
Max�Planck�Institut

f�ur Mathematik

in den Naturwissenschaften

Leipzig

Unattainability of nodes

by

Alexander Lange

Preprint no�� �� ����





Unattainability of nodes

Alexander Lange �

June ��� ����

Abstract

It is discussed how a probabilistic generalization of classical mechanics

of a point�particle to its quantum version� as a straight forward application

of the Copenhagen interpretation of quantum mechanics� intrinsically mo�

tivates a multi�particle concept� This corresponds to the unattainability

of the nodes by the modeling stochastic process� That property is shown

here to be ful�lled for physically interesting potentials� The language of

nonstandard analysis is applied not only intending to make the involved

microstructure more transparent but also using it as a handy tool�
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� Introduction

Perhaps� everybody knows about Einstein�s �god does not throw the dice� point
of view concerning the description of quantum mechanics� and the debate of its
interpretation� This article contributes to this topic presenting quantum me�
chanics as an probabilistic extension of classical mechanics� It deals with a
stochastic process that models the �stationary� Schr�odinger equation with a po�
tential �especially around a node� according to Born�s� the so called Copenhagen
interpretation of quantum mechanics�

At about a decade ago there was the last revival of that old physical problem�
now in terms of stochastic processes� Perhaps the most popular �monographic�
representative is Nelson�s �Quantum 	uctuations� 
��
� In addition 
�
 should
be mentioned� The idea of such a kind of approach goes back to the article

�
 of F�enyes� stated on p� �� of Nelson�s book� In spite of modeling with
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Markovian processes� as it is done in the latter work� there is another �stochas�
tic� attempt going back to Schroedinger himself� cf� 
��
� Modern versions of
that can be found in 
�
� where the processes satisfy the Bernsteinian property
instead� and in Nagasawa�s monograph 
��
 from which the reader may get a lot
of background information�

Common to both approaches it seems to be the careful implementation of
�the correct� time direction into an inner and an outer process� This is tried to
expose in section � which could be read as a second introduction to the matter�
In section � an asymptotic property of the potential� which is just excluding
multi�poles� is obtained to assure the unattainability of the nodes driven by
the stochastic process �nally� For the belonging potentials the main result is
derived in section �� i�e�� for ��x� � jO�kxk�j the particle does not attain a
node at x � �� This requirement concerning the tunneling is already found by
Albeverio et al� 
�
 �Theorem ����� with help of Dirichlet forms � it is achieved
here in a di�erent �and simple� way �applying Anderson�s random walk� by
using nonstandard analysis��

With this method the process� starting distribution is not restricted to be
the Copenhagen one �what is usually required in the stochastic approaches� cf�

�
�� it allows the particle to be concentrated at a �starting�� point what seems
to be much closer to an initiated classical description� This may also serve to
contribute a physical interpretation which is suggested in 
��
 considering the
exited quantum particle from a multi�particle point of view�

� Extension of classical mechanics via stochastic

processes

Taken respectfully this section develops what the above cited inventors have
called stochastic mechanics and Euclidian quantum mechanics� But its content
is presented a little bit di�erent from the originals and that is why it is without
respect referred to as an �extension� simply� The extension is made at the kine�
matic level� that means one starts from the velocity v�t� x� � Rd at time t � R�
and position x � R

d of the considered mass�point� The in�nitesimal� change
dx�t� � x�t� dt�� x�t� of the particle�s position for an �xed in�nitesimal time
dt then writes as

dx�t� � v�t� x�dt� ���

The velocity �eld v � C��R� �R
d� of a classical mass�m�particle is determined

by an outer force F �t� x� � Rd via its time derivative by Newton�s dynamical law
mdv�t� x� � F �t� x� dt � with F �t� x� � �rV �t� x� � V symbolizes the potential
�exterior energy�� and w�l�o�g� m �� ��

The reader may wonder about the initiated �splitting of terminology� or
may simply ask after �the velocity �eld u of� an inner force �or interior po�
tential U�� As a comfort to the impatient one let�s anticipate that the latter

�NSA is understood in Robinson�s sense here� but the terminology is sometimes used in
Nelson�s way� So �un�limited is preferred to �in��nite� but hyper�nite is used instead of IST�
�nite�

�also called �quantum� particle
�At this stage nonstandard terminology is perhaps more virtuously applied �for mnemonic

reasons� than seriously required� add the missing integral signs and everything reads in the
standard manner�

�



corresponds to the Bohmian quantum potential� cf� 
�
� The probabilistic ex�
tension is constructed by adding the quantum �uctuation� �u�t� x� dt�

p
� dBt�

to the right hand side of ��� and considering x��� to be a stochastic process X
�i�e� a family of measurable� maps in Rd indexed by elements of a certain time
interval� where � � � is the constant� related to a quantum�s action� and B
denotes the Brownian motion� The indicated duality between outer and inner
seems to be the crucial point for the �nal success of modeling quantum mechan�
ics from a classical point of view� This will therefore be implemented in the
�rst de�nition� But before it is given the physical ideas behind the probabilistic
extension are explained� See the end of x�� of 
��
 for an classical quantum
mechanical approach� One will then recognize the content of the announced
de�nition completely�

Motivation � An stochastic model can preserve the classical picture of contin�
uous trajectories by giving up their smoothness� It keeps the correspondence of
the mass�particle to a point in coordinate space� at least ideally� by supposing
this property to the solutions of the stochastic equations� even when those are
described by a probability measure� But the concept of a �nite local velocity is
given up� With relativity in mind� this does not sound promising at a �rst look�
but those in�nities would only occur with measure zero �after a �nite time��
that means they are most unlikely�

Interpretation � For � � � the quantum 	uctuation disappears� this shows
the compatibility with classical mechanics�

Motivation � An unspoken prerequisite of classical mechanics is the possibility
of permanent observation of the trajectory� Light does usually not disturb a
	ying football� Observing� the ball with wind instead wouldn�t be fun for an
intense player� But at the quantum level light is windy� Any observation requires
interaction� This fact is taken account of� but it is stuck to the possibility
of permanent observations� Therefore the quantum 	uctuation term models
a continual mechanical disturbance �by the Brownian motion� of the particle
together with its interior inertia �by the drift��

De�nition � The stochastic di�erential equation �SDE� in the It�o sense

dXt � v�t�Xt�dt� �u�t�Xt�dt�
p
� dBt ���

is called quantum di�usion law in the �exterior� potential V � if the exterior and
interior drift� the so called current velocity ��eld� v and osmotic velocity ��eld�
u respectively� have to transform like

v�t� x� �� v��t�� x� �� �v�t� x�� u�t� x� �� u��t�� x� �� u�t� x�� ���

under a time re	ection� t �� t� �� �t � to leave the kinematic law ��� unchanged
for the stared �time�re	ected� magnitudes� Its continuous solutions would then�
according to Motivation �� simply deserve the name quantum di�usions�

�where the underlying measure space would have to be determined
�on the physical scale it holds �� 	 for the so called Planck constant�
�only� ���extension to relativity will not be a topic here
�in spite the fact that the author has no clue how to realize this
�Its nontrivial outcome belongs to the �new� freedom that a stochastic model o
ers�
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To illustrate the de�nition It�o�s formula is applied giving the corresponding
Fokker�Planck equation

�t� � �r � � �v � �u� �
�

�
��� ���

cf� 
�
	� p� ��� or 
��
� p� ���� But this is done only formally� The drift �u of
��� is singular if � � �� this will be shown in the next section� So the SDE�s
coe�cients do not satisfy the necessary regularity conditions for an classical
approach� e�g� �global� Lipschitz conditions are required in the cited literature�
on p� �� and p� ��� respectively� However one can avoid arguing �formally� by
considering several copies of the di�usion ��� in disconnected regions fx j � � cg
where � � c � R is a constant chosen arbitrary small�

At the end of the paper it will have been shown that for certain potentials V
�cf� next section� one can add the �rest�� i�e� the x with ��x� � �� the so called
nodes� to the domain of de�nition without changing the process� separation
behavior�

Applying the proposed rules� performing the time re	ection and dropping
the star again� this leads to ��t� � r � � �v� �u� � �

���� Now adding this one
to ���� ��r�� u � ���� or subtracting it from ��� respectively� one �nally gets
the next two statements�

Corollary � The osmotic velocity u of the quantum di�usion ��� is determined
by r�

�� up to a time�dependent constant�

Interpretation 	 Subtraction reproduces � � �t� � r � � v� the continuity
equation of the probability density with the outer current � v� That means
� is driven by the outer force only and can therefore be regarded as a mass
distribution� i�e�

R
x� dx are the classical trajectories�

In a stochastic framework mean values correspond to classical magnitudes� This
is the expected way how classical concepts reappear�

Interpretation � It holds a stochastic Newton law d�

dt�
E
Xt
 � �rV �Xt� �for

the conditional expectation E
�
 �� E�� j PX
t � w�r�t� the associated �ltration

PX
t � �h�Xs�s�ti� But there are several according to di�erent de�nitions of
the stochastic acceleration� e�g� Nelson�s �DD� � D�D�X��� There D and
D� respectively denote the forward and the backward stochastic derivatives for
which d

dt
E
Xt
 � E
DXt
 � E
D�Xt
�

See the literature for the general de�nitions� Here� i�e� for ���� they are iden�
tical to DXt � v�t�Xt� � �u�t�Xt� and D�Xt � ���v�t�Xt� � �u�t�Xt��� the
backward and forward drift respectively�

There is of course a connection to conventional understood quantum me�
chanics but which �nally �cf� Problem ��� tells that the latter itself is �still�
needed for modeling �at the current state of art��

Interpretation 
 From the time dependencies in the de�nition ��� and by
only supposing a starting distribution one realizes a quantum di�usion to be a

�Here the equation is also called Kolmogorov�s forward� Caution� it is a lot of notation
around�

�



Markov�
 process� According to the Copenhagen interpretation� i�e� setting the
quantum particle�s probability density � �� j�j�� that property corresponds to
what physicists refer to as reduction of the wavefunction � the way they interpret
the wavefunction � in Schr�odinger�s time�dependent equation�

Remark � Even for the time�independent Schr�odinger equation the stochastic
process is running� reconstructing the stationary distribution locally up to a
multiple of the density j�j��
At the end of this introduction it should be mentioned how Heisenberg�s uncer�
tainty relation� the distinguished quantum theoretical necessity reappears�

Interpretation �� Assuming � to vanish at the boundary �cf� next section�
integration by parts yields E
Xt � D�D�

� Xt
 �
R
x � �u�t� x� dx � �

�

R
x �

r��t� x� dx � ��� I �

� The �unattainability of nodes� property

This section will have a closer look at the numerical implications of the exten�
sion� Therefore the superposing classical motion is not taken into account any
more� i�e� the corresponding velocity v is set to zero so that one only deals with
the stationary quantum di�usion dXt � �u�Xt� dt�

p
� dBt�

Looking at the drift term u�x� � r��x�
���x� of the stationary process �cf� Corol�

lary �� one realizes singularities for all x with ��x� � �� Those x are called
nodes referring to the property which� by the Copenhagen interpretation� has
to hold for the wave function as well� i�e� ��x� � �� In this section a physically
motivated estimation for the drift term at a node is given� The considered node
is put into the origin from now on� this will hold w�l�o�g�

According to the assumptions above the quantum particle is modeled by the
time�independent Schr�odinger equation ��������� � V �x�� � E�� with real
valued �� Excluding � to be nontrivial � has to be a bounded state� i�e�� if V is
set to zero at the boundary then for the eigenenergy it has to be E � �� Now
some properties for �� extracted from x�� in 
��
� are listed � a global one due
to the integrability �normalization� of ��

�i� � vanishes at the boundary � and some local ones

�ii� � � C� except of those x where V �x� � 	
�
�iii� � is �nite if V is so� and ��x� � � for V �x� � 	
�
The local properties are certainly not be the weakest assumptions for a �func�
tion�� or something generalized� satisfying a �Schr�odinger� di�erential equation�
However it is intended to estimate the wave function around a node to see what
kind of restrictions on the drift u � r�

�� �
�j�jrj�j
�j�j� � rj�j

j�j � at the node� are im�
plied by Schr�odinger�s equation� Now the quantum di�usion� which is to model�
looks like

dXt � �
rj�j
j�j dt�

p
� dBt� ���

�	The second mentioned approach in the Introduction starts with a weaker time dependence
identifying the model process� probability density by the product of a forward and backward
di
usion process� density� But this �nally leads back to a Markovian property�
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Proposition �� If the potential V behaves like �jO�kxks�j � V �x� at the node�
i�e� x� �� for an s � �� then it does not hold ��x� � jO�kxk��j for � � 	 � ��

Proof� Putting the �wrong� ansatz into the Schr�odinger equation� this leads to

�jO�kxk��s�j � �
�

� 	�	���kxk����Ekxk�� i�e� jO�kxk��s�j � �
�

� 	���	� due
to the negative sign of E� But according to the choice of 	 the right hand side
is positive and therefore the inequality is false �for small x � ��� �

Interpretation �� The restriction to s � �� includes all non�singular po�
tentials� as well as the �singular� Coulomb potential� but it excludes those of
multi�poles� The consequences seem to be physically expected� cf� 
��
� x�� for
further motivation�

To have the node property satis�ed� i�e� ���� � �� it has to be 	 � � for
the asymptotic estimate� The proposition tells that ��x� � jO�kxk��j is only
possible for 	 � �� This restricts the behavior of u�x� � 	 x

kxkkxk����kxk��

Corollary �� Thus the SDE estimating the quantum di�usion at a node �in
the origin� is dXt � 	 � Xt

kXtk� dt�
p
� dBt for 	 � ��

Motivation �� Taking spherical coordinates one can go over to one dimen�
sion only �to the radial coordinate of course�� The resulting stochastic process
satisfying

dXt � 	�
dt

Xt

�
p
� dBt for 	 � � ���

is referred to as stationary quantum di�usion at �the right hand side of� a
node� Here it is possible to make the additional generalization compared to
the arguments in the �standard� literature by choosing the initial distribution

x� to be a Dirac one� where � � x
 � R� This further implies an ambiguity
of the starting distribution which would be allowed to choose� Usually �cf�
introduction�� according to the modeled object� it is discussed being built by
the Copenhagen density j�j� only�
But� as in the previous section� it is not clear yet whether such a stochastic
process really exists� and in the further exposition neither the probability dis�
tributions of ��� or ��� are explicitly calculated nor continuity�arguments are
given� only estimates will be achieved �based on the distribution of Brownian
motion�� But the following arguments provide a way to the positive answer�

Remark �� Showing the process� unattainability of the node �done in the next
section� generally constitutes one part towards the proof of the existence of
stochastic process� The other part of an SDE�s existence proof would deal with
the exclusion of an explosion� cf� 
�
� p� ����

The latter would only be relevant if the quantum di�usion did not be com�
pletely enclosed by nodes� But this case is reducible to the �rst one just by
considering the boundary being a node� cf� �i�� In case the boundary is at in�n�
ity then the drift points away from in�nity� Dropping the corresponding term
out of ��� this directly leads to a Brownian motion� i�e� to an estimate against
the possibility of explosions�
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However the existence of the stochastic process ��� will have been proven at the
end of the next section� and there is no better one to �t the probability distri�
bution of a solution of the Schr�odinger equation� But� as it will be concluded�
it depends on the initial conditions of the process whether it reproduces the
Copenhagen distribution globally� Looking at ��� one realizes the drift being
independent of the normalization of �� i�e� of ��

� The behavior at a node

With the help of NSA one can easily falsify the possibility of the particle�s
tunneling through a node� Only to show its departure away from an in�nitesimal
region of the node requires a more sensible discussion� The �nal answer is given
in the theorem of the article� at the end of this section�

For all what follows it is enough to assume countable saturation for the
nonstandard extension� One may start by choosing an unlimited � � �N r N

and taking the in�nitesimal �t �� ���� to be the mesh of a hyper�nite lattice��

T �� fn �t j ���t � n � �Ng � �
�� �
 �having not more than one real number
of 
�� �
 sitting inside a mesh� which is also called hyper�nite time line on 
�� �
�

The stationary process at the node ��� can be written in nonstandard fash�
ion��� by letting n � T��t and


�n����t � 
n�t � 	�
�t


n�t
�
p
� ���n����t � �n�t� with � � 

 � �

R� ���

as a hyper�nite random walk in �R� Here Anderson�s walk ��n����t � �n�t	
p
�t�

each case with probability p � ���� and �
 � � is applied� As 
�
 just tells�
using the representation Bt ��

��
t���t� ��� ���T serves as a nonstandard ver�
sion of a Brownian motion �Bt�t�

��� being based on Loeb�s measurable space
� f�����g�� L� �P�f�����g��� �� Loeb�s �	� coin tossing� corresponds to An�
derson�s successive 	p�t addition� or more technical

�n�t��� �
nX
i��

p
�t �i for any � � f�����g� ��  � and

with probability p � ��� for an atomic event f�n�t���� ��n����t��� �
p
�t �ng

�a single coin toss�� Pf�g �� p� cardf�g � cardf�g��� de�nes the hyper�nite
counting measure which extends to Loeb�s measure L�P�� The latter de�nes the
measure of the stochastic process� and the �nite dimensional distributions of
Anderson�s Brownian motion B can be expressed by P� e�g� �the ��dim ones� for
any r � R and t � 
�� �


L�P� f� �  jBt��� � r g� �z �
�L� �P�f�����g���

� lim
n��

�P f� �  j�
t���t��� � r � ��n g� �z �
� �P�f�����g��

� ���

It is not the aim to �nd an expression for the �nite dimensional distributions
of X this way� But being able to estimate 
 away from the node ensures �cf�

��By the way� this models �a lot of� real analysis� and especially stochastic processes� in an
�in�nitesimally close� or �nearly by� fashion as the reader� unfamiliar with this terms� could
become convinced from studying 
�� or 
	���

��The reader may excuse the individualistic usage of notation� caution� it only looks similar
to 
�� or 
���
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Remark ��� the existence of the stationary quantum di�usion ��� belonging to

� which according to ��� and ��� is the standard process X �

Remark �	 Modeling the start of the hyper�nite walk 
 by 

 � x
� and
� � x
 � R� which translates �and therefore justi�es Motivation ��� to the
considered initial distribution 
x� of X � one gets

Xt �
�

t���t L�P� a�s� for any t � ��� �
� ���

Later on the following density representation of �� based on Bernoulli�s com�
binatorial scheme� will have been used�

Proposition �� Pf�n�t � m
p
�tg � �

n
m

�
�
�n for all hyper�nite m � n � T��t

if m and n are both even or odd�

The Proof does not contain any nonstandard arguments except of the remark
that �hyper� comes right from transfer �of the standard Bernoulli scheme�� So
the number of paths can be described by a hyper�nite �isosceles� �implying the
even!odd condition� Pascalian triangle� i�e�� supposing the walk to be at the mth

position coe�cient at the nth time step �xes the cardinality �number of possible
ways�� up to this time� to be

�
n
m

�
� Including �i�e� multiplying� the cardinality

���n of the remaining time steps� up to �� �nally leads to the proposed formula
for the hyper�nite counting measure� �

Back at the node�crossing problem one might �rstly try to argue the Brow�
nian motion�s worst case using the �deterministic� process

x�n����t �� xn�t � 	�
�t

xn�t
�
p
�
p
�t with x
�t �� 

 � �� ����

This is an estimate from the left� xn�t � 
n�t p a�s� Thus� for each �in�nitesimal
small�

xn�t � 	
p
�
p
�t �� x� � � ����

the particle�s motion turns away from zero indeed� x�n����t � xn�t� i�e�� 
n�t
keeps positive p a�s� But simply to throw away the probability will not lead to
a satisfying result� The particle would move towards a �xed point being still
in�nitesimal close to zero�

Lemma �
 The sequence ���	 has the only �xed point x�� de�ned in ���	�
which especially is attracting� �For 	 � � an iteration moves the particle� being
in a certain region� as indicated below�	

��
HHHjQQs

� xy x� � �R

Figure �� The iteration map xn�t �� x�n����t�
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Proof� ���� immediately yields the single �xed point� From the quotient

q ��
x�n����t � x�
xn�t � x�

� ��
p
h
p
�t

xn�t
�� �� xy

xn�t
����

one reads o� that it is attracting for every x
 � xy� Now all possible cases for
x
 are considered� If xn�t � x�� this includes x
 � x�� one has � � �����	� �
q � �� i�e�� x� � x�n����t � xn�t� �That means� once being on the right hand
side of the �xed point the particle stays there and moves towards the �xed
point�� For x
 �

p
�
p
�t � xy � x�� the �rst iteration gives� x�t � x�� the

prerequisite for the previous case �puts the particle to the right hand side of the
�xed point�� And �nally� for xy � x
 � x�� it holds again � � q � �� ���	��
here it means� xn�t � x�n����t � x�� �The particle stays in�nitesimal closed to
zero all the time�� �

And it comes even worse� looking at the arrow pointing to the left in Figure
�� As the next proposition states� a particle having a limited distance from
the �xed point �on the right hand side of it�� and riding on x needs only an
in�nitesimal time to reach an in�nitesimal neighborhood of the node�

Proposition �� Let x� � x
 � R� After an in�nitesimal time� � x�p
�

p
�t� the

process x is in�nitesimal close to zero�

Proof� By induction on all � � n � x
��
p
�
p
�t� in �N one gets

xn�t � x
 � n
p
�
p
�t� 	� �t

n��X
m�


�

x
 �m
p
�
p
�t
�

repeatedly using the estimate xn�t � x�n����t �
p
�
p
�t� which is obtained from

����� The sum is certainly understood as a hyper�nite one�
Let � �� x
��

p
�
p
�t� � 
x
��

p
�
p
�t�
 � �
�� ��� After N �� 
x
��

p
h
p
�t�


time steps �t� i�e� after the in�nitesimal time N�t � x

p
�t�

p
� � ��t �

x

p
�t�

p
�� the above inequality reduces to

xN�t � � �t� 	
p
�
p
�t

N��X
m�


�

� �N �m
�

The function inside the sum is increasing� m taken to be in �R� and therefore it
can be dominated by the Riemann integral in �

R�

N��X
m�


�

� �N �m
�
Z N��




dm

� �N �m
� ln N � �

� � �
� ln�N � ���

i�e��

xN�t � � �t� 	
p
�
p
�t ln

x
 �
p
�
p
�tp

�
p
�t

�

Using � � x� � xN�t from the previous lemma and applying the property ofp
�t to be in�nitesimal �e�g� via l�Hospital�s rule� result in

� � xN�t �

�
	
p
� ln

x

�

� p
�t ln

�p
�t
� ��

�



and the proof is �nished� �

It was shown so far� the particle being somewhere out of a node� will never
cross nor reach it� This also holds for 	 � �� In the remaining case 	 � �� i�e�
if the step size �lattice� is bigger than the �xed point being away from zero� the
walk just runs over the node� But anyway without using probabilistic arguments
one would still have to assume the particle being sucked straight �within an
in�nitesimal time� into a �xed point being in an in�nitesimal neighborhood of
the node� But this is in fact not the case�

As the proof of the following lemma will show� another estimation � from
the left of the hyper�nite walk 
� being di�erent from ����� can actually be done
�by dropping drift terms out of ��� carefully�� for n � T��t

�n�t ��
p
� r��n�t� � �	� ��

p
�
p
�t ����

where r��� �� ����� denotes the re�ected Anderson walk at zero� with �� ��

H�	��
p
�t� and H�x� ��

�
� � x � �
� � x � �

de�ning a step function�

Lemma �� Let 

 � x�� and 	 � �� Then �� � 
� P a�s� for � � T�
Proof� Start 
 at 

 � x�� and drop the drift term 	��t�
n�t � � out of ���
whenever 
 is not at x� but also there if the �following� Anderson step points
to the right� This leads to a modi�ed 
� denoted by "
� By this construction
one gets "
� � 
� for � � T� and it remains to proof that the modi�ed process
really is built by ����� i�e�� "
� � �� P a�s�

Taking into account that at x� an Anderson step pointing to the left cancels
with the drift �This actually is the de�nition of the �xed point x�� cf� Lemma
���� the modi�ed process reads as

"
�n����t � "
n�t �
p
�
p
�t �

�	



�
� if "
n�t � x�

�� otherwise

�
�

with the same probability p���� for both cases� The corresponding walk is
illustrated below�
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Figure �� The modi�ed Pascalian triangle�
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Each arrow in the �gure represents one atomic choice �made with p��!���
and therefore the number of possible ways �printed into the circles� is obtained
by recursive addition of the previous number of arrows �just as in the Pascalian
triangle��

Now remembering the Bernoulli scheme of Anderson�s walk one recognizes
the claim "
 � �� Mirroring the unlabeled circles from the isosceles Pascalian
triangle �of Proposition ��� at x�� this corresponds to ���n�t�x�� and moving
them

p
�
p
�t to the left� i�e� producing ��n�t � ��n�t � x� � p

�
p
�t� and one

obtains the modi�ed Pascalian triangle corresponding to �� �

Remark �� The re	ection operator r��� at zero of course posses the much
simpler representation by the absolute value j � j which mnemonically already
denotes its standard analogue� Using this notation one has to keep in mind that
the modeling node in ��� is set to zero by hand�

The lemma straightforwardly translates into standard language�

Theorem �� Let 	 � �� Then p� jBtj � Xt L�P � a�s� for all t � 
�� �
�
Proof� The lemma does not exclude � � 	 � �� Therefore one can� using the
overspill principle� include 	 � � to the prerequisites here� Certainly x� � x

for all � � x
 � R �cf� Remark ���� i�e�� the lemma applies� Together with the
above remark and the identi�cations ��� and ���� the observation that ��n�t �p
�
�r��n�t� leads to the stated result� For t � 
�� �
 it holds
p
� jBtj �

p
�
�r
�
�
t���t

�
� ��
t���t � �

t���t � Xt L�P� a�s�

�

This means one can estimate the quantum stochastic process X away from
the node by �the probability distribution of� a Brownian motion re	ected at this
node� Thus one has the local existence of the stationary process at the node�

Remark �� Following the method here 	 can not be chosen smaller than � as
one realizes by looking at ����� But the time interval� the process is considered
on� can be extended to any compact one simply by enlarging T�

� Conclusions

Applying well known properties of a Brownian motion �which also hold for
the re	ected one�� dealing with the local and with the recurrence behavior �re�
spectively�� the following �two� additional conclusions from the theorem of last
section can be formulated�

Corollary �� The quantum particle �supposed to be� modeled by a quantum
di�usion described in section �� i�e� by ��� �nally� almost surely does not stay
in an in�nitesimal�� neighborhood of a node longer than an in�nitesimal time�
And the quantum particle almost surely cannot enter an in�nitesimal region of
the node more than �nitely many times within a �nite time�

��The author apologizes for his lazy �nonstandard� tongue here�

��



Even if the �a�s�� refers to the probability space of a Brownian motion and the
language is a bit nonstandard here� nothing so far did stop a rigorous nonlo�
cal de�nition of quantum di�usion which� as proven above� would not tunnel
through nor being captured in the nodes� Due to Proposition �� this holds for
all potentials V �x� � O�kxk��� for x� �� But it should clearly be stated again
that nothing here has been proven about continuity� i�e� about the �commonly
used� attribute �di�usion�� Achieving this by using NSA could be a topic of
subsequent work�

Additional to Nelson�s discussion in 
��
 �and a bit opposite to his �heuristic�
arguments on p� ��� the impossibility of �communication through the nodes�
would also allow other physical interpretations� This is illustrated with the
simplest model that produces discrete eigenstates�

Example �� Let V �t� x� � � be a constant� time�independent potential in a
one dimensional compact space� e�g� in 
�� �
 � R� and being equal to �
 else�
where in R� Thus Xt � 
�� �
 � R �the process� con�guration space� for t � R� �
The Schr�odinger equation gives the following set of wave functions �certainly
not time dependent� ��t� x� �

p
� sin��nx�� n � N� for the energy eigenvalues

En � ����n���� The probability density resulting by the Copenhagen interpre�
tation is ��t� x� � � sin���nx�� with nodes at � and i�n for i � f�� � � � � ng�

Caution��� this is not the stationary probability density #� of the belonging
quantum di�usion ���� i�e� dXt � � dt� sin��nXt��

p
�Bt� if the initial probabil�

ity distribution PX�
� PfX
 � �g does not yield the same value pi � PX�

�Gi� �R
Gi

���� x� dx � ��n for all disconnected regions Gi � ��i� ���n� i�n� separated
by nodes� Following 
��
� p� ��� one obtains #� � �

P
i�n PX�

�Gi��Gi
� Despite

of Nelson�s conclusions one could model the situation of di�erent pi�s� as well as
the �proper� one� with n independent processes on con�guration spaces Gi �and
possibly� with �an arbitrary� starting distributions PX�

� � 
Gi� of n particles�

Interpretation �	 If one takes the stochastic picture serious the Copenhagen
interpretation only holds in separated regions� e�g�� once the particle has entered
a region enclosed by nodes �especially for excited states� it stays there� This
way a maximal number �some may have degenerated initial distributions� i�e�
PX�

�Gi� � �� of n quantum particles� each having the eigenenergy En� would
�t into the con�guration space 
�� �
� And this should hold for all n � N of the
example�

Further one may suggest the single quantum particle to �consists� of some
sort of sub�particles which could di�er in number depending on the particle�s
energy En �but being � n�� In 
��
� on p� ���� a similar idea is formulated�
There �photons� are suggested to play the r�ole of sub�particles� Providing a
single quantum particle with the energy En then in addition to the ground state
particle� which may somehow be regarded as a sub�particle as well� n�� �extra�
photons are to consider �being� inside the con�guration space 
�� �
� One might
understand the action of a surrounding photon �on the quantum particle� as
a quantum 	uctuation� a disturbance resulting in a Brownian motion which is
tempered �may be as a collective e�ect� by the osmotic drift�

Certainly second quantization �or QFT� clears the picture� But it seems
remarkable that the classical quantum model here already demands for it�

��remembering Remark � and the end of section �

��



Another aspect should be emphasized at the end�

Problem �� The stochastic process here� build by the quantum 	uctuation�
is only �tting the quantum mechanical description via Schr�odinger�s equation�
Looking for an intrinsic stochastic model� reproducing the discrete eigenvalues
etc�� might be a challenging exercise for further research� This perhaps is already
initiated by a di�erent approach� called quantum chaos� However a stochastic
theory should straightforwardly lead to numerical simulations�
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