X,

A
Auy —my e — 2—|£L‘|2) = \eUrFuotvo(guattotvo 1)
n
<0,
and 1 1
_ a2 > 42
(U’)\ m)\zs 2n|$| )|8BE(D) - 27,)/6 I
from the maximum principle, we get
A A
3.4 — e — —|z]? > ——¢£2,
(3.4) ur(@) —mae = o—fal” > — e
for all x € B.(D). This implies that
A
(35) U,)\(.T) Z mx,e — %5 > ¢0($)7

for all z € B.(D), provided that X is large and ¢ is small. (3.4) and (3.5) imply
that

ux > o,

for A sufficiently large. This is in contradiction with our construction for the second
solution, namely, uy & [1o, u,].
This finishes the proof of Theorem. O

Theorem 0.1 and Theorem 0.2 are direct consequences of Corollary 2.3, Theorem
2.11 and Theorem 3.3.
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