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1. Introduction. The basic property of any convex continuous function defined on
a convex and compact set in IR" is that it attains its maximum at some extreme point
of this set. This assertion is called the Bauer mazimum principle [6]. One consequence
of this principle is the Krein-Milman theorem saying that compact convex sets in IR" are
closed convex hulls of their extreme points; cf. [17]. It can also be used, for instance, to
show the existence of solutions to some nonconvex problems in the calculus of variations
and optimal control theory; see e.g. [3, 18]. In this paper we derive a version of Bauer’s
maximum principle for polyconvex, quasiconvex and rank-one convex functions defined on
compact sets in R™*", where IR"™*" is identified with the Euclidean space of real matrices
m x n. This enables us to generalize some recent results by Matousek and Plechaé [20] and
Zhang [30]. In fact, our work is mainly inspired by those two papers, cf. also [5].

Then we apply obtained results to cones of polyconvex, quasiconvex and rank-one
convex functions which are of importance in the calculus of variations. In the second part
of the paper we discuss some properties of sets of quasiconvex and rank-one convex extreme
points. In particular, we show that that they are generally different and that quasiconvex
extreme points, likewise quasiconvex functions (see [19, 26]), are not invariant under the
composition with affine mappings which map rank-one matrices into rank-one matrices.

In what follows S will denote a cone of functions with the following properties:

(i) S contains only continuous functions R™*" — IR ,
(ii) S includes all affine functions, in particular, it separates points, i.e., for any A, B €
IR™" A # B there is f € S such that f(A) # f(B).

Let K ¢ R™ "™ be bounded. Further for any A € IR™ " we denote the set of all
nonnegative measures p supported on K such that f(A) < [z f(B)u(dB) for any f € S
by rca}y g(K). It is easy to see that rca}; ¢(K) C rcay (K); the set of all probability measures
on K. Moreover, the first moment of ;1 € rcaj 4(K) is A.



Definition 1. Let K € R™*" be bounded and S a cone above. Then we define the
S-hull of K by

Hg(K) = {A€R™" ¥ feS: f(A)<sup f(B)} .
BeK

We say that K is S-conver if Hs(K) = K. Note also that K C Hs(K) = Hs(K) and that
Hs(K) is closed.

Definition 2. (see [2, p. 46]) A point A in a compact set K C IR™*" is called an
S-Choquet point of K if rca}y g(K) = {04}, i.e., if the following implication holds

VieS: fA)< [ F(BuAB) = p=oa.

The set of all S-Choquet points of K s called the S-Choquet boundary and is denoted by
OsK.

Remark 1. Note that for S being the cone of convex continuous functions on IR™*"
and for K a compact set in IR"™*" the S-Choquet boundary is a subset of the set of
extreme points of K. We recall that A € K is extreme if it belongs to no open interval
(A1, Ag) C K. If one takes arbitrary points P;, P, Py defining a triangle and sets P, as the
center of mass of this triangle, then we easily see that all Py, ..., P, are extreme points of
the set {Py,..., P,} but the S-Choquet boundary is made only by P, ..., P;. On the other
hand, if K is convex then the S-Choquet boundary of K and the set of extreme points of
K coincide; cf. [2, Corollary 1.2.4].

Definition 3. (see [2, p. 46]) A closed subset M of a compact set K C IR™*" is termed
S-stable if
AeM , perca) ¢(K) = supp pC M .

Lemma 1. Let K C R™™. Then if {A} C K is S-stable then A € 0sK. Moreover, a
nonempty closed intersection of S-stable sets is again S-stable.

Proof. 1t follows from the definitions above. O
Now we are ready to formulate the Bauer maximum principle.

Theorem 1. Let f € S, where S is a cone satisfying (i)-(ii), and K C R™*"
be compact. Then there is A € 0sK such that f(A) = maxpex f(B). In particular,

supgek f(B) = SUPpeas K f(B).

Proof. (see also [2, Th. 1.5.3]). Let us denote K D Fy = {X € K; maxycg f(Y) =
f(X)}. Clearly, Fy # () and it is closed and compact. It is easy to see that Fj is S-stable.
We define a partial ordering on S-stable closed nonempty subsets of Fy by Fy < F if
F, C F, for Fi,F, C Fy. The collection of subsets is now inductive (i.e. each totally
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ordered subset of Fy has a maximal element) with respect to this partial ordering. It
follows from the well-known fact that the nest of nonempty compact sets is nonempty.
Thus by Zorn’s lemma there is the smallest S-stable closed subset F' of Fj. We show that
F contains only one point. In order to get a contradiction, suppose that C, B € F' and that
C # B. As S separates points there is a function g € S such that g(C) > g(B). Denote
F'={Y € F; g(Y) = maxzep g(Z) = a}. We will prove that F”’ is S-stable. If Z € F'
and yu € rcaj g(K) then supp p C F because of the S-stability of F'. We have

9(2) < [ g(X)u(ax) = [ g()u@x)+ [ g(X)u(ax). M

F\F

Now if u(F \ F') > 0 the right-hand side of (1) would be smaller then g(Z) which is
impossible. Thus B ¢ F' and F' C F is the S-stable subset of Fy contradicting the
minimality of F. Thus F = {fl} As F is S-stable we apply Lemma 1 to get that
A € 0sK. O

Corollary 1. If K is compact and nonempty then 0sK # (.
Proof. Apply Theorem 1 to f = 1. O

The next corollary shows that the Choquet boundary is a generator of the S-hull of
any compact set. See [20] for some related results.

Corollary 2. (Krein-Milman-type theorem). Let K C R™" be compact. Then
Hs(K) = Hs(0sK).

Proof. We have by Definition 1. and Theorem 1. that
Hy(K) = {A€R™"V fes: f(4)<supf(B)}
BeK
= {ACR™™ YV feS: f(A)< sup f(B)} = Hs(9sK) .
Beods K

o
Lemma 2. Let K C R™*" be compact and let S satisfy (i)-(ii). Then 0sHg(K) C K.

Before we prove the lemma we remark that a set M C K is called a max-boundary of
K if for any f € S there is A € M such that supgcx f(B) = f(A).

Proof. Note that by the definition maxack f(A) = sup e gy () f(A) for any f € S and
thus K is a max-boundary of Hg(K). It follows from [2, Th. [.5.15] that the smallest closed
max-boundary of Hg(K) is 0sHg(K). Thus, 0sHg(K) C K. O

In fact, 0gK is the smallest generator of Hg(K) (see Th. 2 below). In order to show it
we will need several auxiliary results and a definition. The following lemma is a version of
[2, Th. 1.5.23]. We denote by B the Baire sets of K, i.e., the o-field of compact sets in K
which can be written as a countable intersection of open sets in K.
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Lemma 3. Let S satisfy (i)-(ii) and K C R™*" be compact. Then for any A € K
there is a positive measure pu supported on dsK N B such that p(0sK) = 1 and for any
fes

f(4) < f(B)u(dB) .

- Os K

Let us define for a compact set K C IR™*"
Gs(K) = {A€R™" reaj 4(K) # 0}
_ {A €R™™; I e neaf (K) st ¥ f€5: f(A) < [ f(B)p(dB)} .
K

The following results captures e.g. [25, Th. 4.10. (iii)].

Lemma 4. Let K C R™" be compact and let S satisfy (i)-(ii). Then Hg(K) =
Gs(K).

Proof. Let A € Gg(K). Then there is p € rcaj (K) such that for any f € S f(A4) <
[x F(B)p(dB) < supgeg f(B). Therefore A € Hg(K) and Gg(K) C Hg(K).

Let now B € Hg(K). Then due to Lemma 3 there is a probability measure w such that
supp w C 0sHg(K) C Hg(K), w(0sHg(K)) =1 and for any f € S

1(B) < [(©)w(d0) = [ f(C)a(ac) .
dsHs(K) K

The last equality follows from Lemma 2. In particular, w € rcaf ¢(K) and B € Gg(K).

The lemma is proved. u

Theorem 2. Let K C IR™" be compact and S-conver. If M C K is compact then
Hg(M) = K if and only if 0sK C M.

Proof. If 0sK C M then K = Hg(0sK) C Hg(M). On the other hand, as M C K we
have Hg(M) C Hs(K) = K and therefore K = Hg(M).

Let A € 0sK C K = Hg(M). Then there is a probability measure w € rcaj 4(K). As
A is a Choquet point we have w = 4. On the other hand, as A € Hg(M) w must be also
supported on M. Thus A € M. O

From now on we are going to leave this abstract setting and we will show a couple of
examples of admissible cones. In any particular case we describe the set of rcajy s (K).

2. The cone of quasiconvex functions. Take S = {f : R™" —
IR; f quasiconvex}. Such S satisfies (i)-(ii).

We recall (see e.g. [23, 24]) that f : IR™*" — IR is quasiconvex if for all A € R™*" and
any o € W'(IR"; IR™) which is (0, 1) periodic (or, equivalently, ¢ € Wy *((0,1)";R™))
it holds

FA S [ A+ V() da



If f:R™" — IR is not quasiconvex but bounded from below then we define its
quasiconvexification Qf : R™*" — IR as the supremum of all quasiconvex functions not
greater than f; cf. [11].

Quasiconvexity plays a crucial role in the calculus of variations. Namely, the sequential
weak® lower semicontinuity of T : Wh*(Q;IR") — R, I(u) = [, f(Vu(z))dz, Q C R" a
bounded domain is equivalent to the quasiconvexity of f : R™*" — IR, see [1, 23, 24].

The notion of quasiconvexity is closely related to gradient Young measures. Let 0 C IR"
be a bounded domain and K C IR™*" compact. It is known (see [27, 29]) that for any
sequence {u}gen C L(£2;IR™*") such that, for almost all z € 2, u(x) € K there exists its
subsequence (here denoted by the same way) and a family of probability measures {v; },cq,
supported on K such that for any continuous function v : K — IR and any g € L'(Q)

lim [ o(iin(@))g(w) dr = /Q /K v(A)v, (dA)g(z) dz . 2)

The family of probability measures {7, },cq for which the above limit passage works and
for which the mapping x +— [, v(A)v,(dA) is measurable for any continuous v : K — IR is
called a Young measure generated by {uy}rew- If {vs}eeq is independent of z we call such
a measure homogeneous Young measure. If there is a sequence {uy}ren C WH(Q;IR™)
such that 4y = Vuy in the above notation then we say that v = {v,},cq is a gradient
Young measure generated by the sequence {Vuy}rew. Kinderlehrer and Pedregal ([16])
found an explicit characterization of gradient Young measures.

Lemma 5. Let Q C IR" be a bounded domain and K C IR™*"™ compact. The family
of probability measures {v, }rcq supported on K is a gradient Young measure if and only
if the following two conditions hold:

Ju € WH(Q;IR™) : Vu(r) = / Avy(dA) for a.a. z €, (3)
K

V f: R™" — IR quasiconvex and for a.a. z € (4)

£([ Avan) < [ reamias)

We easily see that if {v;},cqo supported on K does not depend on z, i.e. v, = v for
almost all x and (4) is satisfied then {v,},cq is a gradient Young measure. The condition
(3) holds for u(z) = Az, where A = [, Bv(dB). Thus for our choice of S rcaj ¢(K)
coincides with the set of homogeneous gradient Young measures supported on K with the
first moment A and dsK consists of those points A in K for which the only homogeneous
gradient Young measure supported on K with the first moment A is d4 (Dirac’s mass
at A). This definition has been already established by Zhang; [30]. Following Zhang we
denote the set of all quasiconvex extreme points of K by K,. and we denote Hg(K) for
our choice of S by Q(K) and call it the quasiconvex hull of K. If Q(K) = K we say that
K is quasiconvex.



Definition 4. ([30]) Let K C R™*" be compact. A point B € K is called a quasiconvex
extreme point if v = dp is the only homogeneous gradient Young measure supported on K
with the first moment B.

We have the following lemma as a consequence of Theorem 1.

Lemma 6. Any quasiconver function attains its maximum over a compact set at some
quasiconver extreme point.

The following theorem generalizes a result by Zhang ([30, Th. 1.1]) and provides a
characterization of the quasiconvex hull of a compact set by means of its quasiconvex
extreme points. In truth, this result is also implied by [30, Th. 1.1, Th. 1.3].

Theorem 3. Suppose K C R™" is compact. Then Q(K) = Q(K,.). Moreover, K,.
is the smallest generator of Q(K) in the sense of Theorem 2.

Proof. 1t follows from Corollary 2. O

3. The cones of polyconvex and rank-one convex functions. Now S will be
either the cone of polyconvex or rank-one convex functions, ie., S = {f : R™" —
IR polyconvex}, or S = {f : R™" — IR rank-one convex} and we denote the appropriate
S-hulls of a bounded K € R™*" by P(K) and R(K), respectively, and we will call them
the polyconvex and quasiconvex hull of K.

We recall that f : R™" — IR is polyconvex (see [4, 11]) if there is a convex function

min(m,n)

g+ R2im (M) - R such that f(A) = g(s(A)), where s(A) is the vector of all
subdeterminants of A. Further, f as above is rank-one convex if ¢t — f(A + ta ® b) is
convex for all A € R™*", all a € R™ and all b € IR". It is known that (see e.g. [11])

polyconvexity = quasiconvexity = rank-one convexity .

If f is not polyconvex (rank-one convex) we define its polyconvexification Pf (rank-one
convexification Rf) as the supremum of all polyconvex (rank-one convex) functions < f.

Now we want to characterize S-Choquet points for S being the cone of polyconvex
and rank-one convex functions. To this end, we first define homogeneous polyconvex and
rank-one convex Young measures.

Definition 5. Let Q C R" be a bounded domain and K C IR™" compact. A Young
measure v = {Vy }zeq, Ve sSupported on K is called polyconver if it it satisfies (4) with f being
polyconvex instead of quasiconver. A polyconvexr Young measure is called homogeneous if
{Vs}zeq is independent of x.

Definition 6. Let Q C IR" be a bounded domain and K C R™ " compact. A Young
measure v = {Vz}zeq, Vi supported on K is called rank-one convex if it it satisfies (3)
and (4) with [ being rank-one convex instead of quasiconvex. A rank-one conver Young
measure is called homogeneous if {vy}zeq is independent of x.
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We see that now rcaj ¢(K) is the set of all homogeneous polyconvex (rank-one convex)
Young measures supported on K with the first moment A. We will define the set of
polyconvex (rank-one convex) extreme points accordingly. This definition of polyconvex

extreme points appeared already in [13]. We also say that K is polyconvex (rank-one
convex) if P(K) = K (R(K) = K).

Definition 7. Let K C R™ " be compact. A point B € K is called a polyconvex
(rank-one conver) extreme point if v = dp is the only homogeneous polyconvex (rank-one
conver) Young measure supported on K with the first moment B. We denote the set of all
polyconvex and rank-one convex extreme points of K by K, . and K, ., respectively.

Theorem 1 and Corollary 2 have now the following form.

Theorem 4. Any rank-one convex (polyconver) function attains its mazimum over a
compact set at some rank-one convex (polyconvex) extreme point. Moreover, if ) # K C

IR™*™ is compact also K, . # 0 and K, # 0, R(K) = R(K,.) and P(K) = P(K,.).

Ezample 1. As usually, we denote by SO(2) the subset of rotations in IR**?>. Then
[SO(2)]pe= SO(2). Indeed, for any A €SO(2) we have that fs :SO(2) — R, fa(X) =
—det(X — A) is negative for X # A and zero for X = A. Moreover, f, is polyconvex. Due
to Theorem 4 A €[SO(2)],.e-

Ezample 2. Let K = UY ,SO(2) A;, where 4; € IR**? are positive definite and symmetric
such that rank(X —Y) > 1 for any X €SO(2)A4;, Y €SO(2)A;, j # i. Then K,, = K.
The proof is similar as in Example 1. We again use the fact that f4(X) = —det(X — A)
is negative for X # A; cf. [7] and apply Theorem 4.

4. Some remarks on K,, and K,.. In this section we will show that in general
K,. # K, . and also that Q(K) and K, . does not commute with transposition; cf. below
for a precise statement. We recall that if m > 2 and n > 2 than there exist rank-one convex
functions: IR™*™ — IR which are not quasiconvex. In particular, Sverdk [28] showed that
for any & > 0 there is k = k(g) > 0 such that the function ff : R*** — R

fi(A) = f(PA) +=(|A]” + [A]") + k|A — PAJ? (5)

is rank-one convex but there is ¢ > 0 such that f; is not quasiconvex for any £ > 0. Above,
P :R**% — IR**? is an orthogonal projector given by

A Ap An 0
Pl Ay Ay | = | OA 1322 |
A31 A32 31; 32 31;— 32
and At Aso(Asy + Aso)
11422 (Az1 + Ag2
where A;;, 1 =1,2,3, j = 1,2 mean the entries of A and |- | is the Euclidean norm.



Recently, it was shown that if we define F7} : R**® - R as
Fi(A) = fi(A")

with AT being the transpose of A then for any ¢ > 0 there is k > 0 that F7 is quasiconvex;
cf. [26]).

Proposition 1. ([26]) For any ¢ > 0 there exists k = k(¢) > 0 such that F¢ R*>3 —
IR s quasiconves.

It is not difficult to see that it F7 is quasiconvex then also F]: T,

ST(A) = —f(PA") + e(JAP + |A]") + E|A — PAP

is quasiconvex.
For a set K C R™*" we define KT Cc R™"™,

K'={AecR™™; AT ¢ K} .

As rank-one convexity is invariant under transposition, clearly, for any K C IR™*",
R(K™) = R(K)". The following proposition shows that, in general, Q(K™*) # Q(K)™.

Proposition 2. There exists a set K C IR**? such that Q(K™) # Q(K)".

Proof. We divide the proof into several steps.
STEP 1. Let us take function g, h : [0,4] — IR,

(0 = 3t ifo<t<l1
W=V -4 if1<t<4,

b0 <t<2
M”:{—tﬂzgtg4

extend both functions periodically onto the whole IR and define a (0, 4)%-periodic deforma-

tion ¢ : (0,4)? — IR? as
9($1)
p(z) = g(2) .
h(x1 + x2)

-1 0
J = 0 -1 .
-1 -1

The matrix J + Vo takes on (0,4)? seven different values Ai, ..., As; cf. Figure 1. This
construction is a variant of Milton’s one [22]. We have

-4 0 -4 0 -4 0 00
Al( 4),A2 0),,43(0 o),A4(04),
0 0 -2 =2 00
0 0 0
A5: —4 ,Agz 0 ,A7: 0
(2 2) —2 2) (0

Further set

oo O O

o O O
\—/



g(1)
4

0 1
-+ +
A, ++-
A -3 1
A 6
A 7
3 +++
-4 -
A, h(t)
A + + - 1 1
2
-4+
A A + -
1 5 0 2 4
--+ A +-- A
+-+

Figure 1: The seven values of J 4+ V¢ and slopes of g and h. The triples of signs denote
the signs of the slopes of ¢y, ..., 3.

If we denote K = {Ay, ..., A7} it is easy to see that J € Q(K) and thus JT isin Q(K)T.
Indeed, by the very definition for any quasiconvex function f(J) < % f(A;) <
sup, f(A;), where \; denotes the area on which J 4+ V¢ takes the value AZ-.

STEP 2. Now we show that J ¢ R(K). It is sufficient to find a rank-one convex function
f such that f(J) > supy f.

We know that f; is rank-one convex for any ¢ > 0 if £ > 0 is large enough and
supy f£ = (32+32%)e = 1056¢. On the other hand f£(J) = 1+20e. Taking 0 < ¢ < 1/1036
gives that f;(J) > supg f; and thus J ¢ R(K).

STEP 3. We have that F} is quasiconvex for any ¢ > 0 provided k is large enough. In
particular, taking 0 < ¢ < 1/1036 shows that Fg(JT) > supr F. Therefore JT ¢ Q(KT).
(]

Corollary 3. Let N = {J, Ay,...,Ar}. Then J € N, but J ¢ N, and thus Ny, #
Nye.

Proof. The proof follows from the above proposition. O
In the next proposition we compute the whole Q(K™).
Proposition 3. It holds that

r 0 t

Q™) = riK) = ro) == {0

>;7“st:0, —4§T,s§0,—2§t§0}.

Proof. First we show that Q(K”) C M. Ff and F;’~ are quasiconvex for some choice
of e,k > 0. Note that sup,r Ff = supyr F,’ = 1056e. Clearly,

Q(KT)CL::{<6 2 i) ,T,s,tG]R}.



Now if rst > 0 for some A € L then we can find ¢ > 0 such that F, (A) > 1056e and
thus A ¢ Q(KT). Similarly, if rst < 0 we get the same for F¢. Therefore, rst = 0. As
Q(KT) must be contained in the convex hull of K7 all points of Q(K7T) must lay in the
rectangular box (r,s,t) € [=4,0] x [=4,0] x [=2,0]. Thus Q(K") C M. Any edge A] A}
of the rectangular box must be contained in R(K”) because its endpoints are rank-one
connected. For any point in the rectangles ATATAT AT = AT AT AT AT and AT AT AT AT
we can find a horizontal or vertical line segment crossing two edges of the box. Those
crossing points are rank-one connected because they differ only in one coordinate. Each
of them can be finally written as a convex combination of some points of K. Therefore,
we have M C R(K7T). Altogether we have Q(KT) c M C R(KT). On the other hand,
as quasiconvex functions are rank-one convex, R(K') C Q(K™). Finally, we obtain M =

R(K") = R(K)" = Q(K™). =
T
A
1 T
1 A4
1
1
1
T ! T
A, | A,
I
|
I T
I J
N T
7 A5
T T
A3 A6
Figure 2:

Corollary 4. Let N be as in Corollary 8. Then N* = {J* AT ... ALY, J" & (N,.)"
but J* € (N")ge and (NT)ge # (Nge) "

Proof. The proof follows from Corollary 3 and Proposition 3. O

It is not known whether there exists a rank-one convex function IR**? — IR which
would coincide with f from (5) on the subspace {A € R**?; A = PA}, i.e., which would
be rank-one affine on this subspace. On the other hand, we can show the following.

Corollary 5. Let M be as in Proposition 3. There exists a nonnegative rank-one
convez function g : R*** — IR such that g(MT) = 0 and g > 0 otherwise. In particular, g
is rank-one affine on M. Moreover, g is not quasiconvex.
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Proof. The existence and the rank-one convexity of such g follows from [20, Prop. 2.5.].
Using ¢ and J defined in the proof of Proposotion 2 above one has 0 = [y g(J +
Vo(z))de < g(J) because J ¢ MT. This shows that g is not quasiconvex. O

Ezample 3. As an example of g from the previous corollary one can take the rank-one
convexification of A — I17_,|A — A;|, where A; € K.

5. Q(K) and Q(K") for K c IR***. We finish the paper by some remarks on
open problems. It is not known whether Q(K)? = Q(K") for K C R***. This question
is intimately related to the question whether rank-one convexity implies quasiconvexity
for functions IR*** — IR. In order to explain this, let us recall that we found in the
previous section that J € Q(K) but J' & Q(KT), where K = {Ay,..., A7z}, If we
define W : R**? — IR by W(A) = II7_,|A — A;| we see that QW (J) = 0, where QW is the
quasiconvexification of . Indeed, QW (A;) = 0 by the definition and as J € Q(K) it must
hold that QW (J) < sup; QW (4;) = 0. On the other hand, QW > 0 because W > 0 and
0 is a quasiconvex function. Now, put w : R*** — IR, w(A) = I, |4 — AT, i.e., w(A) =
W (AT). We have that Qu(J*) > 0 and therefore the formula for quasiconvexification (see
[11]) reads

QW (J) = inf / W(J + V() dz = 0
PEWG = (0,)%1R?) J (0,1)?
but
inf / W' +VTp(z))de >0,
PEW > ((0,1)%1R?) /(0,1)
where VT¢ := (V)T If this would be true for some function IR*** — IR, it would provide
an example of a rank-one convex function which is not quasiconvex.

In order to try to find such an example we can proceed in the following way. Take
h > 0 as a mesh parameter and divide (0,1)? into triangles of the size h. We denote this
triangulation 7, and set

Wy = {@ € Wy™((0,1)%;IR?); ¢ affine on each F € T} .

Let A; # 0,1 =1,...,N(hy) are the values of gradient of some fixed ¢ € W},,. Then we
take U : R¥? — R, U(A) = Y4 — 4;] and, clearly, QU(0) = 0 but U(0) > 0. It
remains to study whether

lim inf UVTp(z))dz=0. (6)

h—0 peWp, (0,1)2

The left hand side actually equals to

inf / U(VTp(x))de
) /(0,1)?

PEW,™((0,1)%1R?

as it was proved in [8]. In other words, we know that 0 € Q({A,..., Anwny)}) and we
check if 0 € Q({AT, ..., AL })-

The advantage of the above proposed method over numerical quasiconvexification of a
given rank-one convex integrand (e.g. [12], [15]) is that we do not deal with any particular
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rank-one convex function (in truth, not many explicit examples are known) but we examine
a large number of functions. The disadvantage is that it is rather difficult to show that
the limit in (6) is positive and in reality we cannot do it only by means of numerical
experiments. I spent some effort on computations with N (hg) ranging from 5 to 25 without
any remarkable clue showing that (6) does not hold. Another method trying to disprove
that rank-one convexity implies quasiconvexity in a similar spirit as ours was proposed by
Matousek & Plecha¢ [21] and Dolzmann [14].
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