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Abstract� We use the Bauer maximum principle for quasiconvex� polyconvex and rank�
one convex functions to derive Krein�Milman�type theorems for compact sets in IRm�n�
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�� Introduction� The basic property of any convex continuous function de�ned on
a convex and compact set in IRn is that it attains its maximum at some extreme point
of this set� This assertion is called the Bauer maximum principle ���� One consequence
of this principle is the Krein�Milman theorem saying that compact convex sets in IRn are
closed convex hulls of their extreme points� cf� ����� It can also be used	 for instance	 to
show the existence of solutions to some nonconvex problems in the calculus of variations
and optimal control theory� see e�g� �
	 ���� In this paper we derive a version of Bauer�s
maximum principle for polyconvex	 quasiconvex and rank�one convex functions de�ned on
compact sets in IRm�n	 where IRm�n is identi�ed with the Euclidean space of real matrices
m�n� This enables us to generalize some recent results by Matou
sek and Plech�a
c ���� and
Zhang �
��� In fact	 our work is mainly inspired by those two papers	 cf� also ����

Then we apply obtained results to cones of polyconvex	 quasiconvex and rank�one
convex functions which are of importance in the calculus of variations� In the second part
of the paper we discuss some properties of sets of quasiconvex and rank�one convex extreme
points� In particular	 we show that that they are generally di�erent and that quasiconvex
extreme points	 likewise quasiconvex functions �see ���	 ����	 are not invariant under the
composition with a�ne mappings which map rank�one matrices into rank�one matrices�

In what follows S will denote a cone of functions with the following properties�
�i� S contains only continuous functions IRm�n � IR 	
�ii� S includes all a�ne functions	 in particular	 it separates points	 i�e�	 for any A�B �
IRm�n	 A �� B there is f � S such that f�A� �� f�B��

Let K � IRm�n be bounded� Further for any A � IRm�n we denote the set of all
nonnegative measures � supported on K such that f�A� �

R
K f�B���dB� for any f � S

by rca�A�S�K�� It is easy to see that rca�A�S�K� � rca�� �K�� the set of all probability measures
on K� Moreover	 the �rst moment of � � rca�A�S�K� is A�
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De�nition �� Let K � IRm�n be bounded and S a cone above	 Then we de
ne the
S
hull of K by

HS�K� � fA � IRm�n� � f � S � f�A� � sup
B�K

f�B�g �

We say that K is S
convex if HS�K� � K	 Note also that K � HS�K� � HS�K� and that
HS�K� is closed	

De�nition �� �see ��	 p� ���� A point A in a compact set K � IRm�n is called an
S
Choquet point of K if rca�A�S�K� � f�Ag� i	e	� if the following implication holds

� f � S � f�A� �
Z
K
f�B���dB� � � � �A �

The set of all S
Choquet points of K is called the S
Choquet boundary and is denoted by
�SK	

Remark �	 Note that for S being the cone of convex continuous functions on IRm�n

and for K a compact set in IRm�n the S�Choquet boundary is a subset of the set of
extreme points of K� We recall that A � K is extreme if it belongs to no open interval
�A�� A�� � K� If one takes arbitrary points P�� P�� P� de�ning a triangle and sets P� as the
center of mass of this triangle	 then we easily see that all P�� � � � � P� are extreme points of
the set fP�� � � � � P�g but the S�Choquet boundary is made only by P�� � � � � P�� On the other
hand	 if K is convex then the S�Choquet boundary of K and the set of extreme points of
K coincide� cf� ��	 Corollary I������

De�nition �� �see ��	 p� ���� A closed subset M of a compact set K � IRm�n is termed
S
stable if

A �M � � � rca�A�S�K� � supp � �M �

Lemma �� Let K � IRm�n	 Then if fAg � K is S
stable then A � �SK	 Moreover� a
nonempty closed intersection of S
stable sets is again S
stable	

Proof	 It follows from the de�nitions above� �

Now we are ready to formulate the Bauer maximum principle�

Theorem �� Let f � S� where S is a cone satisfying �i�
�ii�� and K � IRm�n

be compact	 Then there is A � �SK such that f�A� � maxB�K f�B�	 In particular�

supB�K f�B� � supB��SK f�B�	

Proof	 �see also ��	 Th� ����
��� Let us denote K � F� � fX � K� maxY �K f�Y � �
f�X�g� Clearly	 F� �� 	 and it is closed and compact� It is easy to see that F� is S�stable�
We de�ne a partial ordering on S�stable closed nonempty subsets of F� by F� 
 F� if
F� � F� for F�� F� � F�� The collection of subsets is now inductive �i�e� each totally
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ordered subset of F� has a maximal element� with respect to this partial ordering� It
follows from the well�known fact that the nest of nonempty compact sets is nonempty�
Thus by Zorn�s lemma there is the smallest S�stable closed subset F of F�� We show that
F contains only one point� In order to get a contradiction	 suppose that C�B � F and that
C �� B� As S separates points there is a function g � S such that g�C� � g�B�� Denote
F � � fY � F � g�Y � � maxZ�F g�Z� � �g� We will prove that F � is S�stable� If Z � F �

and � � rca�Z�S�K� then supp � � F because of the S�stability of F � We have

g�Z� �
Z
F
g�X���dX� �

Z
F �
g�X���dX� �

Z
FnF �

g�X���dX� � ���

Now if ��F n F �� � � the right�hand side of ��� would be smaller then g�Z� which is
impossible� Thus B �� F � and F � � F is the S�stable subset of F� contradicting the
minimality of F � Thus F � f �Ag� As F is S�stable we apply Lemma � to get that
�A � �SK� �

Corollary �� If K is compact and nonempty then �SK �� 		

Proof	 Apply Theorem � to f � �� �

The next corollary shows that the Choquet boundary is a generator of the S�hull of
any compact set� See ���� for some related results�

Corollary �� �Krein�Milman�type theorem�� Let K � IRm�n be compact	 Then
HS�K� � HS��SK�	

Proof	 We have by De�nition �� and Theorem �� that

HS�K� � fA � IRm�n� � f � S � f�A� � sup
B�K

f�B�g

� fA � IRm�n� � f � S � f�A� � sup
B��SK

f�B�g � HS��SK� �

�

Lemma �� Let K � IRm�n be compact and let S satisfy �i�
�ii�	 Then �SHS�K� � K	

Before we prove the lemma we remark that a set M � K is called a max�boundary of
K if for any f � S there is A �M such that supB�K f�B� � f�A��

Proof	 Note that by the de�nition maxA�K f�A� � supA�HS�K� f�A� for any f � S and
thus K is a max�boundary of HS�K�� It follows from ��	 Th� I������ that the smallest closed
max�boundary of HS�K� is �SHS�K�� Thus	 �SHS�K� � K� �

In fact	 �SK is the smallest generator of HS�K� �see Th� � below�� In order to show it
we will need several auxiliary results and a de�nition� The following lemma is a version of
��	 Th� I����
�� We denote by B the Baire sets of K	 i�e�	 the ���eld of compact sets in K
which can be written as a countable intersection of open sets in K�






Lemma �� Let S satisfy �i�
�ii� and K � IRm�n be compact	 Then for any A � K
there is a positive measure � supported on �SK � B such that ���SK� � � and for any
f � S

f�A� �
Z
�SK

f�B���dB� �

Let us de�ne for a compact set K � IRm�n

GS�K� � fA � IRm�n� rca�A�S�K� �� 	g

�
�
A � IRm�n� 
 � � rca�� �K� s�t� � f � S � f�A� �

Z
K
f�B���dB�

�
�

The following results captures e�g� ���	 Th� ����� �iii���

Lemma �� Let K � IRm�n be compact and let S satisfy �i�
�ii�	 Then HS�K� �
GS�K�	

Proof	 Let A � GS�K�� Then there is � � rca�� �K� such that for any f � S f�A� �R
K f�B���dB� � supB�K f�B�� Therefore A � HS�K� and GS�K� � HS�K��

Let now B � HS�K�� Then due to Lemma 
 there is a probability measure � such that
supp � � �SHS�K� � HS�K�	 ���SHS�K�� � � and for any f � S

f�B� �
Z
�SHS�K�

f�C���dC� �
Z
K
f�C���dC� �

The last equality follows from Lemma �� In particular	 � � rca�B�S�K� and B � GS�K��
The lemma is proved� �

Theorem �� Let K � IRm�n be compact and S
convex	 If M � K is compact then
HS�M� � K if and only if �SK �M 	

Proof	 If �SK � M then K � HS��SK� � HS�M�� On the other hand	 as M � K we
have HS�M� � HS�K� � K and therefore K � HS�M��

Let A � �SK � K � HS�M�� Then there is a probability measure � � rca�A�S�K�� As
A is a Choquet point we have � � �A� On the other hand	 as A � HS�M� � must be also
supported on M � Thus A �M � �

From now on we are going to leave this abstract setting and we will show a couple of
examples of admissible cones� In any particular case we describe the set of rca�A�S�K��

�� The cone of quasiconvex functions� Take S � ff � IRm�n �
IR� f quasiconvexg� Such S satis�es �i���ii��

We recall �see e�g� ��
	 ���� that f � IRm�n � IR is quasiconvex if for all A � IRm�n and
any 	 � W ����IRn� IRm� which is ��� ��n periodic �or	 equivalently	 	 � W ���

� ���� ��n� IRm��
it holds

f�A� �
Z
�����n

f�A�r	�x�� dx �

�



If f � IRm�n � IR is not quasiconvex but bounded from below then we de�ne its
quasiconvexi�cation Qf � IRm�n � IR as the supremum of all quasiconvex functions not
greater than f � cf� �����

Quasiconvexity plays a crucial role in the calculus of variations� Namely	 the sequential
weak� lower semicontinuity of I � W ������ IRn� � IR	 I�u� �

R
� f�ru�x�� dx	 � � IRn a

bounded domain is equivalent to the quasiconvexity of f � IRm�n � IR	 see ��	 �
	 ����
The notion of quasiconvexity is closely related to gradient Young measures� Let � � IRn

be a bounded domain and K � IRm�n compact� It is known �see ���	 ���� that for any
sequence f�ugk�IN � L���� IRm�n� such that	 for almost all x � �	 �u�x� � K there exists its
subsequence �here denoted by the same way� and a family of probability measures f
xgx��	
supported on K such that for any continuous function v � K � IR and any g � L����

lim
k��

Z
�
v��uk�x��g�x� dx �

Z
�

Z
K
v�A�
x�dA�g�x� dx � ���

The family of probability measures f
xgx�� for which the above limit passage works and
for which the mapping x ��

R
K v�A�
x�dA� is measurable for any continuous v � K � IR is

called a Young measure generated by f�ukgk�IN� If f
xgx�� is independent of x we call such
a measure homogeneous Young measure� If there is a sequence fukgk�IN � W ������ IRm�
such that �uk � ruk in the above notation then we say that 
 � f
xgx�� is a gradient
Young measure generated by the sequence frukgk�IN� Kinderlehrer and Pedregal ������
found an explicit characterization of gradient Young measures�

Lemma 	� Let � � IRn be a bounded domain and K � IRm�n compact	 The family
of probability measures f
xgx�� supported on K is a gradient Young measure if and only
if the following two conditions hold�


 u � W ������ IRm� � ru�x� �
Z
K
A
x�dA� for a�a� x � � � �
�

� f � IRm�n � IR quasiconvex and for a�a� x � � ���

f
�Z

K
A
x�dA�

�
�
Z
K
f�A�
x�dA� �

We easily see that if f
xgx�� supported on K does not depend on x	 i�e� 
x � 
 for
almost all x and ��� is satis�ed then f
xgx�� is a gradient Young measure� The condition
�
� holds for u�x� � Ax	 where A �

R
K B
�dB�� Thus for our choice of S rca�A�S�K�

coincides with the set of homogeneous gradient Young measures supported on K with the
�rst moment A and �SK consists of those points A in K for which the only homogeneous
gradient Young measure supported on K with the �rst moment A is �A �Dirac�s mass
at A�� This de�nition has been already established by Zhang� �
��� Following Zhang we
denote the set of all quasiconvex extreme points of K by Kq�e and we denote HS�K� for
our choice of S by Q�K� and call it the quasiconvex hull of K� If Q�K� � K we say that
K is quasiconvex�

�



De�nition �� ��
��� Let K � IRm�n be compact	 A point B � K is called a quasiconvex
extreme point if 
 � �B is the only homogeneous gradient Young measure supported on K
with the 
rst moment B	

We have the following lemma as a consequence of Theorem ��

Lemma 
� Any quasiconvex function attains its maximum over a compact set at some
quasiconvex extreme point	

The following theorem generalizes a result by Zhang ��
�	 Th� ����� and provides a
characterization of the quasiconvex hull of a compact set by means of its quasiconvex
extreme points� In truth	 this result is also implied by �
�	 Th� ���	 Th� ��
��

Theorem �� Suppose K � IRm�n is compact	 Then Q�K� � Q�Kq�e�	 Moreover� Kq�e

is the smallest generator of Q�K� in the sense of Theorem �	

Proof	 It follows from Corollary �� �

�� The cones of polyconvex and rank�one convex functions� Now S will be
either the cone of polyconvex or rank�one convex functions	 i�e�	 S � ff � IRm�n �
IR polyconvexg	 or S � ff � IRm�n � IR rank�one convexg and we denote the appropriate
S�hulls of a bounded K � IRm�n by P �K� and R�K�	 respectively	 and we will call them
the polyconvex and quasiconvex hull of K�

We recall that f � IRm�n � IR is polyconvex �see ��	 ���� if there is a convex function

g � IR
Pmin�m�n�

l�� �ml ��
n

l� � IR such that f�A� � g�s�A��	 where s�A� is the vector of all
subdeterminants of A� Further	 f as above is rank�one convex if t �� f�A � ta � b� is
convex for all A � IRm�n	 all a � IRm and all b � IRn� It is known that �see e�g� �����

polyconvexity � quasiconvexity � rank�one convexity �

If f is not polyconvex �rank�one convex� we de�ne its polyconvexi�cation Pf �rank�one

convexi�cation Rf� as the supremum of all polyconvex �rank�one convex� functions � f �
Now we want to characterize S�Choquet points for S being the cone of polyconvex

and rank�one convex functions� To this end	 we �rst de�ne homogeneous polyconvex and
rank�one convex Young measures�

De�nition 	� Let � � IRn be a bounded domain and K � IRm�n compact	 A Young
measure 
 � f
xgx��� 
x supported onK is called polyconvex if it it satis
es ��� with f being
polyconvex instead of quasiconvex	 A polyconvex Young measure is called homogeneous if
f
xgx�� is independent of x	

De�nition 
� Let � � IRn be a bounded domain and K � IRm�n compact	 A Young
measure 
 � f
xgx��� 
x supported on K is called rank
one convex if it it satis
es ���
and ��� with f being rank
one convex instead of quasiconvex	 A rank
one convex Young
measure is called homogeneous if f
xgx�� is independent of x	

�



We see that now rca�A�S�K� is the set of all homogeneous polyconvex �rank�one convex�
Young measures supported on K with the �rst moment A� We will de�ne the set of
polyconvex �rank�one convex� extreme points accordingly�This de�nition of polyconvex
extreme points appeared already in ��
�� We also say that K is polyconvex �rank�one
convex� if P �K� � K �R�K� � K��

De�nition �� Let K � IRm�n be compact	 A point B � K is called a polyconvex
�rank
one convex� extreme point if 
 � �B is the only homogeneous polyconvex �rank
one
convex� Young measure supported on K with the 
rst moment B	 We denote the set of all
polyconvex and rank
one convex extreme points of K by Kp�e and Kr�e� respectively	

Theorem � and Corollary � have now the following form�

Theorem �� Any rank
one convex �polyconvex� function attains its maximum over a
compact set at some rank
one convex �polyconvex� extreme point	 Moreover� if 	 �� K �
IRm�n is compact also Kr�e �� 	 and Kp�e �� 	� R�K� � R�Kr�e� and P �K� � P �Kp�e�	

Example �	 As usually	 we denote by SO��� the subset of rotations in IR���� Then
�SO����p�e� SO���� Indeed	 for any A �SO��� we have that fA �SO��� � IR	 fA�X� �
�det�X�A� is negative for X �� A and zero for X � A� Moreover	 fA is polyconvex� Due
to Theorem � A ��SO����p�e�

Example �	 LetK � �Ni	�SO���Ai	 where Ai � IR��� are positive de�nite and symmetric
such that rank�X � Y � � � for any X �SO���Ai	 Y �SO���Aj	 j �� i� Then Kp�e � K�
The proof is similar as in Example �� We again use the fact that fA�X� � �det�X � A�
is negative for X �� A� cf� ��� and apply Theorem ��

�� Some remarks on Kq�e and Kr�e� In this section we will show that in general
Kq�e �� Kr�e and also that Q�K� and Kq�e does not commute with transposition� cf� below
for a precise statement� We recall that ifm � � and n � � than there exist rank�one convex
functions� IRm�n � IR which are not quasiconvex� In particular	 
Sver�ak ���� showed that
for any � � � there is k � k��� � � such that the function f �k � IR��� � IR

f �k�A� � f�PA� � ��jAj� � jAj�� � kjA� PAj� ���

is rank�one convex but there is � � � such that f �k is not quasiconvex for any k � �� Above	
P � IR��� � IR��� is an orthogonal projector given by

P

�
B�
A�� A��

A�� A��

A�� A��

�
CA �

�
B�

A�� �
� A��

A���A��

�
A���A��

�

�
CA

and

f�PA� � �
A��A���A�� � A���

�
�

where Aij	 i � �� �� 
	 j � �� � mean the entries of A and j � j is the Euclidean norm�

�



Recently	 it was shown that if we de�ne F �

k
� IR��� � IR as

F �

k
�A� � f �
k�A

T �

with AT being the transpose of A then for any � � � there is �k � � that F �

k
is quasiconvex�

cf� �����

Proposition �� ������ For any � � � there exists �k � �k��� � � such that F �

k
� IR��� �

IR is quasiconvex	

It is not di�cult to see that if F �

k
is quasiconvex then also F ���


k
	

F ���

k

�A� � �f�PAT � � ��jAj� � jAj�� � �kjA� PAj�

is quasiconvex�
For a set K � IRm�n we de�ne KT � IRn�m	

KT � fA � IRn�m� AT � Kg �

As rank�one convexity is invariant under transposition	 clearly	 for any K � IRm�n	
R�KT � � R�K�T � The following proposition shows that	 in general	 Q�KT � �� Q�K�T �

Proposition �� There exists a set K � IR��� such that Q�KT � �� Q�K�T 	

Proof	 We divide the proof into several steps�
STEP �� Let us take function g� h � ��� ��� IR	

g�t� �

�
�
t if � � t � �
t� � if � � t � � �

h�t� �

�
t if � � t � �
�t if � � t � �

extend both functions periodically onto the whole IR and de�ne a ��� ����periodic deforma�
tion 	 � ��� ��� � IR� as

	�x� �

�
B� g�x��

g�x��
h�x� � x��

�
CA �

Further set

J �

�
B� �� �

� ��
�� ��

�
CA �

The matrix J �r	 takes on ��� ��� seven di�erent values A�� � � � � A�� cf� Figure �� This
construction is a variant of Milton�s one ����� We have

A� �

�
B� �� �

� ��
� �

�
CA � A� �

�
B� �� �

� �
� �

�
CA � A� �

�
B� �� �

� �
�� ��

�
CA � A� �

�
B� � �

� ��
� �

�
CA �

A� �

�
B�

� �
� ��
�� ��

�
CA � A
 �

�
B�

� �
� �
�� ��

�
CA � A� �

�
B�

� �
� �
� �

�
CA �

�
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Figure �� The seven values of J �r	 and slopes of g and h� The triples of signs denote
the signs of the slopes of 	�� � � � � 	��

If we denote K � fA�� � � � � A�g it is easy to see that J � Q�K� and thus JT is in Q�K�T �
Indeed	 by the very de�nition for any quasiconvex function f�J� � �

�


P�
i	� �if�Ai� �

supi f�Ai�	 where �i denotes the area on which J �r	 takes the value Ai�
STEP �� Now we show that J �� R�K�� It is su�cient to �nd a rank�one convex function
f such that f�J� � supK f �

We know that f �k is rank�one convex for any � � � if k � � is large enough and
supK f

�
k � �
��
���� � ������ On the other hand f �k�J� � ������ Taking � 
 � 
 ����
�

gives that f �k�J� � supK f
�
k and thus J �� R�K��

STEP 
� We have that F �
k is quasiconvex for any � � � provided k is large enough� In

particular	 taking � 
 � 
 ����
� shows that F �
k �J

T � � supKT F �
k � Therefore J

T �� Q�KT ��
�

Corollary �� Let N � fJ�A�� � � � � A�g	 Then J � Nr�e but J �� Nq�e and thus Nq�e ��
Nr�e	

Proof	 The proof follows from the above proposition� �

In the next proposition we compute the whole Q�KT ��

Proposition �� It holds that

Q�KT � � R�KT � � R�K�T � M ��

��
r � t
� s t

	
� rst � � � �� � r� s � � ��� � t � �



�

Proof	 First we show that Q�KT � � M � F �
k and F ���

k are quasiconvex for some choice
of �� k � �� Note that supKT F �

k � supKT F
���
k � ������ Clearly	

Q�KT � � L ��

��
r � t
� s t

	
� r� s� t � IR



�

�



Now if rst � � for some A � L then we can �nd � � � such that F ���
k �A� � ����� and

thus A �� Q�KT �� Similarly	 if rst 
 � we get the same for F �
k � Therefore	 rst � �� As

Q�KT � must be contained in the convex hull of KT all points of Q�KT � must lay in the
rectangular box �r� s� t� � ���� ��� ���� �� � ���� ��� Thus Q�KT � � M � Any edge AT

i A
T
j

of the rectangular box must be contained in R�KT � because its endpoints are rank�one
connected� For any point in the rectangles AT

�A
T
�A

T
�A

T
� 	 A

T
�A

T

A

T
�A

T
� and AT


A
T
�A

T
�A

T
�

we can �nd a horizontal or vertical line segment crossing two edges of the box� Those
crossing points are rank�one connected because they di�er only in one coordinate� Each
of them can be �nally written as a convex combination of some points of KT � Therefore	
we have M � R�KT �� Altogether we have Q�KT � � M � R�KT �� On the other hand	
as quasiconvex functions are rank�one convex	 R�KT � � Q�KT �� Finally	 we obtain M �
R�KT � � R�K�T � Q�KT �� �
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A
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A5
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Figure ��

Corollary �� Let N be as in Corollary �	 Then NT � fJT � AT
� � � � � � A

T
� g� J

T �� �Nq�e�
T

but JT � �NT �q�e and �NT �q�e �� �Nq�e�
T 	

Proof	 The proof follows from Corollary 
 and Proposition 
� �

It is not known whether there exists a rank�one convex function IR��� � IR which
would coincide with f from ��� on the subspace fA � IR���� A � PAg	 i�e�	 which would
be rank�one a�ne on this subspace� On the other hand	 we can show the following�

Corollary 	� Let M be as in Proposition �	 There exists a nonnegative rank
one
convex function g � IR��� � IR such that g�MT � � � and g � � otherwise	 In particular� g
is rank
one a�ne on MT 	 Moreover� g is not quasiconvex	

��



Proof	 The existence and the rank�one convexity of such g follows from ���	 Prop� ������
Using 	 and J de�ned in the proof of Proposotion � above one has � �

R
������ g�J �

r	�x�� dx 
 g�J� because J ��MT � This shows that g is not quasiconvex� �

Example �	 As an example of g from the previous corollary one can take the rank�one
convexi�cation of A �� ��

i	�jA� Aij	 where Ai � K�

	� Q�K� and Q�KT � for K � IR���� We �nish the paper by some remarks on
open problems� It is not known whether Q�K�T � Q�KT � for K � IR���� This question
is intimately related to the question whether rank�one convexity implies quasiconvexity
for functions IR��� � IR� In order to explain this	 let us recall that we found in the
previous section that J � Q�K� but JT �� Q�KT �	 where K � fA�� � � � � A�g� If we
de�ne W � IR��� � IR by W �A� � ��

i	�jA�Aij we see that QW �J� � �	 where QW is the
quasiconvexi�cation ofW � Indeed	 QW �Ai� � � by the de�nition and as J � Q�K� it must
hold that QW �J� � supiQW �Ai� � �� On the other hand	 QW � � because W � � and
� is a quasiconvex function� Now	 put w � IR��� � IR	 w�A� � ��

i	�jA� AT
i j	 i�e�	 w�A� �

W �AT �� We have that Qw�JT � � � and therefore the formula for quasiconvexi�cation �see
����� reads

QW �J� � inf
��W ���

� ��������IR��

Z
������

W �J �r	�x�� dx � �

but
inf

��W ���
� ��������IR��

Z
������

W �JT �rT	�x�� dx � � �

where rT	 �� �r	�T � If this would be true for some function IR��� � IR	 it would provide
an example of a rank�one convex function which is not quasiconvex�

In order to try to �nd such an example we can proceed in the following way� Take
h � � as a mesh parameter and divide ��� ��� into triangles of the size h� We denote this
triangulation Th and set

Wh �� f	 � W ���
� ���� ���� IR��� 	 a�ne on each E � Thg �

Let Ai �� �	 i � �� � � � � N�h�� are the values of gradient of some �xed � � Wh�� Then we

take U � IR��� � IR	 U�A� � �
N�h��
i	� jA � Aij and	 clearly	 QU��� � � but U��� � �� It

remains to study whether

lim
h��

inf
��Wh

Z
������

U�rT	�x�� dx � � � ���

The left hand side actually equals to

inf
��W ���

� ������� �IR��

Z
������

U�rT	�x�� dx

as it was proved in ���� In other words	 we know that � � Q�fA�� � � � � AN�h��g� and we
check if � � Q�fAT

� � � � � � A
T
N�h��

g��
The advantage of the above proposed method over numerical quasiconvexi�cation of a

given rank�one convex integrand �e�g� ����	 ����� is that we do not deal with any particular

��



rank�one convex function �in truth	 not many explicit examples are known� but we examine
a large number of functions� The disadvantage is that it is rather di�cult to show that
the limit in ��� is positive and in reality we cannot do it only by means of numerical
experiments� I spent some e�ort on computations with N�h�� ranging from � to �� without
any remarkable clue showing that ��� does not hold� Another method trying to disprove
that rank�one convexity implies quasiconvexity in a similar spirit as ours was proposed by
Matou
sek � Plech�a
c ���� and Dolzmann �����
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