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1 Introduction

The problem addressed in this paper stems from an unsolved question in the
theory of neural networks [7]. There it was proven that so called feedforward
networks may serve as universal approximators, that is, under quite general reg-
ularity assumptions a network with sufficiently many hidden neurons can approx-
imate any member of a class of functions to any desired degree of accuracy [4], [5],
[6], [8], [12]. Although these theorems guarantee the existence of neural network
solutions for such problems, it is still an open question, how to find a good upper
bound for the number of hidden units to use. This, of course, depends on the
problem and on the desired degree of accuracy [2], [3], [10], [13].

To get better access to analytical considerations for this problem, we will reduce
it in several steps. First, one may consider only categorization tasks: A set of
points in the input space R" has to be mapped e.g. to the values 1 and —1. In
a second step, this can be further reduced to the problem of approximating a
Boolean function on n inputs, i.e. mapping the vertices of a hypercube in R" to
values 1 and —1.

This kind of classification problems can be treated by 2-layer networks [7], where
the so called hidden layer has e.g. [ units getting signals from the n inputs; and
the single unit of the output layer gets [ signals from the hidden layer. Usually the
units of feedforward networks are given as composition of affine functions on their
input space with a differentiable transfer function of sigmoidal characteristic, for
example o, (x) := tanh(rz), r € R Thus the output of hidden unit 7 is given in
the form

Oz(l‘) ::Ur(0i+z wijxj), i=1,...,1, zeR",
7j=1

where 6; is a constant, the bias term of the unit, and w; = (w;,...,w;) € R”
denotes its weight vector. Every such unit partitions its input space R" into two
half spaces separated by its so called center H;, which is here defined by

Hi={reR |w-z=—-6}

In the last step we let the slope of the sigmoid go to infinity, i.e. » — oo, so that
the sigmoid approximates a step function, without moving the center H;, and
associates to the half spaces separated by the center the values 1 and —1. Thus
we are referring to feedforward networks with binary neurons.

Using this approach, the hidden layer of a neural network maps the binary input
patterns of an n-cube to binary patterns of an /[-cube. These [-dimensional pat-
terns then have to be separated by the center of the output unit in such a way
that the values 1 and —1 give the correct classification of the input patterns.

In section 2 we formulate the problem in geometrical terms and present some
elementary results. In the following section we specify assumptions under which



compositions of hyperplane arrangements separate unions of patterns belonging
to different classes. This leads to the result that each subset of the vertex set
W,, of the n-cube may be separated by at most ni—&—Z - 2" affine hyperplanes. In
section 4, we obtain the result that there exist binary problems for which one
needs at least (2% — ”2—2) affine hyperplanes to separate the patterns belonging to
two different classes. Based on these results, some further issues related to the
neural network context of this article are shortly discussed in the final section.

2 Problem Formulation and Elementary Results

For n > 1 we shall study — in some sense to be specified — separations of the
n-cube by affine hyperplane arrangements. First we state the following

Convention: An affine oriented hyperplane H in R" consists of an affine hyper-
plane H together with a partition

R'=H WHWH" (2.1)
where H~ and H™" are specified open and convex half-spaces. Of course, H~ and

H™ are — up to the order — uniquely determined.

Thus, if we speak about an affine oriented hyperplane H, we shall always assume
that a partition as in (2.1) is given. To choose some affine oriented hyperplane
H will mean that H~ and H" may be selected arbitrarily.

In the sequel, W, = {1, —1}" will denote the vertex set of the n-cube for fixed
n > 1.

Definition 2.1 Assume | > 1, and A, B are subsets of R'. A and B will be
called linearly separable, if there exists some affine oriented hyperplane H in R
with ACHT and BC H™.

Conventions: Assume H = (Hy,..., H;) is some [-tuple of affine oriented hy-
perplanes in R” which is generic, that means

l
W n |JH: = 0.
1=1

For 1 <i <[ we define the map ¢;(H) : W,, — {1, -1} by

0i(H)(z) == pi(H,x) == { _11 g i 2 g{: ) (2.2)

Now ¢(H) : W,, — W, will denote the map given by
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For C' C W,, we write of course
e(M)(C) :=(H,C) :={p(H,z) : € C}. (2.4)

Definition 2.2 Assume C C W, and H = (Hy,..., H)) is some generic hyper-
plane arrangement of affine oriented hyperplanes in R*. We say that H separates
the vertex set C, if the sets ¢(H,C) and o(H, W, —C) are linearly separable (as
subsets of R ).

From now on, we call a generic hyperplane arrangement (Hq,..., H;) of affine
oriented hyperplanes in R" also an [-arrangement for brevity.

Definition 2.3 For C C W, with ) # C # W,, we put

h(C) = (2.5)

min{l € N : there ezists some l-arrangement in R" which separates C'}.

By convention, we write

h(0) = h(W,) = 0. (2.6)

Remarks:

(i) By Definition 2.2, it is not trivial that every C' C W,, may be separated by
some [-arrangement for an appropriate number [ € N. However, we shall see later
(c.f. Theorem 3.16) that every C' may be separated by at most ni—&—Z - 2™ affine
hyperplanes; that means, we have

h(C) < L
n—+ 2

(ii) By the above definitions, a subset C' C W, with () # C # W, satisfies
h(C) =1 if and only if C' and W,,\C' are linearly separable.
(iii) By Definition 2.2, every C' C W, satisfies

2",

h(C) = h(W,\C).

If H separates C, then one has p(H,C) N o(H, W,\C) = 0.

(iv) By symmetry of the [-cube, for some [-arrangement (Hj, ..., H;) to separate
a set C' C W, it does not matter in which way the half spaces corresponding to
H,, ..., H; are oriented.

Example 2.4 (The XOR-Problem) Assume n =2, and put

A:={(1,1),(-1,-1)}, B:={(1,-1),(-1,1)}.
If C C Wy satisfies C # A and C # B, then C and Wo\C' are linearly separable.

However A and B are not linearly separable, because

(0,0) € conv A N conv B,
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where conv denotes the convex closure operator.
Fori € {1,2} put

H;:={(71,15) € R : 21 + 29 =3 —2i}
as well as
H = {(x1,73) €R® : xy + 29 >3 — 24}
H7 = R*\(H;UH]).
Then H = (Hy, Hy) is some 2-arrangement separating A and B: We get
p(H){L D} = {11},

p(H )({( -1, (=11} = {(=L1)}
(=1,-D} = {(=1,-1)}

and thus

(,D(H,A) = {(171)7(_17_1)} =
p(H.B) = {(-L1)} = B"

Of course, A" and B' are linearly separable in R?. We obtain h(A) = h(B) = 2.

@ ) @ )
(M)
H,
€] @ €]
H,

Figure 1: Two hyperplanes separating the input patterns of the XOR-problem
(Example 2.4), and the separating hyperplane for their image under ¢.

In what follows, (-, -) will denote the standard scalar product in R'; that means,
for v = (vy,...,v) € R and w = (wy,...,w;) € R we write

!
)= Zvi -w;.
i=1



Next we prove the following simple

Lemma 2.5 Assume the l-arrangement H = (Hy, ..., H,) separates the set C' C
W,. Then the following holds:

(i) If o € Sy is some permutation, then (Hy(1y, . .., Hyq)) separates the set C, too.
(ii) If W,, C H" or W, C H, then H' = (Hy,..., H,_1) separates C.

Gil) IFW,nH | = W,nH; or WonH, = W,nH, , then H' = (H,, ..., H_,)
separates C. In particular, H' = (Hy, ..., H, 1) separates C' in case H, 1 = H,.
(iv) If H;yq is any affine oriented hyperplane in R™ with Hy.y N W, = 0, then
H" = (Hy,...,H;, H1) separates C, too.

Proof.

(i) If A,B C R are linearly separable by some affine oriented hyperplane H
in R and o : R — R is some bijective affine map, then «(A) and «a(B) are
of course linearly separable by the affine hyperplane a(H); here we may put
a(H)" := a(H") and a(H)” := «(H~). This holds in particular if o is some
linear isomorphism which merely permutes coordinates.

(ii) Without loss of generality, we may assume () # C # W, and W,, C H;'.
Thus for all z € W, one has ¢;(H,z) = 1. Assume p(#H,C) and p(H, W,\C) are
linearly separable by the affine oriented hyperplane H in R'. Then for suitable
w = (wy,...,w) € R\{0} and ¢t € R we get

H={veR : (vw) =t}
o(H,O) CHY ={veR : (v,w) >t}
o(H,W,\C)CH ={veR : (v,w) <t}
Thus, for w' := (wy,...,w; 1) we get
oM, O)C{v e R W w) >t —w},
o(H , W,\O) C {v' e R+ (W, w) <t —w}.

In particular, we have w' # 0, because C' # @) # W,\C. Thus, o(H',C) and
o(H',W,\C) are linearly separable by the affine hyperplane

H :={eR™ : W, v)=t—w}

(iii) Without loss of generality, we may suppose W, N H,", = W, N H;" and
0 # C # W,. Assume again that w = (w1, ...,w;) € R'\{0} and ¢ € R satisfy

O(H,C) C{veR : (v,w) >t}

O(H,W,\C) C{veR : (v,w) <t}



Now put w' := (w1, ..., w_s, w;_1 +w;). Since every v = (vq,...,v) € (H,W,)
satisfies v;_1 = v;, we get

o(H,C)C{v e R . (v, w') > t},

O(H , W,\C) C {v/ e R7' : (W, w') < t}.

Now C # () # W,\C implies w' # 0; therefore, o(H',C) and p(H', W,\C) are
linearly separable by the affine hyperplane

H :={eR™* : ,u') =t}
(iv) Choose once more w = (wy,...,w;) € R\{0} and ¢t € R with
o(H,C) C{veR : (v,w) >t}
o(H,W,\C) C{veR : (v,w) <t}
Now put w” := (wy,...,w;0). Then we get
(,O(HH,C) g {’U” € ]RlJrl . <U”,’LU”> > t},
o(H", W,\C) C {v" e R (", w") < t}.
Thus, p(H",C) and p(H", W,\C) are linearly separable by the affine hyperplane

H = {U” € RH—I . <v",w"> — t}. m

The next result shows that several subsets C' C W, consisting of certain layers
may be separated by some hyperplane arrangement which is induced by these
layers in a canonical way.

Proposition 2.6 Let H = (Hy,..., H;) denote some l-arrangement in R" satis-
Jying

HfnW, CH, for 1<i<Il-1 (2.7)
Choose affine oriented hyperplanes Hy, Hy 1 in R* with Hf "W, =0 and W,, C
H,.

Let C C W, denote that subset of vertices of the n-cube such that for every i with
0<1¢<I! one has

C for i=1mod 2

W,\C for i=0mod2 ° (2:8)

W0 (HA N\ © {

Then H separates the set C'.



Proof. By the assumptions of the proposition, for every = € W, there exists
some unique ¢ with 0 <14 <[ satisfying = € H; N H;,,. We get

oM, z)=(-1,...,—-1,1,...,1), (2.9)

i I—i
and (2.8) implies

ve { C for ¢=1mod 2 (2.10)

W,\C for i=0mod?2 °

. 0 for [=1mod?2
7N =1 for [=0mod?2 ’

and define the linear map f : R' — R by

fog,... ) = Z (=),

Consider the affine oriented hyperplane G in R given by

G = {veR : f(v)=a},
Gt = {veR : f(v)>a},
G = {veR : f(v)<a}.

Then (2.9) and (2.10) imply
o(H,x) e G~ for z€C,

o(H,z) € GT for x € W,\C.
Thus ¢(H,C) and o(H,W,\C) are linearly separable by G. O

Remark: The affine oriented hyperplanes Hy and H;,; in the last result are of
course only used for technical reasons.

One of the most important applications of Proposition 2.6 is to study the following

Problem 2.7 (Parity Problem) Forn > 1 put!
Cp(n) :={(z1,...,zy) € W, : {i : ; = —1}| =1 mod 2}. (2.11)

Separate C'p(n).

'Here — as in the sequel — |A| denotes the cardinality of a finite set A.



The following theorem gives an upper bound for h(Cp(n)).

Theorem 2.8 For alln > 1 one has
h(Cp(n)) < n; (2.12)
that is, Cp(n) may be separated by some n-arrangement (Hy, ..., Hy).

Proof. For 0 <i<n+1 put

H, = {(vl,...,vn)eR” : Zvj:nﬂ—%},
j=1
Hf = {(vl,...,vn)ER" : Zvj>n+1—2i},

j=1
H, = R'\(H;UH}").

Then Hy, Hy, ..., H,, H,+1 and C = Cp(n) fulfill the assumptions of Proposition
2.6; thus H = (Hy, ..., H,) separates Cp(n). O

3 Separations of Unions

In this section, we want to study unions of subsets of W,, and show that — under
some certain supposition — separations of these subsets induce some separation
of their union. Concerning the additional assumption, we state the following

Definition 3.1 Assume C C W,. An l-arrangement H = (Hy, ..., H)) is called
a centered image separation of C, if there exists some affine hyperplane G in R,
some affine map fo: R — R with G = f5'({0}) as well as some d > 0 such that
for x € W, one has

ety ={ & el (3.

In other words, the following two conditions hold:

(1) ¢(H,C) and o(H,W,\C) are linearly separable by G. (This means that H
separates C'.)

(ii) All points p(H,x), x € W, have the same distance to G.

Examples 3.2

(i) Assume | = 1; that is, C and W,\C are linearly separable by some affine
oriented hyperplane H C R". Then the single hyperplane arrangement H = (H)
1s a centered image separation of C':

If, say, C C HT and W,\C C H~, we get

|1 for zeC
@(H,x)—{ -1 for zeW,\C °
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Thus (3.1) holds for d =1, G = {0} C R and the identity map fe:R — R.
(ii) Assume l =2, C C W, and Hy, Hy C R" are affine oriented hyperplanes
satisfying
C CH ' nH,, (3.2)

W,\C C (H{ N H,)U(H, NnH,). (3.3)
Then H := (Hy, Hs) is a centered image separation of C':
Put G :={(x1,22) ER?® : 11 —19 =1}, and define fg : R* = R by fo(z1,12) :=
xy — m9 — 1. Then we have G = f5'({0}) as well as

fatean ={ 1 el (3.4)

Example 3.3 Assume n =2, and put C := {(1,1)} as well as

HO = {(l’l,l'z) € R2 DX+ T = 1},
H, = {(z1,20) €R® : z; =0},
Hy = {(z1,20) €ER® : 25 =0}
H,
 J
H,
H,

Figure 2: The two hyperplane arrangements #H := (Hy, H) and (Hy)
of Example 3.3.

C and Wo\C' are linearly separable by Hy; thus, by Example 3.2 (i), the single
hyperplane arrangement (Hy) is a centered image separation of C.

Moreover, H := (Hy, Hs) separates C, too; however, H is not some centered
image separation of C. Indeed, o(H) : Wy — Wy is — without loss of generality
~ the identity map, and G = Hy is the unique affine hyperplane in R? which
linearly separates C from W)\C' such that the three points (1,1), (—1,1) and

(1, —1) have the same distance to G; however, (=1, —1) has some larger distance
to G = Ho.
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Now we can prove the following

Proposition 3.4 Assume C C W, and C4,...,C,, C W, satisfy

c=Jc. (3.5)
i=1
For every i with 1 < i < m, assume that H; = (H},.. '7Hli¢) is some centered

image separation of C;. Then the composed hyperplane arrangement
— (L 1
H=(H,....H,....,H",....H")
separates the vertex set C.

Proof. By assumption, for every ¢ with 1 < i < m there exists some d; > 0 as
well as some nonconstant affine map f; : R — R satisfying

d; for z € C;
filp(Hi, x)) = { —d; for ze W,\C; °

Now put  := > I;, and define the affine map f: Rl — R by

f(agl), ce agll), ad™ al(;n)) = Z fi(agi), ce agj)).
i=1
Put d := min{d,, ..., d,,}. Then we get:
flo(M,2)) >2d =) d; for z€C, (3.6)
i=1
fle(H,z)) = — Zdi for x e W,\C. (3.7)
i=1

Thus, p(H,C) and p(H, W, \C) are linearly separable by the affine hyperplane

H::{(al,...,al)eRl : f(al,...,al):d—Zdi}. O
i=1

Remark: Unfortunately, the last result becomes wrong if we do not suppose
that each H; is some centered image separation of C; but only assume that H,
separates C;.

Consider once more Example 3.3, assume H;, H, are as in this example, but
now put C' := {(1,1),(—1,—1)}. The hyperplane arrangement H = (Hi, Hs)
separates both of the sets {(1,1)} and {(—1,—1)}. However, the composed hy-
perplane arrangement H' := (Hy, Hy, Hy, Hy) does not separate C’, because oth-
erwise Lemma 2.5 would imply that H separates C’, too. But this is not the case.

As an important special case of Proposition 3.4, we get

11



Proposition 3.5 Assume C,C4,...,C,, C W, satisfy

Moreover, suppose that for each i with 1 < i < m, the sets C; and W,\C;
are linearly separable by some affine oriented hyperplane H; in R*. Then H =
(Hy,...,Hy,) separates the set C.

Proof. This result is a trivial consequence of Example 3.2 (i) and Proposition
34.0

We can now also prove that each subset C' C W, may be separated by some
[-arrangement for an appropriate number [ € N. More precisely, we get the
following

Theorem 3.6

(i) For each v € W, the sets {x} and W,\{x} are linearly separable.

(ii) Each subset C' C W,, may be separated by some l-arrangement consisting of
[ < 2"=1 affine oriented hyperplanes; that is, one has

h(C) < 2"t (3.8)
Proof.

(i) We write = (g1,...,e,) with g; € {—1,1} for 1 <4 < n. Then the sets {z}
and W,,\{z} are linearly separable by the affine hyperplane

H .= {(vl,...,vn)ER" : Zgi-vi:n—l}.
i=1

(ii) By Remark (iii) following Definition 2.3, we have h(C) = h(W,\C); there-
fore, we may assume |C] < |W,\C| and thus |C| < 2"~!. But then (3.8) follows
trivially from (i) and Proposition 3.5. O

At the end of this section, we improve the inequality (3.8).

As a further consequence of Proposition 3.4, we prove

Proposition 3.7 Assume C,C4,...,C,, C W, satisfy

1=1

Moreover, for 1 < 1 < m suppose that there exist affine oriented hyperplanes
Gi, H; CR" as well as subsets A;, B; C W, satisfying

12



W, = A; W B; W C;, (3.9)

(—=1,—1) for =€ A
(p((GZ, Hz); .I‘) = (1, —1) for xeC; . (310)
(1,1)  for z € B;

Then the composed hyperplane arrangement (G1, Hy, ..., Gy, Hy,) separates the
set C.

Proof. In view of (3.9) and (3.10) we may conclude by Example 3.2 (ii) that for
each ¢ with 1 < i < m, the pair (G;, H;) is a centered image separation of C;.
Thus Proposition 3.4 yields what we want. O

As a special case of Proposition 3.7, we want to point out the following

Proposition 3.8 Suppose C,Cy,...,Cy,, C W, satisfy

Moreover, assume that for each i with 1 <1 < m there exists some affine hyper-
plane K; in R™ satisfying
W,NK; =Cj. (3.11)

Then one has h(C) < 2m.

Proof. For 1 < i < m, we may choose affine oriented hyperplanes G;, H; in R"
which are parallel to K; such that the following conditions hold:

(Gz U Hz) N Wn = Q),
Gy NH =10,
GInH nW,=K,nW, =C,.
Now we can apply Proposition 3.7 to the sets
A =W,NG; NH,, B;:=W,NnG nH}'

and conclude that the hyperplane arrangement (Gy, Hy,..., Gy, H,) separates
C. O

In the last part of this section, we want to improve — for all C' C W,, — the upper

bound for A(C) as stated in Theorem 3.6 (ii). For this purpose, we study so
called frames which cover W,,. First of all, we recall the following
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Definition 3.9 The Hamming distance on W, s the metric dg : W, x W, —
{0,1,...,n} defined by

dy (1, ..y xn), (24, .. 2h)) = i+ x; # 2t} (3.12)

Definition 3.10 A subset F' C W, is called a frame in W, if F' consists of a
distinguished element yo € W, called the root of F', as well as all its neighbours
with respect to dg; that s

F = A{y}U{yeW, : du(y,y) =1} (3.13)

Clearly, every frame F' in W, satisfies |F| =n + 1.
The following result shows why we are interested to study frames in W,.

Proposition 3.11 Assume Fi,...,F,, are frames in W, which cover W, ; that
means, one has
w, = JF. (3.14)
i=1
Then for every C' C W,, we have
3
h(C) < 5 m (3.15)

Proof. Let y1,..., 4, denote the roots of Fi, ..., F,,, respectively. By symmetry,
we may assume that there exists some ¢ with 3+ < ¢ < m such that y,...,y, € C
as well as yq1,...,ym € W,\C. (If t < %, Remark (iii) following Definition 2.3
shows that we may exchange the roles of C' and W,\C.)

Put C;:=CnNF;forl<i<m.

We prove that C1, ...,y may be separated by one single hyperplane and that
Ciy1, ..., C,, may be separated by some centered image separation consisting of
two hyperplanes. Finally, we shall apply Proposition 3.4.

For 1 < i < m, write y; = (g41,...,&m), and for 1 < j < n let y;; denote the
unique vertex in F; which differs from y; exactly in the j-th component. Put

Ki = {L,....n}\J;, ki = K.

Assume first that 1 < ¢ < ¢, that means y; = (;1,...,€in) € C;. In this case,
define the linear map f; : R* — R by

fi(’Ul,...,Un) = Zs,-j-vj+3- ZSZ'J'"U]',

J€J; JEK;

14



and define the affine oriented hyperplane H; in R" by

H, = {veR" : fi(v)=n+2- -k — 3},
HY = {veR" : fi(v) >n+2 k — 3},
Ho = R\(H;UH).

Then one has

filvi) = filei, - €m) = n+2-k;,
fz(yzj) = n+2kz—2 fOI"j € Ji,
filw) < n+2-k; —3 for w € W,\C;.
Thus, we have C; C H;" and W,,\C; C H, . In particular, the single hyperplane

arrangement (H;) is a centered image separation of C; (cf. Example 3.2 (i).)

Now, suppose t < i < m, that means y; = (g41,...,&m) € W,\C;. In this case,
define the linear map f; : R* — R by

fi(’Ul,...,Un) = 3- E Sij"Uj+ E €ij - Uy,
Jj€J; JEK;

and define the affine oriented hyperplane H; in R” by

H, = {UERn : fz(v):n+2]z_3}7
Hf = {veR" : fi(v)>n+2-7j —3},
H~ = Rn\(HZUHj)

Moreover, define the affine oriented hyperplane GG; in R* by

G; = {(vl,..., ) eR" Z&Z] v]—n—?)},
G = {(vl,..., ) eR" 25” U]>TL—3},

G, = R'\(G;UG)).

Then for ¢ < ¢ < m one has

W\F, C H NG;.

Thus, Example 3.2 (ii) shows that (H;, G;) is a centered image separation of C;.
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Altogether, Proposition 3.4 shows that
H = (Hl, ey Ht, Ht+1; Gt+1> ey Hm; Gm)

separates

c =|Jc.

i=1

Since we could assume ¢ > %, we obtain

hMC) < t+2-(m—t) =2m—t <

[\CN GV

as claimed. O

We still have the problem to cover W,, by certain frames Fi, ..., F,, for some m
as small as possible. Of course, there can exist a covering of pairwise disjoint
frames only in case n + 1 = 2" for some r € N. In this case, arguments from the
theory of Linear Codes show that there exist indeed nz—:l frames which cover W,,.
First, we recall the following

Proposition 3.12 AssumeT is a finite field with ¢ Elements, suppose n, k,r € N
satisfy n = k+r, and presume 3 < d < n. Then the following two conditions are
equivalent:

(i) There exists some k-dimensional subspace U of the vector space F"™ such that
all v,v' € U with v # v differ in at least d coordinates.

(ii) There exists some subset A of the vector space F" with |A| = n such that
every subset I of A with |I| =d — 1 is linearly independent.

Proof. This is Satz 12.2 in [1]. O

Now, we identify — of course — the vertex set W,, = {1, —1}" with the vector space
Fy™ in the obvious way, where F, = {1,0} denotes the field with 2 elements.
We can now prove

Proposition 3.13 Assume n > 3 satisfies n +1 = 2" for some r € N. Then
there exist 2— = 2"" pairwise disjoint frames in W, which constitute a covering

n+1
of Wh.

Proof. We apply Proposition 3.12 for k =n —r and d = 3. Put A :=F,"\{0};
then every subset of A consisting of 2 elements is linearly independent over F,.
Since |A| = 2" — 1 = n, Proposition 3.12, (ii) = (i), shows that there exists some
k-dimensional subspace U of Fy™ such that all v,v" € U with v # v differ in at
least 3 coordinates. This means — and that is the decisive conclusion — that all
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of those frames in Fy" whose roots lie in U are pairwise disjoint.
Moreover, we have

271
n+1’
and this proves what we want, namely, that there exist n2——:1 pairwise disjoint
frames in W,,. Since all of these frames have exactly n + 1 vertices, they must of
course cover W,,. O

Ul = 2F = 2n" =

We still have to consider coverings of W,, by frames in case n + 1 is not a power
of 2. But then we make use of the following simple

Lemma 3.14 Assume Fi,..., F,, are frames in W, with

Then there exist 2m frames in Wy 11 covering Wy 1.

Proof. Let y,...,y, denote the roots of the frames Fi,..., F,,, respectively.
Then the frames in W, exhibiting the roots

(yla 1)> RIS (ym> 1)7 (yla _1)7 R (yma _1)

satisfy what we want. O

For x € R, let [z] denote the Gaussian integer; that is the largest k € Z satisfying
k<.
We can now prove

Proposition 3.15 Assume n > 1. Then there exist

f = gn—[logy(n+1)]

frames in W,, which cover W,,. Moreover, one has

2n+1

fa < (3.16)

n+2
Proof. For n =1 and n = 2, the assertions are obvious, because in these special
cases, there exists a covering of W,, consisting of n frames.

Now assume n > 3. The first assertion is clear by Proposition 3.13, if n 4+ 1 is a
power of 2. If, on the other hand, 2" < n + 1 < 2"*! holds for some r € N, the
first assertion follows from Proposition 3.13 and a repeated application of Lemma
3.14 for the values ' =2" — 1, n' =2", ..., n’ =n — 1. Note that

logy(n +1)] = r
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does not depend on n as long as 2" < n+1 < 271,
To verify (3.16), assume again that 7 € N satisfies 2" <n+1 < 2" — 1. Then
we get 27" < R%Q and thus

2n+1
O

L= 2" < .
/ — n+4+2

Now we can summarize Proposition 3.11 and Proposition 3.15 and obtain directly
the following result, which is rather better than Theorem 3.6 (ii).

Theorem 3.16 For every n € N and C C W, we have

3

hC) < 3_2n—1—[10g2(n+1)} < 2 .
(©) = T on+2

2", (3.17)

In particular, one has h(C) = O (£). O

Note that — in general — the second bound in (3.17) is of course slightly worse
than the first bound; however, the second bound is more manageable.

4 A Worst Case Lower Bound for A(C)

In the last sections, we have been mainly interested in upper bounds for h(C),
C C W,; Theorem 3.16 shows that h(C') grows at most exponentially with n. In
this section, we want to derive some lower bound for the number

hy == max{h(C) : C CW,}. (4.1)

We shall see that h, grows at least exponentially with n. To this end, we shall
use arguments concerning numbering of unordered pairs {C, W,,\C'} for C C W,
such that C' and W, \C' are linearly separable. First, we state the following

Definition 4.1 For n > 1 let t(n) denote the number of unordered partitions
{C,C"} of Wy, for which C and C" are linearly separable.

Remarks:
(i) Since |W,,| = 2", there exist

L ol — 5
2

unordered partitions of W, into two sets.
(ii) The partition {0, W, } has to be considered while computing ¢(n).

18



Example: Assume n = 2. There exist 8 unordered partitions of W5 into two
sets. By Example 2.4, only one of these partitions does not contribute to the
computation of ¢(2); thus we have #(2) = 7.

For general n € N we want to obtain nontrivial upper bounds for ¢(n). First we
recall the following

Proposition 4.2 Assume k > n > 1, and in R there are given k points
Y1, ---, Yk in general position; that means, every subset Y' of Y = {y1,...,yx}
with |Y'| = n+ 1 is affinely independent. Let s(n,k) denote the number of un-
ordered partitions {Y1,Y2} of Y such that Y1 and Ys are linearly separable. Then

e s(n, k) = zn: (k - 1). (4.2)

=0 \ J

Proof. This result is shown in [14]. O

Certainly, the vertices of W), are far from being in general position; however, the
next result relates the numbers ¢(n) and s(n,2").

Proposition 4.3 For every n € N one has
t(n) < s(n,2"). (4.3)

Proof. Assume Hj,..., Hyy) are affine hyperplanes in R" which do not intersect
W, and such that any two distinct H;, H;, 1 < i < j < t(n), induce distinct un-
ordered partitions of W,,. For any x € W,, we choose some open set U, in R” with
x € U, such that U, N H; = () holds for all ¢ with 1 < i < ¢(n) and U, N Uy = ()
holds for all z,2" € W, with = # 2'. Now, for any set U,, x € W, we choose
some y(x) € U, such that the points y(z), x € W, are in general position. By
our choice of the sets U,, the affine hyperplanes Hy, ..., Hy,) induce #(n) distinct
unordered partitions of the set Y := {y(x) : x € W, }; this yields what we want.
(I

Proposition 4.2 and Proposition 4.3 will yield an upper bound for ¢(n). First, we
prove

Lemma 4.4 Assume m,k € N satisfy 3m < k. Then one has

S(50=050) =

J
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Proof. For fixed £ € N, we proceed by induction on m. In case m = 1 we
have 3 < k by the assumption of the lemma, and (4.4) states the even weaker
inequality 1 < k — 1.

k
Now assume 2 < m < 3 and we have already proved that

SN0

Then we get in view of 2m < k — m:

S5 = ()= ()

J

<.

IN

<k - 1)
.o

m

Now we obtain the following

Proposition 4.5 For all n € N with n > 2 we have

Hn) < 2. <2" N 1) +1 (4.5)

n

Proof. For n = 2 we have ¢(2) = 7= 2- (3) + 1. For n = 3 we get by Proposition
4.2 and Proposition 4.3

3
t(3) < s(3,8) = Z(D = 1+7+21435 =64 < 71 = 2- <;>+1.
§=0

For n > 4 we have 3n < 2", and thus Proposition 4.2, Proposition 4.3 and Lemma
4.4 yield with m = n and k = 2™

t(n) < ; <2”]— 1) ”:01 <2" — 1) <2nn— 1> < 9. (2“n— 1>

J

as claimed. O

Now we are able to prove the following main result of this section.

Theorem 4.6 Assume n > 2, and choose | = [, € N such that every subset

C C W, may be separated by some l'-arrangement for an appropriate number
I' <1l. Then one has

n? n4 n N2
> U pon s 08 4,
[ > 5 + 1 + > 22 5 (4.6)

In other words, we have

n? nt n n?
LRIy LA URE L 4.
h, > 5 + 1 + > 22 5 (4.7)



Proof. In view of (2.5) and (4.1), the inequality (4.7) is of course only a refor-
mulation of the first assertion. To prove (4.6), we first note that Lemma 2.5 (iv)
implies that every C' C W,, may be separated by some [-arrangement.

Let Hy denote some set of affine hyperplanes in R* with [Hy| = ¢(n) and not
intersecting W,, such that these t(n) affine hyperplanes induce exactly the ¢(n)
distinct unordered partitions of W, into two linearly separable sets.

Now, any of all the 22"~ unordered partitions {C, C'} of W, is uniquely deter-
mined by (at least) some l-arrangement H = (Hy,..., H;) with Hy,...,H, € H,
and some affine oriented hyperplane H in R' which linearly separates o(H,C)
and @(#, C"). There exist 2'-(¢(n))' l-arrangements consisting of [ oriented affine
hyperplanes in Hy; the factor 2! arises from the orientations. Thus we get

2L (t(n)) - t(l) > 2" D, (4.8)

Note that the affine oriented hyperplane H in R’ causes the factor ¢(l) instead of
2 - t(l), because we consider unordered partitions {C,C'} of W,,.

By the assumption of the theorem, we have n > 2 and thus also [ > 2. Therefore,
Proposition 4.5 and (4.8) yield

2! (2- <2nn_ 1) + 1>l- <2- <ZZ z_ 1) + 1) > 22" 1), (4.9)

Furthermore, for m > 2 we have

om _ |
2. ( ) +1 < 20D, (4.10)
m

This inequality is clear for m = 2, while for m > 3 we get

om _ 1 gmym :
2-( >+1§2-( ) < o(m*-1)

m m!
Now (4.9) and (4.10), applied to m = n and m = [, yield
ol . =)l o(l*~1) > o(2"—1)
Simplification of this inequality yields
2n2'l+l2 > 2(271)'

that is
P4+n?-1-2" >0

n? n4 n N2
[ L L Y Nt
= Tyttt T
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as claimed. O

Note that the inequality (4.7) is trivial for n = 1. Thus, by summarizing Theorem
3.16 and Theorem 4.6 we obtain

Theorem 4.7 For every n € N one has

. n? n? n4 3
b L o T o, < o O 411
B S S Y ) (4.11)

The two left terms in (4.11) are almost equal for large n, and differ considerably
only for small n. Although the bounds of h, specified in (4.11) differ quanti-
tatively in some essential manner, we see yet that h, grows exponentially with
n.

5 Conclusions

With respect to a theory of feedforward networks the derived results, as stated
in Theorem 4.7, are understood as a first step in a program which tries to make
use of geometric techniques to solve open problems in this context. Here we
addressed the problem of determining the minimal number of hidden neurons of a
feedforward network, which should be able to solve any given binary classification
problem for n inputs, i.e. to realize any Boolean function on n inputs. The
derived upper bound (4.11), although it is better than the weaker bound 2”1 or
other known results reported in the literature, is still too high to be of practical
relevance for real world applications of these networks. In fact, it is well known
that many problems can be solved with much less neurons; for instance, the parity
problem (Problem 2.7) for n inputs can always be solved with n hidden neurons.
On the other hand, Theorem 4.7 states, that for a given n there always exists

a class of binary classification problems for which a solution needs more than

n2

(22 — 2°) hidden neurons. Of course, this lower bound gets effective only for
large n. Thus, its main use is for asymptotic considerations. But, since h,, must
grow exponentially with n, it also provides the discouraging insight that a large
class of Boolean problems needs also very large networks for a solution.

From the viewpoint of these results the following questions may be of relevance:
One may classify the problems according to the minimal number of hyperplanes
a solution has to use. Although it might be difficult to decide, in which class
a given problem has to be located, the cardinality of these classes is of interest.
For n large, are most of the problems “trivial” in the sense that the minimal
number of hyperplanes a solution needs is much less than the lower bound (4.11)
for h,?7 Or are most problems “complex” in the sense that the minimal number
of hyperplanes a solution needs is larger than this lower bound?

Furthermore, many interesting problems, represented by a vertex set C, inherit
a symmetry property like, for instance, the parity problem (Problem 2.7). Lower
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and upper bounds of h(C') of course will depend on this symmetry and might be
effectively reduced for a known symmetry of the problem. The combination of the
geometric techniques used in this paper with group theoretical aspects of binary
classification problems will lead to more specific and much stronger results.

The strength of feedforward networks is their ability to “learn”; i.e. there exists
a potential function and a gradient descend algorithm, called backpropagation,
which, under certain conditions, is able to find solutions for a given problem [11].
These networks have to use smooth transfer functions instead of the step functions
referred to in this paper. Our results also apply to these type of networks because,
as outlined in the introduction, the hyperplanes used in our arguments still can
be identified with the centers of graded neurons. On the other hand, there exists
a conjecture, that for networks using sigmoidal (S-shaped) transfer functions the
lower bounds for h,, should be further reducible.
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