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1. Introduction

The paper deals with homogenization of a boundary condition for the heat
equation which is rapidly oscilating between Dirichlet and Neumann type.
Since the area fraction of the set where Dirichlet conditions are prescribed is
order 1, in the first term of the expansion the Neumann condition is forgotten.
In order to see the asymptotic effect of the Neumann boundary condition on
the solution one has to go to the second term of the expansion. In two dimen-
sions and in a special geometric setting this problem was already considered
in [6].

Here we try to present a “most general” framework where deterministic
homogenization methods can still be applied to calculate the second term in
the asymptotic expansion.

The condition we arrive at is roughly speaking asymptotic almost period-
icity and as a special example quasi-periodicity of the characteristic function
of the set on the boundary where Dirichlet conditions hold. Almost period-
icity has to be understood in the metric given by L? capacity (see Assumption
(P)). The homogenization method we employ is a blow up technique com-
bined with a suitably strong uniqueness result for solutions - in this case of
a boundary problem for the Laplace equation in half space. The technique
is similar to the one used for convergence of saturation in the matrix in [3].

For other approaches for homogenization of boundary conditions see e.g.
[8] and references therein.

*Supported by the Alexander von Humboldt Foundation
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Our study initially, in Section 2, parallels the corresponding investiga-
tion in [6] concerning basic a priori estimates. As a simple consequence one
obtains the first term in the e—expansion. The small parameter £ quantita-
tively describes the oscilation between Dirichlet and Neuman type boundary
conditions. Section 3 investigates harmonic functions in the half-space sub-
ject to the mixed boundary conditions. Here the main result says that if a
solution with homogeneous boundary conditions is sublinear, then it is the
trivial solution. Using the blow up argument, Sections 4,5 provide a detailed
analysis of a weak limit of the rescaled difference of the solution and its first
term in the expansion divided by . The second term in the e—expansion is
determined in Section 6 provided the mean value over the hyperplane z, = 0
of the limit function studied in Section 4 exists. The key understanding of
circumstances, under which the mean value of a harmonic function with given
mixed boundary condition on the hyperplane exists, is capacity, introduced
and utilized in Section 7. Finally, Section 8 presents some applications.

We finish this introductory section by introducing some notation. For a
typical point in R* we write x = (x1,...,2,) or x = (2/,z,), where 2/ =
(#1,...,2p—1) and we set R} = {2 € R* | z, > 0}, Qp = Q x (0,7),
Nr =N x (0,T), etc. An open ball in R” with center z and radius r will be
denoted by

B(z,r) ={yeR" | |t —y|<r} and B(r)= B(0,r).
Similarly in R*!, i.e.
B',r)={y e R | |2’ —¢/| <r} and B'(r)=B(0,r).

and we set B, (r) = B(r) NR}. An open cube in R" with a center z and
the side 2r we denote Cl(z,r) ={y e R* | |z; —y;| <r, i =1,2,...,n}
and C(r) = C(0,r). Analogously, C(z',r) and C'(r) in R*"'. E denotes
the closure of E. Next, set AAB = AUB\ANB for A,BCR"! We
denote the average of f over the set () C R" and over its boundary by

7{2 fdr = ﬁn}@ /Q f(@)de,
1

fdH" ' (2) = ———— flz)dH" (),

A = gy | S@ A @)

where £" is n dimensional Lebesgue measure in R® and H" ! is n — 1 di-
mensional Hausdorf measure in R". a(k) = 7%/2/T(1 + k/2) denotes volume
of the unit ball in R*. By ¢ we shall denote small parameter finally tending
to zero and by — weak convergence. The function spaces we use are rather

familiar and we omit the definitions. Finally, by J& we shall denote Jacobian
of @.
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2. The first term in e—expansion

In this section we study the problem

Opue — Au, = fo(x,t) in (27,
Oy + o.u, = 0. (x,t) on T
u. =0 on Dz, (2.1)
Ue = Uy on 2 x{t=0}

subject to the following assumptions:

(A) £ CR" isopen, bounded and connected set with Lipschitz boundary
o012.

(B) Forany0<e <1 let
0 = D°UN®,

where D¢ is a relatively open portion of 02 fulfilling the following structure
condition: There exist two numbers

0<d<p
such that for any 2° € 02 there is v € D¢ satisfying
B(z,e0) N2 C B(2®,ep) N D" . (2.2)

(C) f.,f, f' € L?(Qr) and such that

F.== 1  f in L*(Qr) as ¢ —0.

(D) o., 0i0. € L*>®(0f2r) and there exists a positive constant C' independent
of e such that ||o.||L=@0,) < C .

(E) 9,9, 09, € L*(0f27) and such that
v — 0 in L*(00r) as € —0.

(F) uf, ug € WH4(Q), ug = 0 on 812, u§ = 0 on D¢, uj € L*(2) and such

that A

Uy — Ug
£

P. = — g in L*(Q) as € —0.

Note that some of the above assumptions can be relaxed, but for simplicity
we do not give the most general hypotheses.
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Now we state the rate of convergence of solutions wu. of (2.1) to the
solution u of the following problem:

8tu =Au + f(fL',t) in QT,
u=20 on 082 (2.3)
u = ug on 2 x{t=0},

Theorem 2.1.  Assume that (A)—(F) are satisfied. Then there exists a
positive constant C, independent of ¢, such that

max / lue — ul?*(x,t) do +/ IV (u; — u)|*(z,t) dovdt < Ce |
Q Qr

0<t<T

/ |u5—u|2(x,t)dH"_1(x)dt+/ e — ul (2, 1) do dt < C? |
o

Qr
2
omgtz%XT/Q |u5 u| (x, t)¢(x) dz

+ [ V(- 0P 06() drde < O
Qr
and

ess sup /Q V(1. — )2z, )6 (x) da

0<t<T

+/ 10 (ue — w)[* (2, )¢ (x) do dt < Ce* |
Qr

where ¢ is the principal eigenfunction of the problem

Ap+Xrp=0 in 2,
=0 on 0{2,
with the corresponding principal eigenvalue A = \; > 0.

Proof. This is almost exactly like the proof of the corresponding assertion
of [6]. Therefore we prove here only the following

Proposition 2.2.  Assume (A), (B) are satisfied. Then there exists a
positive constant C such that

lullL2(00) < CVE llullwirzzon) (2.4)

for any u € W%(Q), u = 0 on D¢.
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Proof of Proposition 2.2. 1. Since 02 is compact, it can be covered
by a finite number of open sets U, ..., U™ such that 962 N U* is the graph
of a Lipschitz function and Q N U is on one side of 2 N U*. To be more

precise, for each ¢ € {1,...,m} there exist an Euclidean coordinate system
et ... el in R", positive numbers r*, h* and a Lipschitz continuous function

2

7R = R, 7%(0) = 0, such that if we denote z = >"" | xfef for z € R",
U={zeR"| |2f| <r' and |2} —~(af,....25 )| <R},

INNU ={z e Q| af =~"af,....25 1)}

»¥n—1

and if 0 <! —~4t, ... 28 ) < h® then z € Q. Note next that

»¥n—1

| w@par @<y [ ju@par ).

2. Fixnow £ € {1,...,m} and denote

n—1
v(y) =u (Z yies +7‘(y’)6ﬁ) Y = Y1) -
=1

Then
[ u@Pdr @) = [ o)ty
annuUt c'(r)

where C'(r)={y e R"' | lyil <r,i=1,...,n—1} and a(y') = (1 +
|Dy(y")|?)/2. For simplicity of notation we shall not indicate the dependence
of the data on /.

3. Take C’(r) and divide it into k"' subcubes of side length 1/k., where

r
k.= |—]| .
=
Call these subcubes ()1, ..., Qyr-1. Then

-1
ke

/ ()P dH () = Y | o) Paty’) dy'

j=17Qj
Observe now

o) Pat) by = |

[o(y') — v(z)?

o Y 7" aly') dy (2.5)

Qj
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for any 2’ € D5, where

n—1
D; = {y' €EQ;lr= Zyief + 74 (y)e € DE} :
i=1

We claim that there exists a positive constant K, independent of j and &,
such that
n—1 € n—1
L£"(D;) 2' K (o¢) . (2.6)
Indeed, (B) yields the the existence 27 € D* such that

n—1
B(a!,26) N 02 C D} = {x €D a=) wei+ W, v € Dj} |
i=1
Then, however,
£r! <B’ <66/ 1+ Lip? (7)))
< HHDS) = / L+ |Dy(y)|2dy" < CLL"H(D3)
J

and the estimate (2.6) follows. Note that by Lip(vy) we mean Lipschitz
constant of .

4. Integrate now (2.5) over D; through 2’ and one easily arrives at

/ / / C nl v(y') —v(Z 2 / / / !
lo(y)Paly') dy' < e 25_1 / / | (y), ,(n)| a(ya(z") dy' dz" .
Qj 0 = JQ; ly' — 2|

Summing on j gives
[ @)
annut

B 9
S 03 c / / |U(y) U(Z)| dHn—l(y) dHn—l(Z) 7
oonut Joorut |y — 2

and finally, adding up through & = 1,...,m we arrive at (2.4). [ ]

3. Harmonic functions on the half-space

This section studies harmonic functions in the half space subject to the mixed
boundary condition. We will here mostly deal with the boundary-value prob-
lem

Aw =0 in R},
w=0 on Dy =D x{z, =0}, (3.1)
Ow=yg on Ny =N x {z, =0},
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where g € R is given, d,w = —0w/dz,, N = R*! \ D and an open set
D c R*! is asymptotically dense in R*! in the sense of the following
definition.

Definition 3.1. A set D C R"! is said to be asymptotically dense in
R ! if there exist positive numbers 8, p such that any ball with radius p in
R"! contains at least one ball with radius ¢ entirely lying in D, i.e. for any
y' € R"™! there exists at least one point z' € B(y', p) such that

B(z',6) € B(y',p) N D. (3.2)

Definition 3.2. We say w € W,*(R?) is a weak solution of Problem (3.1)

loc

if w =0 on Dy and the integral identity

I

holds for any 1) € Wl’z(Ri), ¢ =0 on Dy, with a compact support in R .

loc

VwVidx :/ g (2',0) da’ (3.3)

n -1
¥ R™

Note
W= =gy

is a solution of Problem (3.1). We will see in a moment, that there is also
a bounded solution of our problem. Thus, the difference of those solutions
satisfies

w=0 on Dy, (3.4)
O,w =0 on Ny,

and does not equal zero. The main result of this section says, however, that
if a solution of (3.4) is sublinear, then it is the trivial solution.

Theorem 3.3. Assume w is a solution of Problem (3.4) in the sense of
Definition 3.2. Suppose further w satisfies

R—o0

lim inf 7[ lwldx /R = 0. (3.5)
By (R)

Then
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Proof. 1. First of all, if we define

(2) = w(z) if z,, >0
)= w(e, —x,) ifz, <0’

then |u(x)| is a weak subharmonic function, i.e. |u| € W?(R") and

/ V]u| Vipdz < 0
By

for any 1 € W1’2(]R”), 1 > 0, with a compact support. Therefore,

loc

u(z)| < f L luwldy

and thus,
sup |w| < 2“7[ lw]| dz . (3.6)
B1(2R)

By (R)

Now let {R;}°,, R; — 00 as i — oo be such that

lim lw|dx /R; = 0. (3.7)

1— 00 B+(2R1)

Our intention next is to deal with the problem in the half ball

Aw=0 in Bi(R),
w=0 on Dy N B(R),
ayw =0 on NO N B(R) X
assuming that
sup |w|= M. (3.8)
By (R)

2. Claim #1: There exist constants 0 < v < 1, 0 < d < oo such that

sup lw| < ¥*M (3.9)
B/ (R—4k=%F_, d; ) x(0,1)
for p
f)/]

j € {1,...,k}, whenever 4k + Z?Zl dj < R . The constants v,d are
independent of R, M.

Before proving Claim #1, let us introduce two auxiliary assertions.
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3. Claim #2: Assume
w| < K

in B'(L) x (0,4), 4 < L < R. Then
wl < BK

in B'(L —4) x (0,1) for some 0 < < 1, independent of R, K and L.
Note that for simplicity of notation we have put p = 1 in Definition 3.1
which applies here.

Proof of Claim #2: 1t suffices to prove the following statement. Let z =
(2',0) be such that B(z,4) C B(R) and

sup |w| < K.
B+(Z74)

Then
sup |w| < BK (3.10)

B+(271)
for some 0 < 3 < 1.

As D is asymptotically dense, there isy = (y',0) € Dy such that B(y',d) C
D and B(y,3) C B(R). Moreover

Aw =0 in B,(y,3),
w=20 on Dy N B(y,3),
Oyw =10 on NyN B(y,3)
and
sup |w| < K.
B (y,3)

If we compare w with the solutions v, v_ of the problem

Av =20 in B+(y> 3) )

v=0 on B(y',0) x {x, =0},

dv =0 on (B(y,3)\ B(y',0)) x {z, =0},

v=+K on 0Bi(y,3)NRY,
we obtain

—BK <v_ <w<wvp <PK

on B, (y,2) for some 0 < § < 1, i.e. (3.10) holds and the assertion of Claim
#2 follows easily.
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4.  Claim #3: Let w, R,M be as above, |w| < M on Bi(R) and let
0<e<l,0<ec<ooand0 < a<1 begiven. Moreover, choose a constant

¢ > 0 such that
(1 —a)dc

7 <e.

Then
lw| < (a+e)M (3.11)

on B'(L — ) x (0,4), whenever
lw| < aM

on B'(L) x {z, = 0}.
Proof of Claim #3: Let z = (2/,0) and p > 0. Consider first the problem

Auy, =0 in By(z,20),
u, =0 on B(Z',20) x {z, =0}, (3.12)
u, =1 on 0B,(z,20)NRY.

Then there exist positive constants ¢, ¢; (independent of p) such that

1 Ou, Co
- < £ << = 3.13

o = Oxn T 0 (3.13)
for any = € B, (z, 0). This follows easily, if we first consider ¢ = 1 and then

put u,(x) = ui(x/0).
Assume now that |w| < M on By (R), |w| < aM on B'(L) x {z,, = 0}
and / is choosen in such a way that
(1 —a)cd
7 <
for given €. Let z in (3.12) be such that

9

|z| < L —2¢.
Then it is not difficult to see that
lw| < aM + (1 —a)Mu,
in B, (z,2¢). Hence,
lw| < aM + (1 — a)Mdey )l

on BT (z,0) n{z | =, < 4}, ie. |w| < (a+e)M. As this holds for any
z = (,0), |[z2]| < R—2¢, (3.11) holds on B'(R — ¢) x (0,4). Claim #3 is
proved.
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5. Proof of Claim #1: According to Claim #2,

sup  |w[ < BM
B/(R—4)x(0,1)

for given 0 < < 1. Put ¢ = ¢y (see (3.13)) in Claim #3 and we have

sup  |w| < (B+e)M,
B'(R—4—£)x(0,4)

where £/ = 4¢. Choose £¢ > 0 such small that

7=p(1+¢e) <1
and set € = 8gg. Then

sup lw| <A'M, (3.14)
B'(R—4—dy)x (0,4)

for
de de(l+¢g9) 1
di=—=——"">"—.
Beo €o v
Now we apply Claim #2 again, and we arrive at

sup lw| < pyM,
B'(R—8—d1)x(0,1)

that due to Claim #3 gives
o] < (B + =M

on B'(R—8—d; —dy) x (0,4) . Taking ey = 03¢y,

ol < By(1+ =) M =42M
and

4e 4e(1+¢g9) 1

Beoy g0 7
Hence, by iteration we get the required estimate (3.9) for

d2:

d (1 + 50)
o €0
This proves Claim #1.
6. Finally, we are now prepare to prove Theorem 3.3.
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Choose first integers k; such that

ki
j=1
where R; are given by (3.7). It is not difficult to see that this is possible if v

is sufficiently small, say 2v < 7. Moreover, note that k; < kln R; for some
positive constant x. Next, Claim #1 yields

su Ny |w
sup w| < pB+(R1)| |
B'(R;/2)x(0,1) vR; — 4k; + const.

that together with (3.6) yields

sup ol < folda /R,
B'(Ri/2)x(0,1) B+(2R:)

for some positive constant C' independent of 7. Making use (3.7) one easily
gets w =0 on R}. [

Theorem 3.4 (Existence of weak solution). There exists a bounded weak
solution of (3.1). Moreover, this solution is positive in R} if g > 0 and

N, # 0.

Proof. The bounded solution of Problem (3.1) arises as the limit of weak
solutions to the problems on bounded domains:

Aup = 0 in By(k),
u, = 0 on DynB(k),
(3.15)
U = 0 on Sk s
o,u, = 1 on NynB(k),

as k — oo, where Sy = {z € By(k)| |z| =k and z,, > 0}.
Note, that without loss of generality we can consider g = 1, as otherwise
the result follows by multiplication.

Lemma 3.5. There exists a positive constant M, independent of k, such
that
0<u,<M on B,(k). (3.16)

Proof of Lemma 3.5. 1. As D is supposed to be asymptotically dense in
R* !, the following statement follows.
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Claim #1: There exists a sequence {z1}%°,, 2! € R""! such that B(z},d) C
D,
B(2,4p) N B(2),4p) =0 (i #j) and R | JC(2,10p).
i=1

2. Next, let v be a bounded nonnegative solution of the problem

AU = 0 n R1 ;
(3.17)
v = f on R x{x,=0},
where f € C*(R* 1), 0< f <1 and
0 ifa’ e U;2, B(#,0/2),
f@') =
1 ifa’ e R\ U2, B(z,9).
We claim that there exists a constant 0 < 4 < 1 such that
0<ov(z)<1-0 on | JB(z.2p), (3.18)

=1

where

zi = (25, 4p) .
To see this, suppose the contrary and denote by {z} }7° ; the sequence of those
points of {z}}2°, for which

max v(z) —1 as k — oo,
B(zg,2r)

zr, = (25, 4p). Write

Q = B'(4p) x (0,6p)
and define

wi(z) = v(z" + 2z, x,)

for x € (). So we get the sequence of harmonic functions in () such that
0<wp <1  on Q,
wi(zg) — 1 as k — 00

for z), € B(a,2p), a = (0/,2p) and

7[ wy(z) dH"(z) < 1—a (3.19)
aQ
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for some 0 < o < 1 and each k. Hence, there exists a subsequence {wy, }:-,
converging uniformly on B (a, 2p), to a harmonic function w and w(z4)= 1,
where z, — o as ¢ — 0o. Then, however, w =1 on () — a contradiction
to (3.19), as wy, — w weakly star in L*(0Q). Indeed, note that

/ wkia,,z/) = /wklAw
oQ Q

for any sufficiently smooth test function v such that ¢» = 0 on 9Q. We can

let 7 — oo to obtain
/ wauzp:/mp:/ 0, .
0Q Q 0Q

Assuming, that 0,7 = 1 on 9@ we obtain
7[ w(z) dH Y (z) = 1,
oQ
that contradicts to (3.19), as we have mentioned above.

3. Furthermore, let i € {1,2,...} be arbitrary and denote by v; the bounded
solution of the problem

Av; = 0 in R} \ B(z,2p),
v, = 1—0 on 0B(z;,2p),
v; = 1 on R !x{x,=0}.

It follows from Hopf’s lemma, that there exists a positive number ¢ such that
Ovi(2',0) > 9 >0 (3.20)

for any 2’ € B(z!,10p) . Owing to estimate (3.20) we prove
Claim #2: 9,0 > 9 >0 on R*"'\J7, B(z,0) .
Proof of Claim #2: Fixie€ {1,2,...}. As

v<wv; and v=v;=1 on (R" '\ B(z,6)) x {z, =0},
one easily gets
0<¥<duv;<dv on (R*'\B(z,0)) x {z, =0} .

As this holds for any 7, the assertion of Claim #2 follows.
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4. Finally, set
v
U=—.
)

We utilize (3.17) and Claim #2 to conclude that

AU = 0 in R?,

U =0 on X, B(2,0/2) x {a, =0},

Uz 0 on T, (B(2,6)\ B(z,8/2)) x {z, =0},
U > 1 on (R U, B(:46)) x {2, = 0}.

Hence, 0 is a subsolution and U is a supersolution to Problem (3.15) for any
k, i.e.
0<u,<U on By(k).

The fact, that uy > 0 on B, (k) follows from the fact that harmonic function
u, # 0 cannot attain its minimum in interior point of B, (k). This proves
Lemma 3.5.

Finally, it follows from (3.16) that
[ 19w < 3o
B (K)

for any k£ > K. Hence, by the diagonal process we obtain a sequence {uy; }32,
such that it converges to a bounded weak solution w of Problem (3.1) an any
compact subset of R} . [

4. Blow-up

Assume for this and next sections that 2 C R", that we have already sup-
posed to be open, bounded and connected set, is C?, i.e. near each point
x € 0f2, 012 is the graph of a C? function. For our purposes, however, it will
be convenient to formulate it more specific.

Definition 4.1. We say 012 is C? if there is r > 0 such that for each point
2% € 99, there exist an orthogonal matrix O and a C? mapping v : R*~! —
R, v(0) =0, D (0) = 0 such that we have

QNB@a",r)={zeR" | z=2"+0¢, v(&) <&INBE ). (4.1)

Note that O, v depend on 2° and we write down this dependence as O(z°)
and (2, -), if it needs to be.



4. Blow-up 16

Notation. Fix 2 € 9Q, 0 < ¢ < 1, and set
Q@) ={yeR"| z=2"+c0y € Q},

02.(x") ={y e R" | 2 =2°+e0y € 0N},
D.(2")={y eR" | 2 =2"+c0y € D° C 912} .
Moreover, let . be the characteristic function of the set D.(z°), i.e.
Xe (20, ) 1 09, (2°) — {0,1} such that
(2% y) =1 iff yeD.(a"). (4.2)

Note that whatever a positive constant L is, Q.(z°) N B(L) approximately
equals the half ball B, (L) for small enough £ > 0. Recall that the small
parameter ¢ shall finally tend to zero and therefore L € R, can be taken
arbitrarily large.

We henceforth assume the following structure assumptions concerning the

set D, (x?), or equivalently, its characteristic function ..

Hypotheses (H). There exists a relatively closed set I' C 02 such that
H" Y(I") = 0 and for any 2° € G = 02\ I there exist a function

x: Rt —{0,1},
a vector 7. = (71,0) € R" and a Lipschitz one—to—one map
®.: 2.(z°)NB(L) — R, &(0)=0

with the following properties:

(i) Theset D= {y' € R"' | x(y') =1} is asymptotically dense in R"!.
(ii) Vectors 7! are uniformly bounded with respect to ¢, i.e. |1l < m for
some given positive constant m independent of €.

(iii)
@, : 002.(z°)NB(L) — R x {z, = 0};
(iv)

ess sup ||[D®. (¥.(z)) — I||— 0 as €¢—0 (4.3)
ZERE(L)

uniformly in G, where

.=¢', R(L)={2€R} | z2=0.(y),y € 2(z") N B(L)}

and || - || denotes the matrix norm, and finally,
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(v) foreach k € Z, there exists a relatively closed set Iy, C 0f2 such that
HNI,) <1/k, TwyCL., I'=02,T
and

/ \VH.|* — 0 as €¢—0 (4.4)
By (R)

uniformly in

€ G =00\ T,
for any fixed k. Here R < L and H. € WY(B,(R)) is such that

AH, = 0 in Up=Bi(R)N{z| 0< 2, <1},
H. = 0 on By (R)\Ug,
H. =1 on P.R),

o,H, = 0 on Sg,

where
P(R)={z€ B (R) x {za =0} | |x: (¥(2)) — x(' + )| =1}

and
Sp=0Ugr\ {2 € B:(R)| z, =1} UP.(R).

Notation. As the quantities x, 7., @., ¥., P., R. depend on 2°, we

shall henceforth indicate this dependence writing x(z°,-), 7.(z%), @.(2°,-),
W (20, ), P.(z°,-) and R.(2° ). For fix L e R,, 0 < & < 1 we define

z0€ds? 2ER(2Y,L)

(.(L) = ess sup <ess sup || DD, (z°, ¥ (2", 2)) —IH) :
Remarks.
(1) Note that for each L € R, (H)(iv) yields
lg%KE(L) =0 (4.5)

and
By(L(1—(.)) C R.(a", L) C By(L(1+£.))

for any 1° € 912. Indeed, according to (iv)

o.0)=v+ [ (D (sy) — D dsy
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for any y € £2.(2°) N B(L) such that sy € 0.(2°) for s € [0,1], that together
with the Inverse Function Theorem give (1).
(2) The hypothesis (v) is satistied trivially if

Xe (2% W(a”, 2)) = x(2°, 2" + 7/(2"))
for any z € R.(2°, L) N {z | z, = 0}.

Now we are ready to read off more detailed information concerning the

weak limit of
Ug — U

W, =
€

on 0f2 making use the blow-up of £2 around a point 2° € 912 (see [5, page
198]). Recall first that W, is the solution of

oW, = AW, + F.(x,t) in 2,
oW, = e lg.(u,t) on 5
(4.6)
W. = 0 on D37,
W, = P. on 2 x{t=0},
with
ge = 796 — OglUg — avu
in the following sense:
/ WE(T)SOE(T) dl‘ - / / (Wsat(ps - VWEVSOE + Fs(ps) dl‘ dt
Q 0o Ja
(4.7)
= / Pee(0) dz + 5‘1/ / getpe dH" ™ () dt
Q 0o Jon
holds for any ¢. € W'*(Qr), ¢. = 0 on D5.
Next fix 2 € G and set
we(2°,y,t) = W (2 +20(2°)y, ) (4.8)

for y € Q.(2%), t € (0,T), and similarly 7. (z°,y,t) = ¢.(2° + £O0(2°)y, ).
Moreover, take a test function ¢, in (4.7) such that

spt . C B(2°,¢L).
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(4.7) then for z = 2° + cO(2")y yields

0.(2°, 5) +/ / Vw.Vn. dydt
0 Ja.(@0nB(L)

/ / (2% + 20y, t)n.(2°, y, t) dH" ' (y) dt
002 (z°)NB(L

where V means here the gradient in y variable and

(4.9)

0. (2", s) = 52/ (wgns (5) — Po(a® + 50y)77€(0)) dy
Q. (z9)NB(L)
— 52/ / (wsamg + F.(2" + €0y, t)ns) dy dt .
z9)NB(L)
Later on it will be not difficult to show that

/ 0.(2",5) dH"™(2%) —> 0 as ¢ 10 (4.10)
onN

for any s € (0,7") and therefore let us omit O, in further considerations.

Next we change variables in (4.9) utilizing Hypotheses (H) above and

write
2= (2% y), ie y=w (2" 2). (4.11)

Then, after a little tedious, but not difficult manipulations we arrive at

” oV, ¢
kl € n—1 dt
/// 2 Gy 5 T

1

/ /| /R RACR) (412)

\/1 + | DC(W! ()2 JW! () d2' dH™ 1 (2°) dt

where

a¢k aqﬂ
al' = JU( .
J Z oy, (7)) 5= (8=(2))

VE(*IO; Z,t) = ws(xoa Ws(xo,z),t) ) fg(xo,z,t) = ns(xov WE(‘%OJ Z)>t) ’
0= @), W) = @, 0), 0 (0)

v(ey), Ge=g.(a"+e0(°)W(),1),
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OR.(L) = &.(02.(2°) N B(L)) and & being arbitrarily large.

Now let (z°, z,t) be a sufficiently smooth function, say
0 € L2(00Qr; W,22(RM)), such that

loc
0(z°,2,t) =0 if z € D)
and 6 has a compact support lying in B, (L —m), i.e.
spt C By (L —m).
Note that B, (L —m) C R.(L). Then

.I'—IIIO

o (z,t) = 0.(2°, W (2°, O~ (2°)( ) + 7, t),

€

where
0.(2°, 2,t) = 0(2°, 2,t) (1 — Ho(2°, 2))

is admissible test function in (4.7), satisfying spt ¢. C B(z°,¢L), and corre-
sponding test function in (4.12) has then the form

&(a, 2,t) =02, 2+ 7,1) (1 — Ho(a, 2+ 172))

and one easily obtains

° - Ov, 00
Az — 1) === (2%, 2, t) de dH™ (20) dt
A /n /B+(L—m) Z ¢ ( ) 8zk 821 ( ) ( )

1Lk=1

:/// G2 —7)0.(2, 2,0, 1) (4.13)
0 K "(L—m)

\/1 + [DC(PL(2 — )2 I — 71) d7’ dH" ™ (2°) dt ,

where
vs(xo, z,t) = Vg(xo, Z— Te,t) .

If we let ¢ — 0, we arrive at

/ / / VoV (2° 2,t) dzdH" ' (2°) dt
0 & J By (L—m)

:/ / / g(x°,1)0(z°,2',0,t) dz' dH"*(2°) dt
0 Jgr "(L—m)

g(x,t) = Iz, t) — dyu(x,t)

(4.14)

where
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and where v is a weak limit of {v.}. As xk was choosen arbitrarily large, we
can conclude that (4.14) holds also for G in place of G*, i.e. for 012.

This step will be verified in the next section. Now let us continue our
consideration simply assuming that (4.14) holds for any sufficiently smooth
test function 6 with compact support (as the function of z) and such that
6 = 0 on D, and that the function v satisfies the following a priori estimates:

// (14 2)|Vol? (22, 2, ¢) d= dH"(2%) dt < CR" |
202r J B/ (R)x (0,R)
(4.15)
// o (20, ,0,4) do' dH™ () dt < CR™",
002r J BI(R)

for any positive numbers R greater than some given positive number R, and
some positive constant C' independent of R.

We identify now the function v determined by (4.14) and fulfilling (4.15).
Theorem 4.2. Assume v € L*(00Qp; WEA(RY)), v(2°, 2,t) = 0 if
z€Dy(2%) ={z=(,0) e R* | x(z°,7) =1}
for a.e. (2°,t) € 90r, and such that (4.14), (4.15) hold. Then
v(2°, 2, t) = g(a°, t) w(a?, 2), (4.16)

where w is the only bounded weak solution of the problem

A,w=0 in R},
w=0 on Dy, (4.17)
8,,w =1 on NO )

where N = R~ \ D.

Proof. 1. Using Fatou’s Lemma and (4.15) we obtain

/ lim inf R {/ V21 + 2) dz
any B—oo B/ (R)x(0,R)
+/ lv[(2,0) dz'} dH" 1(2%)dt < O,
B'(R)

i.e. there exists a sequence {R;}°,, R; — oo such that

RI-" {/ Vol2(1 —|—zn)dz—i—/ w(2,0) dz’}
B'(R;)x(0,R;) B'(R;)
(4.18)

< F(2°t) < oo
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for a.e. (2°,t) € 9p, where F' € L'(0£2r). Moreover, for a.e. (2°,t) € 002,

(4.14) yields
J
1,2

for any test function ¢ € W, )”(R}) with compact support and such that
1 =0 on Dy(2°), i.e. v is a weak solution of

VoV dz = / g(@°, )(2,0) d2

n n—1
n R

AZU =0 in Rﬁ_ y
v=>0 on Dy, (4.19)
o,v = g(2° 1) on Ny.

2. Claim #1: There exists positive constant C = C(z2°,t), independent of
R > max{1, m}, such that

7[ lv(2)|dz §C(1+(lnR)1/2) :
BI(R)x(0,R)

Proof of Claim #1: Note that for 1 < z, < R we have

o(, 20)]| — [0, 1)] < ( / o

by Holder inequality. Next integrate with respect to 2z’ over B'(R) and with
respect to z, over (1, R) to find

7[ w(2)] dz < 7[ w(#,1)| d2’
"(R)x(1,R) "(R)

1 1 d 2\

v 1/2
+ / Zn dz (nR)"/" .
a(n—1) (R”‘I BI(R)X(1,R) )

a. ('217 Zﬂ)
To finish the proof we need only observe

0zp,
7[ (2, 2,) | d2" < 7[ lv(2',0)|dz’
B'(R) B'(R)

o |
+ - @@
a(n =R Jpr)x00)
for any 0 < z, < 1. Indeed, this and (4.18) yield

F (a9, ¢
7[ w(2)|dz < 44/ 280 <1+\/lnRi> .
B’(Ri)X(O,Ri) )

an—1

) 1/2
da) (InR)Y*

ov
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This proves Claim # 1.

3. We know already that there is a bounded weak solution v, = g(2°, t)w of
Problem (4.19) (see Theorem 3.4),i.e. V =wv —uv, satisfies

AV =0 in R},
V=0 on Dy,
8,,V:0 on NOJ

and

fﬁ |V@HM§§M(L+MMRJ
Bt (R;)

for any i. Hence, Theorem 3.3 in Section 3 implies V' = 0. This proves
Theorem 4.2. ]

5. A priori estimates

We now ascertain the a priori estimates for v, ,

Ue — U

v (20, 2, ) = (A (2°, 2),1),

9

where
A (2% 2) =2 + 0 ("), (20, 2 — 7.(2")),

announced in the previous section. Note that for simplicity of notation we

shall not always indicate the dependence of A., O, V., v, on 2°.

Theorem 5.1.  Let (A)-(H) be satistied. ~Then for any R € (m,o0)
there exists a positive g = £¢(R) such that for any € € (0,¢,) the following
estimates hold:

L. E/ / Vo (1 + z,) dzdH" ' (a%) dt <C R, (5.1)
07 J B(R)

where V is the gradient in z variable,
B(R) = B'(R) x [0, R],
and
LE/ / (02 d dH" (%) dt < CR™,  (5.2)
00r J B'(R)
wherein the positive constant C' does not depend on ¢, R.

As a consequence of Theorem 5.1 we have
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Corollary 5.2.  There exists a function v € L*(092p; W,y*(R?)) and a

loc

subsequence of {¢}, denoting for simplicity again by ¢, such that
v. = v in L*00Q2p;W'2(Q)) as 1,0

for any relatively compact set () C R}. Moreover, the estimates (4.15) and
the integral identity (4.14) hold.

Proof of Theorem 5.1. 1. Note first that

ov " . [(du ou
L /N B el
8zi ]Z; % <8x] 8%)

fori=1,...,n, where

(‘N/’“
ZO]]C —Z O,Z—’TE).
Then
Lo [ @ a) T - o)P(La 2.0 dedim o) de.
o0r JB(R)

Put now

and we get
I,
Ch / / IV (ue —u)|*(z,8) (1 + e 'o(x)) JA  (z) do dH™ 1 (2°) dt
0N z9,B)

IN

< Cy 5“/ / IV (u. —uw)*(1 +e '¢)dedH™ (2") dt,
092 J As(20,8

where

A (2°,B(R)) ={z € Q| 2= A.(2"2), 2z € B(R)}.
Let x%(z°, z) be the indicator function of the set A.(z° B(R)), i.e

o0 1 ze AE(fEO;B(R))
Xp(e”,z) = { 0 : zeQ\A(z2 B(R))

Then the above inequality can be rewritten as follows:

I. <C; 6_"/ / IV (u; —u)|*(1+ 7o) x5(2°, z) de dH™ 1 (2°) dt
o927
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= (4 6_"/ IV (u; —u)]*(1 +e719) / X5 (2%, 2) dH" " (2°) d dt
Qr 002

by Fubini’s theorem. It remains to estimate the integral
/ X5(2°, 2) dH" 1 (2°)  for fixed z € Q.
o0

2. Claim #1: 'There exists a positive constant M, independent of x,¢, R
and a positive constant g9 = €o(R) such that

/ X%(Ioam) dHn_l(.’L‘O) < M(R + m)n_lgn_l_
o1

for any € € (0, g).

Proof of Claim #1: Note first that @.(¥.(2)) = z and that D®. (¥ (2))
D¥.(z) = I for L™ a.e. z € R.(L), where we take L > R + m and for a
moment we do not indicate the dependence of the quantities on z°. Next,
D& (V.(z)) = I + E.(z) for “small” E. (see Remark (1) above) and

DV¥.(z) = I + F.(2), F.(z) = E.(?) (Dés)_l (Pe(2)) -

Denoting
a:(L) =ess sup |ess sup ||F.(a°2)] |,
z9€6? 2€R<(20,L)
(5.3)
lima. (L) = 0.
e—0
Hence,

V. (2%, 2) = <I+/01 F.(2°, s2) ds> z (5.4)

for any 2 € B, (L(1 — £.(L))). Observe now that for fixed x € Q, x%(2°, z)
could equal 1 only for those 2° € 9 for which

r=2"+:0°" ). (2°, 2 — 7.(2"))
for some z € B(R). Hence, due to (5.4), x3(2°, x) could be 1 only if
v — 2% < e(V2R+m)(1+a.).

Then, however,

/ a(a®, 2) dH™ (:%) < H™ (92 N B(x, L))
on

< VI+Dy (2,9 dy' < (1+c(L)a(n—1)" 'L,
B'(eL)
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where L. = (V2R +m)(1 +a.) and
c-(L) = ess sup (ess sup |Dy(z, y')|2) :
€012 y'€B'(eL)
As vy € C?* and Dy(x,0) =0,
lime (L) = 0 (5.5)

e—0

and the required assertion follows.

3. To derive estimate (5.2) we shall proceed similarly as above. Note first

=
0921 J B'(R)

where

2
dz' dH" '(2°) dt

41 (xo + 0z (2" — 7., t)
£

6@5'(,2' — 1) = (eW!(2°, 2 — 7, 0), y(e¥(2°, 2’ — 7/,0))).

R e

Put now
Y =eWl(z —71.,0), ie. =7+ (Y, v (eY))

and we arrive, after some computations, at

2

J. < Cre'™m /a /a “E;“ (2, t) Xy (2, ) dH" ™ () dH"H(2?) dit
r Jon
where
(2, 2) = 1 : ze€U(2%eR)
vt 0 : z€dR\U(2"¢eR)
and

U, eR) = {z € 02| 2 =A.(2",2) for 2z € B'(R) x {z, =0}}. (5.6)

Thus, by Fubini’s theorem,

Jg S Cl€1n/
0N

Now, let € 02 be fixed. Then

2
Ue — U

9

(2, 1) /8 Xl @) A ) o) e

i (2% z) =0 if 2° €00\ B(x,e(R+m)(1+a.)),
le.

/{m Xp (2 @) dH" (2") < (1+co(L)a(n — 1) (e(R+m)(1 +a(L)))"
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(see the proof of Claim #1 above). Hence,
2

(z,t) dH" () dt

Ug — U

J. < C3 R ! /

ot

€

which together with the corresponding estimate of Theorem 2.1 gives the
desired estimate. ]

Proof of Corrollary 5.2. Observe first that for any R € R, (5.1) and
(5.2) yields

/ / (IVo:l* + |v]?) dzdH" '(2°) dt < C(R),
3027 J B4 (R)

provided ¢ is sufficiently small. To be more precise, for any R there exists
g9 = €o(R) such that

[vellxry < C(R),  X(R) = L*(0820; W (B4 (R)))

for any 0 < € < g9. Now let {R,}2°; be a sequence of positive numbers such
that R, — oo as n — oo. By the relative weak compactness of the sequence
{v.} in X(R;) we can pick a subsequence {vi, }>°, such that v,., weakly
converges to a function v € X (R;). We can now pick a subsequence {v., }5°,
of {v1., }72, such that vy, weakly converges to v’ in X (Ry). Clearly,

v =v on Bi(R)

and therefore, we shall write v instead of v" € B (Ry). Continuing in this
fashion we obtain a subsequence {vj., }22, weakly convergent to v in X (R;).

Consider now the “diagonal” sequence {v,, }o2;. We have {v,., }o2, a
subsequence of {v;.,}o2, and so {v,.,} weakly converges to v in X(R;) for
any fixed j. This establishes the first assertion of Corollary 5.2, and the

second one follows easily. [ ]

6. The second term in s—expansion

As noted earlier, we are interested in specifying the second term in e-expan-
sion of u.. Assume for a moment ¢ € C5'(Qy), ¢ = 0 on 82, and { = 0
on  x {t =T}, and insert it as a test function into (4.7). Consequently, we
have

W.0,¢ (2°,t)dH" Y (2%) dt = | W.(0, + AC + F.) dz dt

0T Qr

(6.1)
_ /Q P.C(0) de .
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Send ¢ — 0 — through a subsequence if necessary — to find

Wy 0,¢ dH" (%) dt = / u (0, + AC + f1) da dt

OQT QT

where our hypotheses (C)—(F) have been applied and

Wy, u' are weak limits of W,
in L2(d02r), L*(2r), respectively. Note that u! € L2(Qp) N Wi (€Y,) for
any €2 C Q with a positive distance from 0(2 and such that

/ \ut|*dx dt + rnax/|u1(t)|2¢d:1: +/ \Vu'lP¢drdt < C,
Qr 0<t<T J o

ess sup /|Vu1(t)|2¢3dw +/ O P dx dt < C'.
0

0<t<T Qp

Moreover, u' is the unique very weak solution of the problem

ot = Au + f! in Or,
ut =W, on 9, (6.3)
ut = ug on 2 x {t=0}

in the sense of the validity of the integral identity (6.2) for any test function
¢ € W5 () such that ¢ = 0 on 0f2p. It is not difficult to show that if !
is another very weak solution of (6.3) with Wy and 4], then

/ ul —a'drdi < O ([[Wo — Wolloaoa + Il — lliae))
Qr
Since our goal is to determine the function Wy, we shall focus the first term
of (6.1).
Theorem 6.1. Let Hypotheses (H) be satisfied and assume that

lim w(z?, 2, 0) d2’ (6.4)
exists for a.e. 1% € 02. We shall denote it by M(z°) and suppose that
M € L*(0f2). Then

lim W.0,¢ = M(2°) g(2°,t) 0,( (2, t) dH" ' (2°) dt

=0 Jan, Yo



6. The second term in £—expansion 29

(through a subsequence if necessary) for any ¢ € W2 (Qr).
Proof of Theorem 6.1. We prove that for "~ ! a.e. x € 012,

Wo(z,t) = M(z)g(z,t), gz, t)=939(x,t) — du(x,t).

To this goal, fix arbitrarily choosen X € G and note that there exist + > 0
and k € Z such that
B(X,2.)Nn o C g~.

Recall that G, G" are introduced in in Hypotheses (H) in Section 4. We take
now ¢ € C'(Q2r) such that spt N a2 C B(X,2:), but arbitrary otherwise,
and show that for any 7 > 0 there exists £¢(n) > 0 such that

/an (Wo(2®,t) — M(2°) g(2°,1)) p(2°,t) dH" () dt < n (6.5)

for any 0 < ¢ < gy.
Denote

I+ 11 = / (W (2", 1)
0N
- 7[ W (1) dH”‘l(x)> o2 1) dH™(20) dt
U(z%,eR)
+/ 7[ W.(z,t) dH™ *(z) o(2°,t) dH™ *(2°) dt
Nt JU(2%eR)

where the set U(2?,eR) is given by (5.6) above. Denoting the characteristic
function of the set U(z°,eR) by x5 (2%, z) (see (5.6) above), using Fubini’s
theorem and relabeling the integration variable in the first term of I, we
arrive at

I, = 0 Ws(*%t) ((p(.’E,t) o st(mat)) dHnil(‘T) dt:

where C o o
)(U("I“1 711)%0("1“ >t) danl(l,O)'
oo H' I (U(2% eR))

Claim #1: For any R € Ry and ¢ € (0,1) there exists a positive constant
w.(R) such that

ez, t) =

lirr(l) w:(R) = 0
and H(U(20,R))
n-= x’. e m
) . <
‘ L (BER)) 1‘ <t
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for any 2° € G.
Proof of Claim #1: As || < m,
UR—m)CU(2’eR) CUR+m),
where
U(N) = {x €| z=1"+c0(") (2°,7) for 2 € B'(N)} .
We claim now that
H*HU(N)) = L1 (B'(eN))(1 + h.(2°, N)), lim ho(2°,N) =0

uniformly in 2° € G for any fixed N. Indeed,

HTHU) = /amB( 0 )XU(N) (a)dH™a)

= ¢! V14 [Dy(a0, e®! (20, 2') ]2 JW! (20, 2') d2’
B'(N)

and the assertion follows easily due to (5.3) and the fact that Dy(z°,0) =0
for any z° € 8f2. Thus,
H"(U(2", eR))

Lr=Y(B'(eR))

n—1
< (1 + %) (1+ h(z", R+ m)) ,

(1- %)n_l (1+he(a®, R—m)) <

which proves (6.7) after some manipulations. This proves Claim # 1.

Hence,
_ p(z,t) £ (.0 n—1/,.0
e (z,t) = m/(mXU(x ,x)dH" ™ (2") +
(6.6)
1 e (,.0 (p(.’EO,t) — gp(l‘,t) — 96(1‘07R) n—1¢,.0
L 1(B'(eR)) /an Xy (2", ) 1+6.(°, R) dH"™ (27),

where
MU0, eR)

Lr=Y(B'(¢R))

0.(2°, R) =
and due to Claim # 1,

0.6, B < 5 + . (R) (6.7)
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Claim #2: For any R € Ry and ¢ € (0,1) there exists a positive constant
pe(R) such that

limp.(R) =0

e—0

and

% 1< %Jrus(R) (6.8)

for any x € G, where

Fla)={2"€cdn| e U’ eR)}.

Proof of Claim #2: Note first that
HOF@) = [ ) dE )
02N B(z0,r)

for small enough € > 0 and denote for a moment
Ax)={2"€a | |z -2 <r.}, ro=e(R—m)/(1+L(L)),

Zx)={2"€ o | |[r—2°)<R.}, R.=e(R+m)(1+a.l(l)),

where /. is given in (4.5) a. in (5.3), L > R + m being given.
Then A(z) C F(x) C Z(x) for any x € G and thus,

H'H(A(x) < H'H(F(2)) < HH(Z(2).

Indeed, let 2° € A(z). Setting z = 7.(2°) + ®.(2°,e 'O~ (2°)(z — 2°))) one
can see that

|z < m4e P+ L(L)|r—2°] < R, ie. 2°€ F().

Now, let z° € F(xz), i.e. there exists z € B'(R) x {z, = 0} such that

x = A.(2° 2). Then, however,

lz —2°| < R., ie 1€ Z(z).
Next, it is not difficult to see that
W (Z(2)) < (L+ (L) L™ H(B'(R.))

and

£ (B (1 10 L)) ) < W A,

(6.8) follows again after some manipulations and Claim # 2 is proved.
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Note that Claim # 2 yields

/6 Xpla ) AT = £ (B ER) 1+ S R). (69)

where

(e, B)] < 5+ pue(R)

uniformly in x € G.
Now, with the assistance of the estimates from Theorem 2.1, (6.7) and
(6.9) in (6.6), we arrive at

Claim #3: There exist a constant C' independent of ¢, R and for any R € R,
0 < e < 0 a positive constant o.(R) such that

lim 0.(R) =0

£—0
for any fixed R, and
Lo (G o® s max el - e o])
R |z—a0|< Re ,0<t<T
Proof of Claim #3: Indeed, as

1+ & (2, R)
1 — esssup,ocyp |0:(z, R)|

(L Jola® 0 = ol + s sup (0.2, )]),

|z—z0| <R z0€0s?

|pe(z, 1) — pe(@, )] < (2, t)][&(2, )| +

the assertion of Claim # 3 follows easily due to (6.7) and (6.9).

Claim #4: There exists a constant C,, independent of ¢, R and for any
R e R, and 0 < e < 1 there exists a positive constant s.(R) such that

11, —/ 7[ (2°,2',0) dz’ g(2°,t) p(2°, 1) dH"_l(xO)dt+sE(R)—l—%
aNr ’ R

an
lims.(R) =0
e—0

for any fixed R.
Proof of Claim #4: Note that due to the notation prior to (6.7),

1
ngz/ —7[ ve(a,2,0,8) /1 + [Dy(a0, W) 2
gy 14 0:(2° R) Jp(m)

xJW! (2°, 2" — 71 (2°)) d2’ (2°,t) dH" ' (2°) dt
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and the assertion follows due to (6.7), (5.3) and Corollary 5.2.

Now we are ready to prove (6.5). Employing Claim # 3 and Claim # 4 we
can write

/{m (W.(2, ) — M(2®) g(°, 1)) p(a®, £) dH" (") dt‘

IN

C
= + O.(R) + C max lp(a®,t) — p(z,t)| +  (6.10)

|z—z9|<R,0<t<T

/6.QT

where

£ w200 - M<x°>g<x°,t>\ (e, &) dH™ (") dt
"(R)

limO,.(R) = 0 for fixed R.

e—0

Finally, we choose R large enough in order to have the first term and the last
one on the right hand side of (6.10) less than 7/2 and then ¢y small enough
to have the additional two terms less than /2 for each 0 < € < &.

We have so far proved that for any X € G there exists a ball B(X,¢),. >
0 such that for H"! ae. x € 02 N B(X,1), Wy(x,t) = M(x)g(z,t).
Therefore, we can conclude that this equality holds for H" ! a.e. x € 912
and the theorem follows.

7. Capacity

In this section we introduce capacity as a way to find sufficiently general
structural conditions on the set D in order to garantee the existence of the
mean value of w for z,, = 0, see (6.4) above. As the dependence of w on
2% € 012 does not play any role in this considerations, let us omit to write it
down here. Recall

Aw =0 in R},
w=0 on Dy, (7.1)
&,w =1 on NO )

Dy =D x {x, = 0}, and till now we have supposed that D is asymptotically
dense in R"! (see Definition 3.1). In order to be able to formulate our result,
it is convenient to introduce some preliminairies, developed in the theory of
almost periodic functions (see e.g. [2], [10]).

Definition 7.1. Given a function v € L™®(R"') and numbers 0 < n < 1,
0 < R, < 0o, a vector A € R" ! is said to be a translation vector belonging
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ton if
sup 7[ lo(z" + A) —v(a")|d’ < 7. (7.2)
"(R)

R>R,

Recall, C'"(R) ={y' e R ' | |ys| <R, i=1,2,...,n—1}.
A set E C R"! is said to be (-relatively dense if there is a number £ > 0
such that any cube of side ¢ in R" ! contains at least one point of E.

Theorem 7.2. Assume that for any n > 0 correspond numbers R, > 0 and
t, > 0 such that the set of all translation vectors of v € L>®(R"') is {,—
relatively dense in R* . Then the mean value of v exists, i.e. the limit of

7[ v(z")dx’  as R — oo,
B'(R)

exists.

Proof. Let k € {1,2,...} and denote by C'(z*, R) for z* € B'(kR) open
disjoint cubes in R*!, i.e.

C'(z",R)={y e R" ! | |x§-—yj|<R, j=1,...,n—1}

such that
Ny,

B'(kR) c Cy=|JC'(a".R) C B'((k+2)R).

Asfor ACcC C D,

AR

A c

7[ v(z') da’ — 7[ v(z") da’
B'(kR) Ch

with a constant ¢ € R, independent of k, R. Compute now

/Ckv(x')dx’:;{/,(R)v(y'%—/\i)dy’Jr/ e

C'(zi—\i,R)\C'(R)

—/ v(y' + N dy'
C'(R)\C' (' =\',R)

:Nk/ dy +Z/ y+)\’ — v ')‘dy'%—R”*lNkﬁR,
"(R)

L-Y(D) - £ (A
S 2||U||L00(Rn—1) (ETB—I(A) ( )7

we have
<

El e
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where
c

|0R|§ Ea

7[ v(z') da’ = 7[ v(y) dy' +9yn+0g
Ch "(R)

for some |9, < 1. In summary,
e (L1,
cl=+-—+-].
=1 R k¢

‘7[ " da' — 7[ v(z") da’
B (kR) BI(CR)

Thus, for arbitrarily large numbers X;, j = 1,2 let k; be such that k;R <
X; < kjR+1 and we arrive at
1 1 1
<cln+s+—+—

‘7[ ") da' — 7[ v(z") da'
B'(X1) B'(X2)

and the assertion of Theorem 7.2. follows. ]

i.e.

Our plan is hereafter to find circumstances under which bounded weak
solution w of Problem (7.1) satisfies hypotheses of Theorem 7.2 for z,, = 0.
We propose here the following assumptions. Denote

D'=D+A, D)=D"x{wr, =0}

for A € R*7! recall Dy AD) =Dy UDY \ Dy ND) and define

R>L HeV(R)

Cap; (DyAD)) = sup R*™ inf / IVH|?, (7.3)
By (R)

where

1 : on (Dy ADY)N B(R)

V(R) = {H € W"*(B(R)) | H:{O . forz, >1

}

and L € R, , A € R"! given.

Assumption (P). For any n > 0 there exist positive numbers (,, L, and
a l,— relatively dense set F, in R*"! such that

Capy, (DoyADG) < (7.4)
for any A € E,.

Theorem 7.3. Assume that w is a bounded weak solution of Problem (7.1),
where the set D satisfies Assumption (P).
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Then the function w(a’,0) for ' € R""! satisfies all hypotheses required
in Theorem 7.2 above.

Proof. 1. Fix A € E,, given in Assumption (P) and define

u(z) = w(@ + N\ x,) —w(@,z,), uP@) =u(,0).

Then
Au = 0 in R,
u = 0 on DyNDY,
u = u” on DyAD),
du = 0 on NyNNj,

in the sense that u € W,*(R?), u = u” on Dy AD} and

loc
VuVi = 0 (7.5)
RY

for any ¢ € W1’2(]R’}r), ¢ =0 on Dy UDY, with a compact support in R7.

loc

2. Take next sufficiently large R and insert
Y= uqﬁ?{(l - HR)2

as a test function in (7.5), where functions Hpy and ¢ are defined as follows:
Hr is the minimizer of Dirichlet’s integral

o= [ vHP
B1(3R)

on V(3R) (see (7.3) above), i.e.

AHR =0 in U3R5B+(3R)m{$ | O0<z, < 1},
Hr = 0 on Bi(3R)\Usg,
Hr = 1 on (DyADy) N B(3R),
OHr = 0 on S3g,
where B
Ssr = 0Usg \ ({z € B+(3R) | @, =1} U (Dy NDY)) ,
and
Aprp = 0 in B.(3R),
¢6r = 0 on 0B, (3R)NRY,
dbr = 1 on B@2R)N{z| z, =0},

O,6r = 0 on (B(BR)\B(2R))N{z| z,=0}.
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Thus,
[ vl -
B+(3R)
gcl(/ VAl % + |v¢R|2<1—’HR>2|u|2)-
B+(3R) B+(3R)

Since,

/ Vor|> < CoR"2,
B+(3R)

0<¢r,Hr <1lon BL(3R),0< v < ¢gron BL(2R) and u € L>(R?}), the
inequality above implies

/ IV (u(l — Hp))[2 < Cs <R”‘2 +/ |VHR|2> . (7.6)
B (2R) By (3R)

Note that the facts that D is asymptotically dense in R*!, u(1 — Hg) = 0
on Dy UDY and (7.6) yield

/ < c(me [ ww). @
By (2R)N x| 2n=1} BL(3R)

3. Assume now that wuy, is a solution of

Aup, = 0 in U,
u, = |ul on Bi2R)N{z| z, =1},
u, = 0 on (DyUD))NB(2R),
ou, = 0 on Sip,

(Sar is the rest part of OUsg). Note that uy, is the minimizer of the Dirichlet’s
integral J(w) = [, |Vw[* over the set

X ={weW"(Usr) | wls-1=]|ul and w=0 on Dy UD;} .

As |ul(1 —Hg) € X, (7.6) yields

/ Vu,|” < C (R”_2 —|—/ |VHR|2> . (7.8)
Usr B+ (3R)
4. Claim #1: Let M = [|w||po(rn), then

|u| S Uh—f—M’HR—FZM(pR
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on Usp, where

Aprp = 0 in By(2R),

pr = 0 on (Dp UDy) N B(2R),
vr = 1 if |z|=2R,

dpr = 0 on Syg,

where Sy denotes the rest of 0B, (2R).
Proof of Claim #1. Note first that |u| is a subsolution of the problem

Av = 0 in U,
v = 0 on (DyNDY)N B(2R),
v = |uP] on (DyADy) N B(2R), (7.9)
v o= |u on B,2R)N{z| z,=1or|z| =2R},
dv = 0 on (NyNN))NB(2R),
le.
V||V dz < 0
Usr

for any ¢ € WH2(Usg), ¢ > 0 and ¢ = 0 on Dy N Dy and on {x | x, =

1or |1‘| = 2R} N UQR.
The function V = wu, + MHgr + 2Mpg is, however, a supersolution of
Problem (7.9), i.e.
ul <V

on Usp and the assertion follows.
5. Finally, Claim #1 yields

/ lu(z, 0)2 da’
"(R)

<c <||uh||3vl,2ww)+||HR||§W,2(U2R)+ /B . |¢R(x'70)|2dx’> (7.10)

<Gy (R“—2+ / V[ + / |@R<x',o>|2dx'),
BL(3R) B(R)

where (7.7), (7.8) have been taking account. It remains to estimate the last
integral on the right hand side of (7.10). Here we apply arguments of the
proof of Theorem 3.3 and we can conclude that

ol < C/ R
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on B'(R) x {z | 0 < x, <1} for some positive constants C' independent of
R. Hence,

1 1/2
7[ lw(z + X, 0) —w(2',0)|ds" < C <E+ 7[ |VHR|2>
"(R) B+(3R)

and this completes the proof of the theorem. [

8. Applications

In this section we identify conditions ensuring the existence of a nontrivial
structure of the set D satisfying Assumpption (P) of the previous section.

By the trivial structure of the set D we mean its periodic structure. To
be more precise, let F': R"! — {0,1} be a periodic function in each of its
variable , say, with period 1 and let there are 3’ € R*! and + > 0 such that
B(y',1)C {z' €e R*™!' | F(2') = 1}. In addition to, let A € L(R"™! R*~!) be
a regular matrix, i.e. det A # 0. If we define

x(@) = F(A2')  for 2/ € R"™! (8.1)
and
D={z'eR" | x()=1},

then D satisfies Assumption (P) trivially and it is asymptotically dense as
well.

Definition 8.1. We shall call a function x : R** — {0, 1} quasiperiodic if
for any n > 0 there exists a continuous quasiperiodic function ¢, such that
the set

Ay ={2" e R | |x(a') —¢,(a") >0}

has a small capacity in the following sense: Let H, satisfy

AH, = 0 in R x(0,1),
H,(2',0) = 1 for ' € A,,
H,(2',1) = 0 for ' eR"!,
Oy Hy(2',0) = 0 for '€ R\ A,,
then
C(A,) = sup sup 7[ \VH.|?dz < 7. (8.2)
zeRn—1x{z,=0} R>1 J B(%,R)N{z|0<z,<1}
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Proposition 8.2. Let x : R*!' — {0,1} be a quasiperiodic function and
assume that there are y’ € R* ' and >0 such that

By, ) cD={2'eR"" | x(z') =1}.

Then the set D satisfies Assumption (P) (see (7.4) above) and it is the asymp-
totically dense set in the sense of Definition 3.1.

Proof. Note first that by a continuous quasiperiodic function in R* ! we
mean a function ¢ € C(R" ') such that

o(y') = f(BY'), (8.3)

where f € C(RF), k > 1 is periodic in each of its variable with period 1 and
B € L(R" 1, RF). Moreover, without loss of generality one may assume that

B ‘Rn—l +Zk

is dense in R* (see [11]).
Our aim is to show that for any 1 > 0 there exist positive numbers ¢,, L
and (,— relative dense set E, C R"™! such that

Cap,, (DO ADS) <

for any A € E,.
1. As x is supposed to be quasiperiodic, for any 1 > 0 there exists a
continuous quasiperiodic function ¢, such that

C(An) <.

Fix n > 0. It follows from Kronecker—Weyl’s Theorem (see e.g. [10], [11])
that for any 6 > 0 there exists {5 and a {;-relative dense set Es in R" ! such
that for any A\ € Ej,

g2+ A) = @y (2') = @y’ + As5(2")) — oy(2) (8.4)

and
As(2")] < 0,

z' € R* ! being arbitrary. As ¢, is uniformly continuous on R" ! (see (8.3)),
(8.4) yields that |, (2’ + X) — ¢,(2")| < 1, say,

max oy (2’ +A) - y(a")] < 1/2 (8.5)

z'eRn—1
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if ¢ is choosen sufficiently small.
2. If A\ € Es,

IX(@" +A) = x(@)] < [x(@" +A) = @p(a" +N)] + 1/2
+Jopn(2”) = x(2)]

wherein the left hand side can attain only two values, zero and one. If
Ix(z" + A) — ¢y(a’ +A)] = 0 and at the same time |¢,(z") — x(z")] = 0, then
also |x(z' + ) — x(2')] = 0.

Thus, |x(«' + A) — x(2')| could equal one only if 2’ € A, or 2’ + X € A,,.
This yields

DyAD) C A,
hence
Cap, (D ABY) < C(A,) < 1
for any A € E,, = E;s. This proves our statement. [
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