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Abstract

We develop a bosonization scheme for the collective dynamics of a spinless

two�dimensional electron gas ��DEG� in the lowest Landau level	 The system

is treated as a continuous elastic medium
 and quantum commutation rela�

tions are imposed between orthogonal components of the elastic displacement

�eld	 This theory provides a uni�ed description of bulk and edge excitations

of compressible and incompressible phases
 and explains the results of recent

tunneling experiments at the edge of the �DEG	
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Bosonization ��� is a powerful mathematical technique to describe the long�wavelength

dynamics of correlated electronic systems� in which the motion of the electrons is highly

collectivized� This technique has proved very useful in studies of the behavior of interacting

electrons in one�dimensional metals� Higher�dimensional generalizations have also been pro�

posed ���� More recently� it has been realized that the edges of a two�dimensional electron gas

��DEG� in a strong magnetic 	eld behave as a 
chiral Luttinger liquid� ��� and are therefore

amenable to bosonization ���
�� A collective description of the uniform incompressible �DEG

in a strong magnetic 	eld such that all the electrons reside within the lowest Landau level

�LLL� ��� was pioneered by Girvin et al� ���� and an e�ective bosonic theory was developed

shortly afterwards ���� The similarity between the local structure of the �DEG in the LLL

and that of a classical Wigner crystal was exploited by Johansson and Kinaret ��� to set

up an 
independent boson model� for the electronic spectral function� an equivalent model

was derived by Haussmann ��� from diagrammatic theory� Finally� several authors have used

bosonization schemes to describe the dynamics of a smooth compressible edge in a quantum

Hall liquid �������� or of the electron gas in a weak magnetic 	eld �����

In this Letter we formulate a bosonic theory of the linear dynamics of a general uniform

or nonuniform distribution of electrons in the LLL� Unlike previous theories ������� the

present one treats bulk and edge excitations of compressible and incompressible states on

an equal footing� One of our main results is a simple explanation for recent experimental

observations of one�electron tunneling characteristics in the edge ��
� of the �DEG�

The basic idea of our approach is to treat the electrons in the LLL as a continuous

elastic medium characterized by an equilibrium density ����r�� and by a local displacement

	eld �u��r� t�� such that the time�dependent density is �to 	rst order in �u� ���r� t� � ����r�� �r�

�����r��u��r� t�� � ����r������r� t�� We ignore the spin in this paper� Under the assumption that

both the equilibrium density and the displacement are slowly varying on the scale of the

magnetic length l � ��hc�eB���� �where B is the magnetic 	eld� the e�ective long�wavelength

Hamiltonian is
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where ������r� �r�� is the inverse of the proper static density�density response function ����� � is

the shear modulus �discussed below�� s�� � ��u���r���r���u���r���r���� is the strain tensor�

and �� 	 are cartesian indices� Eq� ��� generalizes the Hamiltonian of classical elasticity

theory ���� to take into account the long range of the Coulomb interaction� and of ����r� �r��

in the incompressible states of the �DEG ����

The second term of Eq� ��� is the crucial new feature of our theory� Ordinarily� the

shear modulus of a liquid is taken to be zero� but this is only true for shear deformations

which occur slowly compared to the thermalization time 
 of the system� At frequencies

higher than ��
 the correlated electron liquid behaves as a Wigner glass� and therefore

exhibits a nonvanishing shear modulus� The essential assumption is that� in this system�

the relaxation frequency scale ��
 is much smaller than the characteristic frequency of the

collective dynamics�

The algebra of the displacement operators ux� uy� in the LLL� is deduced from the

canonical quantization condition for the hydrodynamical momentum and displacement 	elds

�p���r�� u���r��� � �i���r � �r������ by projecting out the higher Landau levels� i�e� averaging

over the fast cyclotron motion� This leads to

�u���r�� u���r��� � �i������r � �r�� l������r� � ���

where ��� is the two�dimensional Levi�Civita tensor� This is consistent with the commutation

relation between projected density �uctuations ��� in the long wavelength limit� namely

����r�� ���r��� � �i�rr � �rr�����r�l
����r � �r���

Bosonization of ��� is accomplished by
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where bn and byn are boson operators� satisfying the usual algebra �bn� b
y
n�� � �nn� etc�� The

functions gn���r� �g
�
n���r��� with n � �� are the positive �negative� frequency solutions of the

eigenvalue problem

Z
H����r� �r��gn���r��d�r� � 
ngn���r� �
�

which is equivalent to the classical equation of motion� �We adopt the convention of summing

over repeated cartesian indices�� The operator H�� is given by
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where �����r� �r�� � ������r� �r�� � e��j�r � �r�j� and �� and ��� denote derivatives with re�

spect to r� and r�� respectively� It is hermitian with respect to the scalar product

�f� g� �
R
f ����r�i���g���r�d�r� and its eigenvalues are therefore real� For each eigenfunction

gn with positive eigenvalue 
n� there is a complex conjugate one g
�
n � g�n with negative

eigenvalue �
n� These eigenfunctions can be chosen to satisfy orthonormality relations

�gn� gm� � sgn�n��nm �n and m can now have either sign� ����� The 
completeness relation�

has the form

X
n��

�gn���r�g
�
n���r

��� g�n���r�gn���r
��� � i������r � �r��� ���

These equations guarantee that the commutation relation ��� is satis	ed� Then� substitution

of Eq� ��� into Eq� ��� yields the Hamiltonian in the desired formH �
P

n��

�
bynbn � ���

�

n�

Our next step is to construct the electron tunneling operator ���R� associated with the

LLL coherent state orbital centered at �R� This operator must satisfy the commutation

relation

����R�� ���r�� � ���R� exp��j�r � �Rj���l�����l� � ���

i�e�� destroy a gaussian density near �R� Eq� ��� alone does not uniquely determine ���R��

In order to do this we must also specify its commutator with the vorticity �v��r� �






�����������r�u���r��� For the purpose of studying tunneling� we choose ����R�� �v��r�� � ��

because the incoming electron is not expected to change the vorticity at the initial time�

The solution has the form

���R� � exp
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��X
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where the 
electron�phonon� matrix elements Mn��R� are written as Mn��R� �
R
exp��j�r �

�Rj���l�� �Mn��r�d�r���l
�� and

�Mn��r�
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The calculation of the local Green�s function G��R� t� � �ihT���R� t��y��R� ��i can be

carried out by standard techniques ������� Here we simply report the zero temperature

result for the integral equation connecting the electronic spectral function A��R� 
� �the

Fourier transform of G��R� t�� to the collective excitation spectrum�
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is closely related to the local dynamical structure factor of the liquid� The above equations

constitute a complete scheme for the calculation of single particle and collective properties

of a general distribution of electrons in the LLL� We now discuss some speci	c examples�

��� The uniform �DEG� Let �� be the uniform density� The normalized eigenfunctions

of Eq� �
� have the form

g�qL��r� � iql
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where


q � ����

�
v�q� �

K�q� � �

���

����

�ql�� ��
�

is the frequency of the mode at wavevector �q� v�q� is the Fourier transform of the electron�

electron interaction� K�q� � ���� ��
���q� is the q�dependent bulk modulus� and the labels L

�longitudinal� and T �transverse� refer to the components parallel and perpendicular to �q�

The electron�phonon matrix element of Eq� ��� has the form

Mq��r� �



v�q� �

K�r�q� � �

���

�
e�q
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where �q � �iql�
���
� gqL��r� and K�r�q� � ����

R
������r � �r�� exp�i�q � ��r� � �r��d�r�� �The reason

for the apparently unnecessary subscript �r will become clear below��

We now distinguish two cases� �i� Compressible case� limq��K�q� � K is 	nite� The

values of K and � can be approximated by those of a classical Wigner crystal� namely�

� � �c � ����������e
��l����� and K � Kc � ��c ����� The long wavelength modes have

frequencies 
q � q��� for Coulomb�like interaction �v�q� � ��e��q� and 
q � q� for short�

range interaction �v�q� � e�d�� We have now all the necessary input for calculating the

spectral function from Eqs� �������� The low�frequency behavior �where 
zero� frequency

is the chemical potential� is found to be A�
� � 
����e����
���
for Coulomb interaction and

A�
� � 
�����	�
	���d�l	�����
�� for short�range interaction� Complete numerical results are

shown in Fig� �� They are in good agreement with previous calculations �������� as well as

with experimental data �����

�ii� Incompressible case� Within the single�pole approximation K�q � �� � ������q
��

where � is the collective excitation gap at q � �� and � � �� � ����� is derived from the

Laughlin wavefunction at 	lling factors � � ��l��� � ��odd integer ���� Using Eq� ��
� we

	nd at long wavelength 
q � ���������
��� independent of q� This formula can be used

to deduce the value of � if � � limq�� 
q is known� Alternatively� one can substitute

� � �c from the classical Wigner crystal and obtain �
 � ������
������ ����e��l� which

gives ���� � ����e
��l� ���� � ���

e

��l and ���� � �����e
��l� These results are in good

�



agreement with variational estimates ������� with the exception of the 	rst one which is al�

most �� lower than the variational one� but compares favorably with exact diagonalization

studies �����

The calculation of the spectral function is more subtle� Straightforward application

of the linear response formulas ������� is incorrect� because the addition �or removal� of

charge at point �R creates a compressible region in the middle of the liquid� changing the

topology of the incompressible region from simply to doubly connected� The change in

topology can be taken into account in the following manner� We stipulate that the bulk

modulus kernel ���� ��
����r� �r�� has the form characteristic of an incompressible liquid �namely�

j�r� �r�j� log j�r� �r�j� when both �r and �r� are within the incompressible region� but it is given

by the local form Kc���r � �r�� when either �r or �r� are within the compressible 
core� of

the excitation� Because the size of the core region is microscopic� its presence does not

a�ect signi	cantly the frequencies of the long wavelength modes� On the other hand� in the


electron�phonon� matrix element� given by Eq� ����� we must use K�r�q� � Kc� because

�r is inside the core region� Within this scheme� the calculation of the spectral function

can be straightforwardly carried out� without adjustable parameters� In Fig� �� we plot

the results for � � ���� We have used q�dependent K and � in order to 	t accurately

the collective mode dispersion and structure factor ��� at 	nite q� The essential di�erence

between this and the compressible case is the appearance of a ��function peak at 
 � �� which

now corresponds to �� �recall that in the incompressible liquid the chemical potentials for

addition or removal of charge� �� and ��� are di�erent ��
��� The strength of the ��function

is Z � exp��
P

q jMqj
��
�

q �� which would have vanished in the compressible case� and does

not vanish here because of the gap� The peak at �� re�ects the ability of the incompressible

liquid to accommodate the incoming electron in the ground state as topological defects of

the initial incompressible state� without creating collective excitations� The incoherent part

of the spectral function� at higher frequencies� corresponds to the creation of additional

collective excitations �����

��� Edge dynamics� The case of a smooth compressible edge has been treated in previous

�



publications ����� Here we focus on the case of a sharp edge� which is directly relevant to

the interpretation of recent lateral tunneling experiments by Chang et al� and Grayson et

al� ��
�� Let us consider a straight edge along the y axis� and let eE!x be the gradient of the

con	nement potential at the edge� The density �� is assumed to be uniform for x � �� and

zero for x � �� The presence of the edge electric 	eld breaks the rotational symmetry of the

Hamiltonian ���� and must be taken into account with the additional term

Hedge � e
Z
���r��u��r� � �E d�r � ����

With this term included into the eigenvalue problem �
�� we obtain a new set of solutions�

which satisfy the conditions �r � �g � � and �r� �g � � for x � �� Neglecting the logarithmic

correction arising from the long�range Coulomb interaction� they obey the equation of motion

�i
g���r� � v�����gx��r� � ����

where v � cE�B is the classical drift velocity� The orthonormal solutions are �for x � ��

�gq��r� � q���eqx�iqy�!x� i!y� � ����

where q � � is a one�dimensional vector along the edge� and the eigenvalues are 
q � vq�

These are analogous to gravity waves on the surface of a liquid� Because there is neither

density change nor shear strain in the interior of the system� these solutions do not depend

on the values of the bulk elastic constants� The use of elasticity theory is justi	ed at small

q since the displacement 	eld �u is slowly varying�

The e�ective edge dynamics can be derived from the full dynamics by projecting the

latter onto the subspace spanned by the edge�wave solutions of Eq� ����� Within this

subspace� we can de	ne an 
edge density� operator �edge�y� �
R
����x� y�dx � ���ux��� y��

where the bar denotes projection onto the edge�wave subspace� i�e�� for instance� �ux��� y� �

�l��
���
� �

P
q�� q

����bqe
iqy � byqe

�iqy�� It is easy to verify that the edge density satis	es the

standard Kac�Moody algebra ��� ��edgeq � �edge�q� � � ��q�����qq� where � is the bulk 	lling fac�

tor� Thus� we have deduced the dynamics of the chiral Luttinger liquid at the edge from a

�



projection of the canonical dynamics of displacement 	elds in the bulk� The edge tunneling

operator� obtained by imposing ���y�� �edge�y��� � ��y���y � y�� in the edge�wave subspace�

is still given by Eq� ���� with the sum running over the edge modes� and the matrix element

Mq�y� � v���q������e�iqy� Use of Eqs� ���� and ���� then leads to the conclusion that the

tunneling current must vanish� at low bias V � as V ��
 � This result is in good agreement with

the experimental 	ndings� The present derivation explains why the tunneling exponent is

found to depend only on the bulk density� and not on whether the bulk is compressible or

not�

In summary� we have developed a magneto�elastic bosonization scheme for the long

wavelength dynamics of the �DEG in the LLL� Our results show that this scheme can

provide a uni	ed description of di�erent physical e�ects in the bulk and at the edge of the

system�
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FIGURES

FIG	 �	 Spectral function for a compressible liquid at � � ��� with short range interactions

�d � ��l
 dashed curve�
 with long�range interactions �dotted curve� and for an incompressible

liquid at � � ��� �full curve
 the ��function peak at � � � contains around �� of the spectral

strength�	
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