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Abstract

It is discussed how a probabilistic generalization of classical mechanics
of a point-particle to its quantum version, as a straight forward application
of the Copenhagen interpretation of quantum mechanics, intrinsically mo-
tivates a multi-particle concept. This corresponds to the unattainability
of the nodes by the modeling stochastic process. That property is shown
here to be fulfilled for physically interesting potentials. The language of
nonstandard analysis is applied not only intending to make the involved
microstructure more transparent but also using it as a handy tool.
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1 Introduction

Perhaps, everybody knows about Einstein’s “god does not throw the dice” point
of view concerning the description of quantum mechanics, and the debate of its
interpretation. This article contributes to this topic presenting quantum me-
chanics as an probabilistic extension of classical mechanics. It deals with a
stochastic process that models the (stationary) Schrodinger equation with a po-
tential (especially around a node) according to Born’s, the so called Copenhagen
interpretation of quantum mechanics.

At about a decade ago there was the last revival of that old physical problem,
now in terms of stochastic processes. Perhaps the most popular (monographic)
representative is Nelson’s “Quantum fluctuations” [13]. In addition [7] should
be mentioned. The idea of such a kind of approach goes back to the article
[8] of Fényes, stated on p. 77 of Nelson’s book. In spite of modeling with
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Markovian processes, as it is done in the latter work, there is another (stochas-
tic) attempt going back to Schroedinger himself, cf. [15]. Modern versions of
that can be found in [3], where the processes satisfy the Bernsteinian property
instead, and in Nagasawa’s monograph [12] from which the reader may get a lot
of background information.

Common to both approaches it seems to be the careful implementation of
(the correct) time direction into an inner and an outer process. This is tried to
expose in section 2 which could be read as a second introduction to the matter.
In section 3 an asymptotic property of the potential, which is just excluding
multi-poles, is obtained to assure the unattainability of the nodes driven by
the stochastic process finally. For the belonging potentials the main result is
derived in section 4; i.e., for ¢¥(z) < |O(||z]|)| the particle does not attain a
node at x = 0. This requirement concerning the tunneling is already found by
Albeverio et al. [1] (Theorem 4.1.) with help of Dirichlet forms — it is achieved
here in a different (and simple) way (applying Anderson’s random walk) by
using nonstandard analysis!.

With this method the process’ starting distribution is not restricted to be
the Copenhagen one (what is usually required in the stochastic approaches, cf.
[5]), it allows the particle to be concentrated at a (starting-) point what seems
to be much closer to an initiated classical description. This may also serve to
contribute a physical interpretation which is suggested in [12] considering the
exited quantum particle from a multi-particle point of view.

2 Extension of classical mechanics via stochastic
processes

Taken respectfully this section develops what the above cited inventors have
called stochastic mechanics and Euclidian quantum mechanics. But its content
is presented a little bit different from the originals and that is why it is without
respect referred to as an “extension” simply. The extension is made at the kine-
matic level, that means one starts from the velocity v(¢,z) € R? at time ¢t € Ry
and position € R? of the considered mass*point. The infinitesimal® change
dz(t) = z(t + dt) — x(t) of the particle’s position for an fixed infinitesimal time
dt then writes as

dz(t) = v(t, z)dt. (1)

The velocity field v € C1(R;,R?) of a classical mass-m-particle is determined
by an outer force F(t,z) € R? via its time derivative by Newton’s dynamical law
mdvu(t,z) = F(t,z)dt, with F(t,x) = —VV (t,z). V symbolizes the potential
(exterior energy), and w.l.o.g. m := 1.

The reader may wonder about the initiated “splitting of terminology” or
may simply ask after (the velocity field u of) an inner force (or interior po-
tential U). As a comfort to the impatient one let’s anticipate that the latter

INSA is understood in Robinson’s sense here, but the terminology is sometimes used in
Nelson’s way. So (un)limited is preferred to (in)finite, but hyperfinite is used instead of IST-
finite.

2also called (quantum) particle

3 At this stage nonstandard terminology is perhaps more virtuously applied (for mnemonic
reasons) than seriously required; add the missing integral signs and everything reads in the
standard manner.



corresponds to the Bohmian quantum potential, cf. [6]. The probabilistic ex-
tension is constructed by adding the quantum fluctuation, hu(t, ) dt + VhdBy,
to the right hand side of (1) and considering z(-) to be a stochastic process X
(i.e. a family of measurable* maps in R? indexed by elements of a certain time
interval) where h < 1 is the constant® related to a quantum’s action, and B
denotes the Brownian motion. The indicated duality between outer and inner
seems to be the crucial point for the final success of modeling quantum mechan-
ics from a classical point of view. This will therefore be implemented in the
first definition. But before it is given the physical ideas behind the probabilistic
extension are explained. See the end of §18 of [11] for an classical quantum
mechanical approach. One will then recognize the content of the announced
definition completely.

Motivation 1 An stochastic model can preserve the classical picture of contin-
uous trajectories by giving up their smoothness. It keeps the correspondence of
the mass-particle to a point in coordinate space, at least ideally, by supposing
this property to the solutions of the stochastic equations, even when those are
described by a probability measure. But the concept of a finite local velocity is
given up. With relativity in mind® this does not sound promising at a first look,
but those infinities would only occur with measure zero (after a finite time),
that means they are most unlikely.

Interpretation 2 For 7 — 0 the quantum fluctuation disappears, this shows
the compatibility with classical mechanics.

Motivation 3 An unspoken prerequisite of classical mechanics is the possibility
of permanent observation of the trajectory. Light does usually not disturb a
flying football. Observing” the ball with wind instead wouldn’t be fun for an
intense player. But at the quantum level light is windy. Any observation requires
interaction. This fact is taken account of, but it is stuck to the possibility
of permanent observations. Therefore the quantum fluctuation term models
a continual mechanical disturbance (by the Brownian motion) of the particle
together with its interior inertia (by the drift).

Definition 4 The stochastic differential equation (SDE) in the It6 sense

is called quantum diffusion law in the (exterior) potential V if the exterior and
interior drift, the so called current velocity (field) v and osmotic velocity (field)
u respectively, have to transform like

v(t,z) = ot x) == —v(t,z), ult,z)— u*(t*,z) = u(t, x), (3)

under a time reflection® ¢ — ¢* := —t | to leave the kinematic law (2) unchanged
for the stared (time-reflected) magnitudes. Its continuous solutions would then,
according to Motivation 1, simply deserve the name quantum diffusions.

4where the underlying measure space would have to be determined

5on the physical scale it holds & < 1 for the so called Planck constant.

6only; ...extension to relativity will not be a topic here

7in spite the fact that the author has no clue how to realize this

81ts nontrivial outcome belongs to the (new) freedom that a stochastic model offers.



To illustrate the definition It6’s formula is applied giving the corresponding
Fokker-Planck equation

h
atp:—V-p(v+hu)+§Ap, (4)

cf. [9]°, p. 30, or [10], p. 324. But this is done only formally. The drift hu of
(2) is singular if p = 0, this will be shown in the next section. So the SDE’s
coefficients do not satisfy the necessary regularity conditions for an classical
approach, e.g. (global) Lipschitz conditions are required in the cited literature,
on p. 92 and p. 319 respectively. However one can avoid arguing “formally” by
counsidering several copies of the diffusion (2) in disconnected regions {z | p > ¢}
where 0 < ¢ € R is a constant chosen arbitrary small.

At the end of the paper it will have been shown that for certain potentials V'
(cf. next section) one can add the “rest”, i.e. the x with p(z) = 0, the so called
nodes, to the domain of definition without changing the process’ separation
behavior.

Applying the proposed rules, performing the time reflection and dropping
the star again, this leads to —9;p = V- p (v — hu) + £ Ap, Now adding this one
to (4), 2hV-pu = h Ap, or subtracting it from (4) respectively, one finally gets
the next two statements.

Corollary 5 The osmotic velocity u of the quantum diffusion (2) is determined
by Z—’f up to a time-dependent constant.

Interpretation 6 Subtraction reproduces 0 = Jip + V - pv, the continuity
equation of the probability density with the outer current pv. That means
p is driven by the outer force only and can therefore be regarded as a mass
distribution, i.e. [xpdz are the classical trajectories.

In a stochastic framework mean values correspond to classical magnitudes. This
is the expected way how classical concepts reappear.

Interpretation 7 It holds a stochastic Newton law %E[Xt] = -VV(Xy) (for
the conditional expectation E[] := E(-|P;) w.rt. the associated filtration
P = 0((Xs)s<t). But there are several according to different definitions of
the stochastic acceleration, e.g. Nelson’s (DD* + D*D)X/2. There D and
D* respectively denote the forward and the backward stochastic derivatives for

which £ E[X,] = E[DX,] = E[D*X,].

See the literature for the general definitions. Here, i.e. for (2), they are iden-
tical to DXy = v(t, Xy) + hu(t, X;) and D*X; = —(—v(t, X¢) + hu(t, Xy)), the
backward and forward drift respectively.

There is of course a connection to conventional understood quantum me-
chanics but which finally (cf. Problem 27) tells that the latter itself is (still)
needed for modeling (at the current state of art).

Interpretation 8 From the time dependencies in the definition (2) and by
only supposing a starting distribution one realizes a quantum diffusion to be a

9Here the equation is also called Kolmogorov’s forward. Caution, it is a lot of notation
around.



Markov!? process. According to the Copenhagen interpretation, i.e. setting the
quantum particle’s probability density p := |1|?, that property corresponds to
what physicists refer to as reduction of the wavefunction — the way they interpret
the wavefunction ¢ in Schrédinger’s time-dependent equation.

Remark 9 Even for the time-independent Schrodinger equation the stochastic
process is running, reconstructing the stationary distribution locally up to a
multiple of the density |¢|>.

At the end of this introduction it should be mentioned how Heisenberg’s uncer-
tainty relation, the distinguished quantum theoretical necessity reappears.

Interpretation 10 Assuming p to vanish at the boundary (cf. next section)
integration by parts yields E[X; ® 2222X;] = [2 ® hu(t,z)dz = £ [z ®
Vp(t,z)dz = —L1.

3 The “unattainability of nodes” property

This section will have a closer look at the numerical implications of the exten-
sion. Therefore the superposing classical motion is not taken into account any
more, i.e. the corresponding velocity v is set to zero so that one only deals with
the stationary quantum diffusion dX; = hu(X;)dt + VhdBy.

Looking at the drift term u(z) = Z‘f((;)) of the stationary process (cf. Corol-
lary 5) one realizes singularities for all # with p(x) = 0. Those z are called
nodes referring to the property which, by the Copenhagen interpretation, has
to hold for the wave function as well, i.e. ¥(z) = 0. In this section a physically
motivated estimation for the drift term at a node is given. The considered node
is put into the origin from now on, this will hold w.l.o.g.

According to the assumptions above the quantum particle is modeled by the
time-independent Schrodinger equation —(h2/2)Ay + V(z) 1 = E1, with real
valued 9. Excluding p to be nontrivial ¢) has to be a bounded state, i.e., if V' is
set to zero at the boundary then for the eigenenergy it has to be E < 0. Now
some properties for 1, extracted from §18 in [11], are listed — a global one due
to the integrability (normalization) of 1),

(i) ¢ vanishes at the boundary — and some local ones

(ii) 4 € C' except of those x where V (z) = %00,

(iii) % is finite if V' is so, and ¢(z) = 0 for V(z) = too.
The local properties are certainly not be the weakest assumptions for a “func-
tion”, or something generalized, satisfying a (Schrodinger) differential equation.
However it is intended to estimate the wave function around a node to see what
kind of restrictions on the drift v = g—;’ = % = %, at the node, are im-
plied by Schrédinger’s equation. Now the quantum diffusion, which is to model,
looks like

dx, —tht+\/ﬁdBt. (5)

Y

10The second mentioned approach in the Introduction starts with a weaker time dependence
identifying the model process’ probability density by the product of a forward and backward
diffusion process’ density. But this finally leads back to a Markovian property.




Proposition 11 If the potential V behaves like —|O(]|z||*)| < V(z) at the node,
i.e. © — 0, for an s > —2 then it does not hold y(x) = |O(||z]|¥)| for 0 < a < 1.

Proof. Putting the “wrong” ansatz into the Schrodinger equation, this leads to
2 . ) P 2
—10(l2]|***)| < Fala=1)|la]|* 72 + Ell]|*, ie. |O(|2]***)] > 5a(l - a) due
to the negative sign of E. But according to the choice of a the right hand side
is positive and therefore the inequality is false (for small = > 0). O

Interpretation 12 The restriction to s > —2 includes all non-singular po-
tentials, as well as the (singular) Coulomb potential, but it excludes those of
multi-poles. The consequences seem to be physically expected, cf. [11], §18 for
further motivation.

To have the node property satisfied, i.e. 1(0) = 0, it has to be a > 0 for
the asymptotic estimate. The proposition tells that ¢ (z) = |O(||z||*)| is only
possible for a > 1. This restricts the behavior of u(z) = aHﬁ—HHxH“_l/HxHO‘.

Corollary 13 Thus the SDE estimating the quantum diffusion at a node (in
the origin) is dX; = ah”))((ﬁ dt + VhdB; for a > 1.

Motivation 14 Taking spherical coordinates one can go over to one dimen-
sion only (to the radial coordinate of course). The resulting stochastic process
satisfying

dx, = ah% +VhdB, fora>1 (6)
t

is referred to as stationary quantum diffusion at (the right hand side of) a
node. Here it is possible to make the additional generalization compared to
the arguments in the “standard” literature by choosing the initial distribution
€z, t0 be a Dirac one, where 0 < g € R. This further implies an ambiguity
of the starting distribution which would be allowed to choose. Usually (cf.
introduction), according to the modeled object, it is discussed being built by
the Copenhagen density |¢|* only.

But, as in the previous section, it is not clear yet whether such a stochastic
process really exists, and in the further exposition neither the probability dis-
tributions of (5) or (6) are explicitly calculated nor continuity-arguments are
given, only estimates will be achieved (based on the distribution of Brownian
motion). But the following arguments provide a way to the positive answer.

Remark 15 Showing the process’ unattainability of the node (done in the next
section) generally constitutes one part towards the proof of the existence of
stochastic process. The other part of an SDE’s existence proof would deal with
the exclusion of an explosion, cf. [5], p. 426.

The latter would only be relevant if the quantum diffusion did not be com-
pletely enclosed by nodes. But this case is reducible to the first one just by
considering the boundary being a node, cf. (i). In case the boundary is at infin-
ity then the drift points away from infinity. Dropping the corresponding term
out of (6) this directly leads to a Brownian motion, i.e. to an estimate against
the possibility of explosions.



However the existence of the stochastic process (5) will have been proven at the
end of the next section, and there is no better one to fit the probability distri-
bution of a solution of the Schrédinger equation. But, as it will be concluded,
it depends on the initial conditions of the process whether it reproduces the
Copenhagen distribution globally. Looking at (5) one realizes the drift being
independent of the normalization of v, i.e. of p.

4 The behavior at a node

With the help of NSA one can easily falsify the possibility of the particle’s
tunneling through a node. Only to show its departure away from an infinitesimal
region of the node requires a more sensible discussion. The final answer is given
in the theorem of the article, at the end of this section.

For all what follows it is enough to assume countable saturation for the
nonstandard extension. One may start by choosing an unlimited v € *N N N
and taking the infinitesimal §¢ =: 1/v, to be the mesh of a hyperfinite lattice!!
T:={ndt|1/6t >n € *N} C *[0,1] (having not more than one real number
of [0, 1] sitting inside a mesh) which is also called hyperfinite time line on [0, 1].

The stationary process at the node (6) can be written in nonstandard fash-
ion'?, by letting n € T/dt and

ot
X(n+1)6t = Xnst + OéﬁX

- + VI (Bns1yst — Bast)  with 0< xo € "R, (7)
not

as a hyperfinite random walk in *R. Here Anderson’s walk (3(,,11)5: = Bst £V,
each case with probability p = 1/2, and By = 0 is applied. As [4] just tells,
using the representation By := °Bs,)5¢, (Br)rer serves as a nonstandard ver-
sion of a Brownian motion (B¢)c[o,1) being based on Loeb’s measurable space
({-1,+1}", L(*P({-1,+1}"))). Loeb’s “£1 coin tossing” corresponds to An-
derson’s successive /0t addition, or more technical

Bnst(w) = Z Vot w; for any w € {—1,+1}" =: Q, and
i=1

with probability p = 1/2 for an atomic event {B,s5t(w) — Bn-1)5t(w) = Votw,}
(a single coin toss), P{-} := p¥card{-} = card{-}/2” defines the hyperfinite
counting measure which extends to Loeb’s measure L(P). The latter defines the
measure of the stochastic process, and the finite dimensional distributions of
Anderson’s Brownian motion B can be expressed by P, e.g. (the 1-dim ones) for
any r € R and t € [0,1]

L(P)iw € Q| By(w) < rl: nl;n;o P{w € Q| Bryse(w) <7+ l/n}l (8)

eL(*P({=1,+1}")) €*P({~1,41}¥)

It is not the aim to find an expression for the finite dimensional distributions
of X this way. But being able to estimate xy away from the node ensures (cf.

1By the way, this models (a lot of) real analysis, and especially stochastic processes, in an
“infinitesimally close” or “nearly by” fashion as the reader, unfamiliar with this terms, could
become convinced from studying [2] or [14].

12The reader may excuse the individualistic usage of notation, caution, it only looks similar
to [2] or [4].



Remark 15) the existence of the stationary quantum diffusion (6) belonging to
X, which according to (8) and (7) is the standard process X.

Remark 16 Modeling the start of the hyperfinite walk x by xo = z¢, and
0 < zp € R, which translates (and therefore justifies Motivation 14) to the
considered initial distribution €,, of X, one gets

Xi = °Xquwjoe L(P) a.s. for any t € (0, 1]. (9)

Later on the following density representation of 3, based on Bernoulli’s com-
binatorial scheme, will have been used.

Proposition 17 P{3,s; = m/ot} = (;;)2% for all hyperfinite m < n € T/dt
if m and n are both even or odd.

The Proof does not contain any nonstandard arguments except of the remark
that “hyper” comes right from transfer (of the standard Bernoulli scheme). So
the number of paths can be described by a hyperfinite “isosceles” (implying the
even/odd condition) Pascalian triangle, i.e., supposing the walk to be at the m'™
position coefficient at the n'" time step fixes the cardinality (number of possible
ways), up to this time, to be (7?1) Including (i.e. multiplying) the cardinality
2¥~™ of the remaining time steps, up to v, finally leads to the proposed formula
for the hyperfinite counting measure. O

Back at the node-crossing problem one might firstly try to argue the Brow-
nian motion’s worst case using the (deterministic) process
ot

— ViVt with s = xo > 0. (10)
Tnot

T(p+1)st = Tnot + h

This is an estimate from the left, z,5: < xnot p a-s. Thus, for each (infinitesimal
small)

Tnst < VIVt = 20, ~0 (11)

the particle’s motion turns away from zero indeed, x(,41)5: > Tnot, 1-€., Xnot
keeps positive p a.s. But simply to throw away the probability will not lead to
a satisfying result. The particle would move towards a fixed point being still
infinitesimal close to zero.

Lemma 18 The sequence (10) has the only fized point x~, defined in (11),
which especially is attracting. (For o > 1 an iteration moves the particle, being
in a certain region, as indicated below.)

0 T Too 1 *R

Figure 1: The iteration map Tnst = T(n41)s¢-



Proof. (10) immediately yields the single fixed point. From the quotient

_ Tt “Te0 oy VRVEL_ an
Tnit — Too Tnst ) Tnst

(12)

one reads off that it is attracting for every zg > x~ . Now all possible cases for
xg are considered. If z,5: > T oo, this includes zg > zo, onehas 0 < 1—(1/a) <
q<1,ie, Too < T(ns1)st < Tnst- (That means, once being on the right hand
side of the fixed point the particle stays there and moves towards the fixed
point.) For zy < N T~ < Zoo, the first iteration gives, x5 > o, the
prerequisite for the previous case (puts the particle to the right hand side of the
fixed point). And finally, for z~ < zg < Zw, it holds again 0 < ¢ < 1 — (1/a),
here it means, Tnst < T(nt1)5¢t < Too- (The particle stays infinitesimal closed to
zero all the time.) O

And it comes even worse, looking at the arrow pointing to the left in Figure
1. As the next proposition states, a particle having a limited distance from
the fixed point (on the right hand side of it), and riding on x needs only an
infinitesimal time to reach an infinitesimal neighborhood of the node.

Proposition 19 Let zo, < zg € R. After an infinitesimal time, ~ %\/516, the
process T s infinitesimal close to zero.

Proof. By induction on all 1 < n < z¢/(v/hV/dt) in *N one gets

n—1

Tnot S.TUO —n\/ﬁ\/(%+aﬁ 5t2 %,
o —m

repeatedly using the estimate ns5t > Z(p_1)5t — Vh/5t, which is obtained from
(10). The sum is certainly understood as a hyperfinite one.

Let 1 := xo/(VhVSt) — [xo/(VAVEE)] € *[0,1). After N := [z0/(vVhVd1)]
time steps dt, i.e. after the infinitesimal time N&t = xoV/0t/Vh — nit ~
.CL'(]\/E/ V/h, the above inequality reduces to

m=0

N-1
1
<not+aVhVery ———.
<m0t mz::on-i—N—m

The function inside the sum is increasing, m taken to be in *R, and therefore it
can be dominated by the Riemann integral in *R.

N-1 N-1
1 d N
Y o [ N v,
= ntN-—m 0 n+N—m 1479
i.e.,
$0+\/ﬁ\/5t

TNst < 5t+a\/ﬁ\/§ In
e Vot

Using 0  Zoo < st from the previous lemma and applying the property of

/4t to be infinitesimal (e.g. via ’Hospital’s rule) result in

0 < xnst é <Oé\/ﬁ hl%) \/E In

~ 0,

1
Vot



and the proof is finished. O

It was shown so far, the particle being somewhere out of a node, will never
cross nor reach it. This also holds for &« = 1. In the remaining case a < 1, i.e.
if the step size (lattice) is bigger than the fixed point being away from zero, the
walk just runs over the node. But anyway without using probabilistic arguments
one would still have to assume the particle being sucked straight (within an
infinitesimal time) into a fixed point being in an infinitesimal neighborhood of
the node. But this is in fact not the case.

As the proof of the following lemma will show, another estimation A from
the left of the hyperfinite walk y, being different from (10), can actually be done
(by dropping drift terms out of (7) carefully); for n € T/dt

Anot = VIT(Bust) + (a — 1)VAV6t (13)
where () := 1 — 3~ denotes the reflected Anderson walk at zero, with 3% :=
H(+8) V/5t, and H(z) = { 1,220

0, <0 defining a step function.

Lemma 20 Let xo > oo, and a > 1. Then A < x, P ass. fort € T.

Proof. Start x at xo = Zeo, and drop the drift term afidt/xns: > 0 out of (7)
whenever x is not at z, but also there if the (following) Anderson step points
to the right. This leads to a modified y, denoted by x. By this construction
one gets X, < x, for 7 € T; and it remains to proof that the modified process
really is built by (13), i.e., xr = A\ P a.s.

Taking into account that at x., an Anderson step pointing to the left cancels
with the drift (This actually is the definition of the fixed point =, cf. Lemma
11.) the modified process reads as

1
X(n+1)6t = Xnot + Vst - 0 if Xnot = Too )
—1 otherwise

with the same probability p=1/2 for both cases. The corresponding walk is
illustrated below.

4t O O éX XCX®X©/.
XX X /7

C?‘x“x‘/

O
O O
~Oz0
N X
@\@ O8C,
0 6 O
©

0 ZToo *R

Figure 2: The modified Pascalian triangle.
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Each arrow in the figure represents one atomic choice (made with p=1/2),
and therefore the number of possible ways (printed into the circles) is obtained
by recursive addition of the previous number of arrows (just as in the Pascalian
triangle).

Now remembering the Bernoulli scheme of Anderson’s walk one recognizes
the claim ¥ = A. Mirroring the unlabeled circles from the isosceles Pascalian
triangle (of Proposition 17) at ., this corresponds to —f, 5, + Too, and moving
them vAV6t to the left; i.e. producing ﬂ:{at — Brst T Too — Vhy/6t, and one
obtains the modified Pascalian triangle corresponding to A. O

Remark 21 The reflection operator 7(-) at zero of course posses the much
simpler representation by the absolute value |-| which mnemonically already
denotes its standard analogue. Using this notation one has to keep in mind that
the modeling node in (6) is set to zero by hand.

The lemma straightforwardly translates into standard language.

Theorem 22 Let a > 1. Then Vh|B;| < X; L(P) a.s. for all t € [0,1].

Proof. The lemma does not exclude 1 < a & 1. Therefore one can, using the
overspill principle, include a = 1 to the prerequisites here. Certainly z., < xg
for all 0 < zp € R (cf. Remark 16), i.e., the lemma applies. Together with the
above remark and the identifications (9) and (13) the observation that °A,s =
V1 °r(Brst) leads to the stated result. For ¢ € [0,1] it holds

\/ﬁ|Bt| =Vh Or(ﬁ[tu]dt) = o/\[tu]dt < oX[tu]dt =X L(P) ass.
O

This means one can estimate the quantum stochastic process X away from
the node by (the probability distribution of) a Brownian motion reflected at this
node. Thus one has the local existence of the stationary process at the node.

Remark 23 Following the method here « can not be chosen smaller than 1 as
one realizes by looking at (13). But the time interval, the process is considered
on, can be extended to any compact one simply by enlarging T.

5 Conclusions

Applying well known properties of a Brownian motion (which also hold for
the reflected one), dealing with the local and with the recurrence behavior (re-
spectively), the following (two) additional conclusions from the theorem of last
section can be formulated.

Corollary 24 The quantum particle (supposed to be) modeled by a quantum
diffusion described in section 3, i.e. by (5) finally, almost surely does not stay
in an infinitesimal® neighborhood of a node longer than an infinitesimal time.
And the quantum particle almost surely cannot enter an infinitesimal region of
the node more than finitely many times within a finite time.

13The author apologizes for his lazy (nonstandard) tongue here.

11



Even if the “a.s.” refers to the probability space of a Brownian motion and the
language is a bit nonstandard here, nothing so far did stop a rigorous nonlo-
cal definition of quantum diffusion which, as proven above, would not tunnel
through nor being captured in the nodes. Due to Proposition 11 this holds for
all potentials V (x) > O(]|z||72) for z — 0. But it should clearly be stated again
that nothing here has been proven about continuity, i.e. about the (commonly
used) attribute “diffusion”. Achieving this by using NSA could be a topic of
subsequent work.

Additional to Nelson’s discussion in [13] (and a bit opposite to his “heuristic”
arguments on p. 82) the impossibility of “communication through the nodes”
would also allow other physical interpretations. This is illustrated with the
simplest model that produces discrete eigenstates.

Example 25 Let V(t,2) = 0 be a constant, time-independent potential in a
one dimensional compact space, e.g. in [0, 1] C R, and being equal to +oco else-
where in R. Thus X; € [0,1] C R (the process’ configuration space) for ¢t € Ry..
The Schrédinger equation gives the following set of wave functions (certainly
not time dependent) 1(t,z) = v/2sin(rnz), n € N, for the energy eigenvalues
E,, = m®h?n? /2. The probability density resulting by the Copenhagen interpre-
tation is p(t,x) = 2sin®(wnz), with nodes at 0 and i/n for i € {1,...,n}.
Caution'*, this is not the stationary probability density p of the belonging
quantum diffusion (5), i.e. dX; = hdt/sin(mnX;)+v/hBy, if the initial probabil-
ity distribution Px, = P{Xo € -} does not yield the same value p; = Px,(G;) =
fGi p(0,z) dz = 1/n for all disconnected regions G; = ((i — 1)/n,i/n) separated
by nodes. Following [13], p. 81, one obtains p = p >_,., Px,(Gi)lg,. Despite
of Nelson’s conclusions one could model the situation of different p;’s, as well as
the “proper” one, with n independent processes on configuration spaces G; (and
possibly) with (an arbitrary) starting distributions Px, (- N G;) of n particles.

Interpretation 26 If one takes the stochastic picture serious the Copenhagen
interpretation only holds in separated regions, e.g., once the particle has entered
a region enclosed by nodes (especially for excited states) it stays there. This
way a maximal number (some may have degenerated initial distributions, i.e.
Px,(G;) = 0) of n quantum particles, each having the eigenenergy FE,, would
fit into the configuration space [0,1]. And this should hold for all n € N of the
example.

Further one may suggest the single quantum particle to “consists” of some
sort, of sub-particles which could differ in number depending on the particle’s
energy E, (but being < n). In [12], on p. 161, a similar idea is formulated.
There “photons” are suggested to play the role of sub-particles. Providing a
single quantum particle with the energy E,, then in addition to the ground state
particle, which may somehow be regarded as a sub-particle as well, n—1 “extra”
photons are to consider “being” inside the configuration space [0, 1]. One might
understand the action of a surrounding photon (on the quantum particle) as
a quantum fluctuation, a disturbance resulting in a Brownian motion which is
tempered (may be as a collective effect) by the osmotic drift.

Certainly second quantization (or QFT) clears the picture. But it seems
remarkable that the classical quantum model here already demands for it.

4 remembering Remark 9 and the end of section 3
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Another aspect should be emphasized at the end.

Problem 27 The stochastic process here, build by the quantum fluctuation,
is only fitting the quantum mechanical description via Schrodinger’s equation.
Looking for an intrinsic stochastic model, reproducing the discrete eigenvalues
etc., might be a challenging exercise for further research. This perhaps is already
initiated by a different approach, called quantum chaos. However a stochastic
theory should straightforwardly lead to numerical simulations.
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