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Abstract

When a hypersurface X(t) evolves with normal velocity equal to its mean
curvature plus a forcing term g(z,t), the generalized (viscosity) solution may
be “fattened” at some moment when X(t) is singular. This phenomenon cor-
responds to nonuniqueness of codimension-one solutions. A specific type of
geometric singularity occurs if 3(t) includes two smooth pieces, at the moment
t = 0 when the two pieces touch each other. If each piece is strictly convex
at that moment and at that point, then we show that fattening occurs at the
rate t1/3. That is, for small positive time, the generalized solution contains a
ball of IR"™ of radius ¢t'/?, but its complement meets a ball of a larger radius
kot'/3. In this sense, the sharp rate of fattening of the generalized solution is
characterized. We assume that the smooth evolution of the two pieces of X(t),

considered separately, do not cross each other for small positive time.

1 Introduction

Consider the problem of a hypersurface ¥(¢) in IR" which flows in time with normal

velocity given by its mean curvature plus, perhaps, a continuous forcing term g(z,t).



When singularities develop in this problem, the smooth solutions may cease to exist
and the weak solutions may become nonunique. This has been observed in a number
of recent papers; see [BSS] and [BP]. A weak solution as defined by Brakke [B], in
particular, is not unique (see [I]). However, uniqueness holds for the generalized
solution defined as follows. A real-valued function v on IR" X [tg,T] is constructed
so that at the initial time to, u(-, %) is positive on one side of the oriented initial
hypersurface X(tg) and negative on the other side. wu(zx,t) is then required to be

continuous and to satisfy the degenerate parabolic partial differential equation

ou

. Vu
(1.1) Pl |Vul <d1VW —g(m,t)) ,

in the viscosity sense, with the the initial condition u(z,ty). The significance of this
equation is as follows (see [ES]): if all level hypersurfaces of u(z,t) were smooth,
then each of the level sets {(z,t) : u(z,t) = A}, for various real values of A\, would
evolve with normal velocity equal to its mean curvature plus g(z,t). The level set
for A = 0 is a closed subset of IR" which evolves uniquely in time, and does not
depend on the choice of the initial function u(z,tg). This solution is known as the
generalized solution to the problem since it need not be smooth, need not have
Hausdorff codimension one, and may even have a nonempty interior as a subset
of IR". The phenomenon of an initially smooth hypersurface which later develops
a nonempty interior is known as fattening or ballooning. This phenomenon occurs
precisely when Brakke’s weak solution is nonunique [I].

In 1994, Belletini and Paolini [BP] worked out some interesting examples of
fattening in JR? which involved two circles meeting externally at a certain time
t =0. In 1999, Koo [K] extended the results of [BP] and showed that their examples
were manifestations of a general principle, valid for hypersurfaces in IR" evolving by
mean curvature plus a forcing term, which guaranteed that the generalized solution
begins to have positive Lebesgue measure as soon as two components ¥ (¢) of an
immersed solution touch from the outside at time ¢t = 0, without crossing each other
immediately before or after the critical time ¢ = 0.

An examination of the proof in [K] shows that the size of the fat level set grows
at least as fast as v/, i.e., at the rate suggested by parabolic scaling. In the present
paper, we shall show that in fact, the lower bound ¢v/t on growth of the fat level
set may be replaced by the much faster growth ¢t'/3 (Theorem 3.5 below). This
improves the estimate of [K]. Moreover, this estimate is sharp. In fact, with the
additional assumption of strict convexity at the touching point, Theorem 4.4 below
shows that the region outside X% (¢) and outside the fat level set is at a distance at

most g ¢'/3 from the touching point, for a larger constant rg.



More precisely, combining Theorems 3.5 and 4.4 below, we have the

Theorem 1.1 Let X*(t),[t| < T, be two smooth, oriented hypersurfaces of IR™
which move with normal velocity V = H + g(x,t) for some continuous forcing term
g:R"x IR — [0,00). Suppose X7 (t) and X (t) are disjoint for t # 0 but that they
meet at one point xg at time t = 0, at which each is strictly conver. Then there are
¢,k and 0 > 0 so that for all 0 < t < 6, the region outside X*(t) and outside the
generalized solution T'(t) includes some points at distance kot'/3 from zg but does

not intersect the ball B, /3(xo).

It should be observed that fattening of a specific level set cannot happen in
most circumstances. More precisely, if 3 (¢) is a disjoint one-parameter family of
generalized solutions evolving according to the same function of curvature, then fat-
tening does not occur for almost all A. In fact, at any time ¢, the set of real numbers
{X | u(-,t)75(N) has positive measure} has measure zero in IR, by the additivity of
Lebesgue measure. This observation is consistent with Koo’s principle, since Koo’s
result only applies to the first time fattening occurs, and requires touching to occur
from the outside. Assuming the family X, (¢) is real-analytic, as might follow from
parabolicity, the set of A to which Koo’s principle applies is discrete.

The intuition behind the distinction between [K] and the present paper may be
understood in the following way. Koo’s proof relies on comparison with a self-similar

solution of the degenerate parabolic partial differential equation

Ov . Vv
(1.2) i |Vl <d1V|V1}|> ;

and the parabolic scaling = o v/t follows from parabolic self-similarity. However, the

spatial aspect of self-similarity is homothetic scaling. Homothetic scaling is adapted
to manifold-like geometries, such as Euclidean space, and more generally to cone-like
geometries. In the problem considered by [BSS], [BP] and [K], however, the region
exterior to ¥ (0) is not a cone but a sort of cusp. The region rescales in a small
neighborhood of the touching point to small neighborhoods of a hyperplane. In
particular, the homothetic scaling of [K] occurs independently of this cusp geometry
and in a certain sense replaces it by a cone. This replacement of the region given
in the problem by a larger and very different region might lead one to suspect that
the ¢/t estimate cannot be sharp. Thus, as Theorem 1.1 shows, for the analysis of
behavior inside a cusp, self-similar solutions are not enough.

We conjecture that if the strict convexity of ¥ (0) in Theorem 1.1 is replaced
by contact of order m, then the generalized solution I'(¢) grows like ctimt.

An interface which moves by mean curvature plus a forcing term is a simple, al-

though perhaps suggestive, model for solidification of isotropic materials. It would



be of interest to understand the phenomena discussed in the present paper, and
analogous phenomena, in the context of a more realistic system of equations in-
corporating temperature as a dependent variable along with one or more order
parameters of the material. Anisotropic materials would also be of interest.

We would like to acknowledge valuable discussions with Perry Leo, Walter Littman,
Stephan Luckhaus and Juan Veldsquez. This work was supported by the Max-Planck

Institute for Mathematics in the Sciences, Leipzig.

2 Level-set formulation of hypersurface flow

In this section, the forcing term g(z,t) will depend on ¢ alone. When applied to our
main results, g(z,t) will be estimated above or below by a function g(t).

For a function r of one space variable y and of time, we write 7' (y,t) = g—;(y, t).
For z € IR", we will use the potentially confusing notation x = (z1,2') € IR x IR" L.
We trust that, in context, the reader will be able to distinguish this use of the
notation z' = (z9,...,z,) for a point = (z1,...,2,) € IR" from the notation for

the space derivative 7'(y,t) of a function r(y,t) of two variables.

Proposition 2.1 Let {r,(y,t)} be a one-parameter family of viscosity subsolutions
to
0rg T n—2

(21) 5 =T o HIOVIE P

satisfying 8%ra(y,t) # 0. Choose a continuous, locally monotone function ¢ : IR —
IR, and let a function v be defined on IR™ by

v(z1,2',1) = p(a)

whenever '] = r =rq(y,t) = ro(z1,t). If p(a) and rq(y,t) are locally monotone in

the same sense as functions of a, then v is a viscosity supersolution of

ov Vv
2.2 — = |Vo| | divie— —g(2) ) ;
22) o =170l (v Tt~ g(0)):
if the monotonicity of ¢(a) and r4(y,t) is in the opposite sense as a function of a,
then v is a subsolution. If, instead, each rq is a viscosity supersolution to equation
(2.1), then the same conclusions hold after one of the relevant senses of monotonicity

18 reversed.

Proof. Write I'(t) for the hypersurface obtained by rotating the graph r = r,(y, t)
about the z1-axis, that is To(t) = {(z1,2") | |2'| = ra(z1,t)}. Then T'y(t) has mean



curvature in the direction of increasing r given by

"

Tq n—2
IR /T4 ()

in the viscosity sense, and normal velocity

Org
ot

1+ (rl)?
Thus, the hypothesis that r, is a subsolution of (2.1) implies that V' < H + ¢(t), in

the viscosity sense.

Observe that v is nondecreasing (resp. nonincreasing) in the direction of increas-
ing r = |2'|, if p(a) and r,(y, t) have the same (resp. opposite) sense of monotonicity,

. . / —
as functions of a. Namely, for any unit vector w = ‘i—,| € S" 2, we have

v(Yy,Ta(y, 1) w, t) = p(a).

But 8%m(y,t) # 0, and the composition of two monotone functions of one real
variable is monotone in the sense consistent with the chain rule.

Consider first the case ¢(a) = a and %ra(y,t) > 0; the case when %ra(y,t) is
negative is similar. Note that g—f exists and is positive in this case.

In order to verify that v is a viscosity supersolution to equation (1.1), let 1) be
a C? test function, with 1) (zg,t9) = v(zg,tg) for an arbitrary point (zg,%g), and
with ¢ < v in a neighborhood of (zg,%y). Then V)(xg,ty) is a subdifferential for v
at (zg,tg), so %(wo,to) = %(wo,to) > 0. Let I'y(t) be the ¢(a)-level hypersurface
of ¥. A straightforward application of the chain rule shows that fa(t) has normal

velocity (in the direction of increasing r)

oY

V=_— ot
VYl

and mean curvature (in the direction of increasing )

~ . Vi
H = —div .
V|

Write ag = @(ag) = v(zg,to) = ¥(xo,to). We have z¢ € 'y, (t9) N fao(tO)- For

(x,t) near (zo,ty), since 1 < v, we see that the smooth hypersurface I',(¢) lies above

I'4(t), where “above” means in the direction of increasing r. Since I', (%) is a viscosity
subsolution of V' = H + ¢(t), treated as a PDE for r = |2/| as a function of ¢ and
the remaining z variables, Ty, (to) satisfies V < H + g(t) at & = zy. Equivalently, at

(w0, o), ) o
o 2 vl (aiv g~ 0.

5



This shows that v is a viscosity supersolution of the equation (1.1) in this case.
The general case, with a continuous and monotone function ¢, follows from the

case p(a) = a since (1.1) is a geometric PDE (compare Theorem 5.2, p. 772 of

[CGG].) Q.E.D.

Remark 1 As may be seen from the proof above, the hypothesis on the family
[, (t) is that the family is a transversely C! foliation and that each leaf is a viscosity
subsolution (resp. supersolution) of V- = H+g¢(¢). It is convenient, but not necessary,

to assume that the hypersurfaces I',(t) are obtained by rotation about an axis.

3 Lower bound on growth of the level set

In this section, we will demonstrate a lower bound for the size of the fattened level
set at time ¢, of the form: if |z| < ¢t'/3, 0 < t < ¢ and z lies outside X (¢) and
outside X7 (¢), then u(z,t) = 0 (Theorem 3.5.) Note that Lemmas 3.1 and 3.4 and
Proposition 3.2 do not require £*(¢) to evolve by a geometric flow, but only to be
smooth.

Throughout this section, a positive number § will be required repeatedly to be

small enough, and will still be denoted § by abuse of notation.

Lemma 3.1 Let % (t) be two smooth, oriented hypersurfaces of IR" which evolve
smoothly in time t € (=T, T). Suppose that X (t)NXZ~(t) = 0 for t # 0, that £1(0)
and X7 (0) meet externally at the origin O of IR™ (and possibly elsewhere), and that
the coordinate hyperplane x1 = 0 is the common tangent hyperplane to 7 (0) and
¥7(0) at the origin. Then there are positive numbers b, 6 and A, and a real number
B, such that for all —0 <t < 4, the graphs

z1 = +blz’ > £bt> + Bt, |2'| <A
lie inside or on YT (t), respectively.

Proof. Choose A and § small enough that X% (#) N {|z'| < A} is a graph over the
hyperplane z; = 0 for all —0 < t < 6. Write ©*(¢) locally as +2; = . (z/,t) for
some smooth function ¢y on BZ_I(O) x (=0,9).

Let B be the common velocity of ¥*(¢) at ¢ = 0, x = O in the positive z;-
direction, and let 2b be an upper bound on second directional derivatives of ¢4 in
the (z', %) variables on B '(0)x (—4,4). Then the only nonvanishing first derivative

of o1 at (0,0) is a‘a’;ti(O, 0) = £B. Tt follows from Taylor’s theorem that

los(2',t) F Bt| < blz'|* + bt?



for (z',t) € BR1(0) x (=4,6). Q.E.D.

As in Koo’s paper [K], we shall construct a family of hypersurfaces of revolution
which expand by mean curvature. In [K], this family was self-similar, and was
constructed in [ACI] via the solution of an ordinary differential equation. In this
paper, we will need to solve directly a parabolic partial differential equation in
one space variable. This will be done in the following proposition, by constructing
sub- and supersolutions satisfying the given boundary conditions and by deriving
an a-priori gradient bound, with reference to well-known existence and regularity
results.

Choose a positive constant a, and define two positive increasing functions of
t > 0 by B(t) := (t/a)'/? and a(t) == 2a (B(t)? + 2). Note that 0 < Cfi—‘z‘ < % for all
0 <t < tp(a), for some to(a) > 0.

Proposition 3.2 Let X% (t) and the numbers b, B, and A be as in the statement
of Lemma 3.1. Then for each a > b, there is § > 0 and a subsolution r = r4(y,t) of
the initial-boundary value problem

"

or r n—2 a(t)

1 — = - — Bt « 22/ t < &
(3.1) o ir g o WBl< g 0<t<d
(3.2) T<Btﬂ:%,t> :ﬂ(t)—%, 0 <t<d;and
(3.3) r(y,t) — 0 uniformly for |y — Bt| < o) as t— 0%,

V2

Ta 15 smooth on the closure of its domain, except at (0,0), where it is continuous.
The hypersurfaces of revolution |x'| = rq(x1,t) in IR™ generated by the graphs of
the solutions o define a foliation by hypersurfaces T'y(t) moving by mean curvature.
The boundary of Ty(t) has two components, one inside or on X (t) and the other
inside or on ¥~ (t). Moreover, the distance r4(y,t) from any point of T'y(t) to the

x1-axis satisfies the uniform estimate
(3.4) ra(y,t) = (t/a)"® + O(*)
ast— 0T,

Proof. We shall first construct a subsolution 7(y,t) and a supersolution #(y, t)
to (3.1) on the moving domain |y — Bt| < «(t)/v/2, both satisfying the boundary

conditions (3.2). We shall construct the graph of 7(-, ) as the lower quarter-circle of



increasing radius «(t) and center (y,r) = (Bt,3(t)); 7(-,t) will describe the chord
joining its endpoints.
For convenience, we may introduce the system of moving coordinates (z,t),
where z := y — Bt. Then equation (3.1) is equivalent to
or r n—2 a(t)
3.5 — = Br' - , < —=, 0<t<d,
(3:5) o Bty k< g

i r— 9r _ or
since ' = 5 = G-

"

Let 6 > 0 be as in the conclusion of Lemma 3.1. By abuse of notation, we
shall replace ¢ by smaller positive values as needed, which will still be called ¢. In
particular, we may assume that 0 < #g(a). Further, since the leading term of «(¢) is

2a1/3t2/3 = 2482, we may choose § small enough that

1—4ap 1 n-2

H1 —4dat+ |B| < — —
(1) S —dat 1B < -

. . dp :
for all 0 < ¢ < §. Hypothesis (H1) and the computation — = —— imply that

dt  3af?

df  da 1 n-2
3.6 — — — 4+ |B| < —— .
(36) dt dt +1Bl < a f[f—a«a

This last inequality shows that the moving quarter-circle

(3.7) #(w,1) = Bt) — Va@E =2, |al < %
satisfies
(3.8) or " n-2

< —
ot — 14 (7')? 7o
since \/1 + ()2 > 1 and 7 > 3(t) —«(t). That is, 7#(z,) is a subsolution of equation
(3.5) on the domain {(w,t) |0 <t<o,|z] < %}

Let us now require ¢ to be small enough that

(12) 3a(t)V2 < (1)
for all 0 < ¢ < 0. Then we may also construct a supersolution #(x,t) = #(t) of (3.5)
on the interval |z| < ﬁt;, satisfying the same boundary conditions (3.2) as rq(z,t),
by defining

. a(t)

r(z,t) = p(t) — —=

(5.0) 1= (1) - 23

for all z in the interval [—%, %] In fact, since 7"/ = 0, we only need to show

that % > 0. But % =
only if

ﬁ, while ‘Z—i‘ =4a (ﬂ % + t), so # is nondecreasing if and

2v2a3% + 6v2a2 33t < 6,



which is a consequence of (H2), since the left-hand side is < 3v/2c(t).
We shall need one last hypothesis regarding d: for a given 0 <7 < 7/12, we will

assume that

3a? @
o 1+ ¢2)|B|-%= <1,
2%(6—05)2 c77+( +cn)| |\/§

for all 0 < ¢t < 6. Here we define ¢, := tan(57/12 + 7)) < oo. Note that hypothesis
(HO) is the special case of (Hn) with n = 0. Also, note that hypothesis (H0O) implies

(Hn) for sufficiently small n > 0.

(Hn) (n —2)

We shall return to the proof of Proposition 3.2 after establishing the following

existence statement for a modified equation:

Lemma 3.3 Assume that hypotheses (H1), (H2) and (HO) hold. Fix n > 0 such
that (Hn) is valid. Choose € >0, p1 > ¢, and 0 < 29 < B(e) — a(e). Then there is
a solution r(x,t) to the initial-boundary value problem

0 t

9 _ A+ A(ryr'), e<t <, x| < alt)

(3.9) o 7

with boundary conditions

(3.10) T (i%,t) =7(t), e<t<d
and initial condition
(3.11) r(z,e) =7(e), |z| < %.

Here, the coefficients of the modified equation (3.9) are defined by
AMp) = (1 +p") 7 p<ey AMp) = (1+p)7h p2p,

and smooth for ¢, < p < p1; and by

n—2

A(Z,p) = _Z V 20

+ Bp.
Moreover, r(x,t) satisfies the a-priori gradient bound
(3.12) Ir'(z,t)| < co,

and the upper and lower bounds

(3.13) (z,t) <r(z,t) < 7F(z,t)

on its domain.



Remark 2 Note that if the estimates (3.12) and (3.13) hold, then the modified
equation (3.9) is equivalent to (3.5). Namely, since 0 < to(a), the minimum value
of 7(z,t) for e <t < is7(e,0) = Be) — ale).

Proof. The modified equation (3.9) is uniformly parabolic, and the existence the-
ory for such equations, in a domain such as e < t < 6, |z| < a(t)/v/2 is well known
([F], [LSU], [L]). Specifically, the existence of a unique solution, for which r” and
% are locally Holder continuous in the interior follows from Theorem 12.16 of [L].
The Hoélder continuity of v’ at boundary points 2 = +a(t)/v/2 may be seen from
Theorem 12.5 of [L]. Smoothness of r(x,t) near the initial line ¢ = ¢ follows from a
standard reflection technique and Theorem 12.16 of [L].

It remains to prove the estimates (3.12) and (3.13). For this purpose, consider

the weaker inequalities

(3.14) (@, 1)] < ¢,
and
(3.15) z0 < r(zx,t).

Observe that the estimates (3.12) and (3.13) will be valid for r(z,t) on a short time
interval ¢ < ¢t < t;. Namely, the initial condition (3.11) implies 7/ = 0 at the initial
line t = ¢, hence (3.12) holds on a one-sided neighborhood. Since " = 0 on the
initial line, and since 7 is a strict supersolution, we have % < % on the initial line
and hence r < 7 for a short time after e. This shows that (3.13) holds for a short
time after €. Let ¢; € (¢, 0] be the largest number so that (3.12) and (3.13) are valid
for e < t < t1; and let ty € [t1, 6] be the largest number so that (3.14) and (3.15)
are valid for ¢ < t < t9. We need to show that ¢; = J; we shall show that otherwise,
to must be both greater than and equal to #;.

Since zg < fB(t) — a(t) < 7(z,t) and |F(z,t)] < 1 < ¢, for e <t < o, 7 is
also a subsolution of the modified equation (3.9). Therefore, by the comparison
principle, r(z,t) > 7(z,t) > B(t) — a(t) for all e < t < to, |z| < a(t)/+/2. Similarly,
r(x,t) < 7(t). That is, inequality (3.13) holds for all £ < ¢t < ¢o.

The gradient bound (3.12) requires more work. Let 6(z,t) € (—n/2,7/2) be
defined by tan 6(z,t) := 7'(x,t). Then 6 satisfies the equation

06 n—2
2 e _pnr_ - -~
(3.16) sec” 6 [ r BH] 0" = 2 tané,

wherever (3.14) and (3.15) are satisfied, in particular for ¢ < ¢t < t5. (When

r < zy or when |r'| > ¢, the equation is more complicated, and will not be

10



needed.) As we have seen, r’ and therefore 6 are Holder continuous up to the
boundary z = +a(t)/v/2. It may be seen from inequality (3.13) that at the bound-
ary, |r'(xa(t)/v2,t)| < 1, that is, |0(£a(t)/V2,1)| < 7/4.

We introduce a corrector function

(1) = ﬁ <0‘(;)2 - x2> .

Then 0 < ¢(z,t) < 7/6 on the domain of r(z, t), while ¢(+a(t)/v/2,t) = 0. We shall
show that Q(z,t) := |0(x,t)| — ¢(z,t) satisfies a maximum principle, from which it
will follow that |0] < ¢ + 7/4 < b /12, since |§| < 7/4 and ¢ = 0 on the boundary
|z| = (t)/V/2, while § = 0 and 0 < ¢ < 7/6 on the initial line t = ¢, |z| < a(t)/V/2.
In particular, it will follow that (3.12) holds for € < ¢ < ts.

Consider the first time when ) = |0| — ¢ reaches the value 7/4 + 7, which could
only happen at an interior point. Then we have |0] < 57/12 + n there. We may

therefore compute that, at that point,

2 2
sa” [secze <% - Bq5'> - ¢"] = sec?f <:Jc_d_a + B:I:) +1

2w ot o dt
> —(1+¢)|B|+1
3a?
) ) P S
>

according to hypothesis (Hn). Meanwhile, we have seen that r(z,t) > [(t) —

a(t), which implies that the right-hand side of (3.16) is in absolute value at most
n—2

(6 —)?
value m/4 47 occurs for Q = +60 — ¢. This shows that |§| < 7/6+w/4+n, and hence

|r'| < cp; therefore the gradient estimate (3.14) is valid on € < t < to, |z| < a(t)/V2.
But the same argument holds for all smaller values of 1 > 0; this implies that, in
fact, inequality (3.12) holds for € < t < ty.

We have just shown that in fact, to = ¢t1. Now if ¢; < §, since t; is defined by the

¢y. Therefore there can be no interior point where a local first maximum

inequalities (3.12) and (3.13), then by continuity the weaker inequalities (3.14) and
(3.15) (with our original, fixed, > 0) would continue to hold for a short time after
t1, that is to say ty > t1. We conclude that #; = ¢, which means that the estimates
(3.12) and (3.13) hold for all e <t < 6, |z| < a(t)/V/2. Q.E.D.

Proof of Proposition 3.2, cont. Write 7(¢)(x,t) for the solution r(x,t) of the
modified equation (3.9) satisfying initial conditions (3.11) on the line ¢ = ¢, as
given in the conclusion of Lemma 3.3. Then r(¥) is also a solution of equation (3.5),
because of the estimates (3.12) and (3.13). For 0 < ¢y < €1, inequality (3.13) implies

that 7(¢0)(z, 1) < #(e1), which are the initial data for (1); meanwhile, 7(0) and

11



r(€1) ghare the same boundary data. Therefore, by the strong maximum principle,
r(=0) < (1) on the domain of (1), That is, the solutions r(*)(z,t) are increasing
as a function of €. As ¢ — 0, we therefore have pointwise monotone convergence of
(%) to some function 7(?) on the domain 0 < ¢ < 4, |z| < «(t)/v/2. The convergence
is smooth, implying that 7(©) satisfies the gradient bound (3.12), except at (0,0).
Similarly, 7(9) satisfies the inequality (3.13), and it follows that r(¥) is continuous at
(0,0), since both 7 and # converge to zero there.

We now write 74(z,t) in place of 7()(z,t), and rd) (z,t) in place of r(%)(z,1),
where ¢ > b is the parameter which was used to define 5(¢) and «(t).

Returning to the original (y,t) coordinates, the foliation property of the family
r

ra(y, t) of solutions to equation (3.1) may be seen by showing that ¢(y,t) := a—a (y,t)
a

is negative everywhere in its domain 0 < ¢ < 6, |y—Bt| < «(t)/+/2. In fact, ¢ satisfies

the homogeneous, uniformly parabolic partial differential equation

dq q" 2r'7! g’ n—9
-]. _— = —_—
(3.17) ot~ 1+ ()2 [1+(r’)2]2 T 4
on its domain. Its boundary values are given by §(t) := g—( ) —(BV2 + 2a3? +
6at?)/3av/2 < 0, as follows from the definitions of S ( ) and «(t). But ¢(t) are
orte)
also the initial and boundary data for ¢(®)(y,t) := Ta ( t), which also satisfies

(3.17). It follows from the maximum principle that q y,t) < 0foralle <t <
S, |y — Bt| < «(t)/v2. Therefore q(y,t) < 0; moreover by the strong maximum
principle ¢(y,t) < 0 for ¢ > 0, since it has negative boundary values ¢(t).

Finally, at boundary points of the surface of revolution I';(¢) generated by the
graph of r4(y,t), we have z; = Bt+ % and |z'| = B(t) — % < B(t). Since a > b, it
follows that 4(z; — Bt) > b(|7'|? + #2) and thus from Lemma 3.1 that these points

lie inside or on ¥*(t), respectively. Q.E.D.

We are now ready to construct a solution v of the homogeneous equation (3.18)
below, whose level sets will be formed by the family, just established, of hypersur-
faces ['y(t) moving by mean curvature.

In the remainder of this paper, we shall write €(¢) for the open set in IR" lying
outside of X7 (t) and of ¥~ (¢).

Lemma 3.4 Let X% (t) and b > 0 be as in Lemma 8.1. Let 6 > 0 and the foliation
{Ta(t) | @ >b,0 <t <d} be as in Proposition 3.2. Choose K >0 and ay > ag > b.
Then there is a smooth real-valued function v(z,t), defined for z € Q(t) and t € (0, 0)
satisfying

v Vo
(3.18) 5 = |Vo| div <|Vv|> ,
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such that v > 0; v(z,t) = K unless x € I'y(t) for some a € (b,a1); and so that
v(z,t) =0 for all x € Ty, (t).

Proof. According to Proposition 3.2, each hypersurface of revolution I',(¢#) moves
by mean curvature and has two boundary components, one inside or on X (¢) and
the other inside or on ¥ (¢). Choose a smooth, locally monotone function ¢ : IR —
[0, K] such that p(a) = K for all @ < b and all ¢ > a1; and such that ¢(a) = 0 for all
a in a neighborhood of ag. Define v(z,t) := ¢(a) if z € ['y(t) for some a € (b,a;), and
otherwise v(x,t) := K. Then v vanishes identically on the evolving hypersurface
Iy, (t). Moreover, according to Proposition 2.1, v satisfies the partial differential

equation (3.18) on the set

U e x{t} c B" xR
0<t<d

Q.E.D.

Theorem 3.5 Let X% (t) be two smooth, oriented hypersurfaces in IR" which evolve

according to
(3.19) V=H+g(zt)

for some nonnegative continuous forcing term g(z,t). Suppose that X ()N~ (t) =
0 fort £ 0, =T <t < T, and that there is a point zg € XT(0) N X7(0). Let
u(-, 1) 1(0) be the generalized solution to (3.19) with initial condition u(-,—T) *(0) =
SH(=T)UX (=T). That is, u(x,t) satisfies the equation

(3.20) aa_q: _ |Vl <dw <|§—Z> - g(x,t))

and u(z,—T) vanishes iff € E(=T). Then there exists § > 0 such that for all
0 <t <6, the generalized solution u(-,t)71(0) has nonempty interior. Moreover,
there is ¢ > 0 so that for all 0 < t < §, u(z,t) vanishes whenever

(3.21) z € Q)N B3 (x0)-

Remark 3 It was shown by Koo [K] that under the hypotheses of Theorem 3.5,
fattening of the zero level set occurs immediately after contact. An examination of
Koo’s proof, for example, formula (3.16) of [K], shows that the size of the level set
after time ¢ is at least const.#/2. Thus, the main interest in Theorem 3.5 is the

more rapid rate of growth (3.21).

13



Remark 4 It follows from Theorem 4.4 below that the exponent % is sharp. How-
ever, the upper bound g t*/3 of that theorem appears to have a constant kg which
is much larger than the best constant. We expect that the sharp constant might
be kg = b~'/3, where 2b is an lower bound for the inward principal curvatures of
¥ (0). (We do not expect the convexity hypothesis of Theorem 4.4 to be necessary.)

1/3

Any constant ¢ < b~'/°, where 2b is an upper bound for the principal curvatures of

¥%(0), is valid for Theorem 3.5.

Proof. As in [K], our proof will be based on the function v(z,t) given in Lemma
3.4, whose level sets are generalized solutions for flow by mean curvature. Since
we have assumed g(z,t) > 0, v is a supersolution of (3.20). Assume for simplicity
zo = O € IR". Since the PDE (3.20) is geometric, we may assume without loss of
generality that v« is uniformly bounded: |u(z,t)|] < K for all x € R", t € [-T,T).
In fact, the conclusion refers only to the zero level set of u, which is unchanged
if u(z,t) is replaced by the bounded function tanhu(z,t). For similar reasons, we
may assume u(x,0) > 0 on (0) and u(z,0) < 0 for z inside ©*(0). This function
remains a viscosity solution of (3.20); see Theorem 5.6 of [CGG]. Let 6 > 0 be as in
the conclusion of Lemma 3.4. Write 2 for the open set {(z,t) | z € Q(t), 0 <t < d}
in IR" x IR. Then v is continuous on () except at time ¢ = 0; when ¢t = 0, we
have v(z,0) = K for x # O and the lower semi-continuous envelope v,(0,0) = 0.
In particular, v, (z,0) > u(z,0) on Q(0). Further, u(z,t) = 0 for all z € 9Q(t),
s0 vy > u on the parabolic boundary {(z,t) € 02 | 0 < ¢t < ¢}. It follows from
the comparison principle that v > u everywhere on Q (see [GGIS], p. 463). In
particular, u(z,t) = 0 for all z € I'g(¢), 0 <t < 4.

Let D(t) be the bounded open set in IR™ whose boundary consists of portions
of ¥T(t), ¥ (t) and the surface of revolution T'y,(t), for each 0 < t < §. Write
D = {(z,t) | z € D(t),0 < t < d}. Then u vanishes identically on the parabolic
boundary {(z,t) € 0D | 0 <t < ¢}. Applying the comparison principle on D, we
see that w = 0 on D. Finally, estimate (3.4) implies that D(¢) contains all x € Q()
with |z| < (t/ag)'/? + O(t*/3), and conclusion (3.21) follows. Q.E.D.

4 Upper bound on growth of the level set

In this section, we will demonstrate an upper bound for the size of the fattened
level set at time ¢, of the form: if |2/| > kot'/3 then u(0,2',#) > 0. (Theorem 4.4
below.) We would like to point out some differences between this section and section
3 above, in addition to the obvious change in direction of the inequality we wish to

prove. In section 3, it was necessary to find both a subsolution and a supersolution,
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as barriers; these were required to have their boundaries inside X*(¢), in order
to sweep out the region Q(t¢) outside. In this section, a two-parameter family of
supersolutions (only) will be needed. However, the supersolution must lie entirely
outside ©*(¢), in such a way that every nonzero point of the intersection of (¢) with
the hyperplane 1 = 0 is in one of the supersolutions of the two-parameter family.
For this purpose, the simple geometric constructions (quarter-circle and horizontal
line segment) which were sufficient for section 3 must be replaced by the well-known
Grim Reaper, extended by two of its tangent lines. Extending the Grim Reaper by
its tangent lines serves to overcome the effects of the forcing term.

Note that Lemmas 4.1-4.3 do not require £*(¢) to evolve by a geometric flow,
but only to be smooth.

Throughout this section, as in Section 3 above, a positive number ¢ will be
required repeatedly to be small enough, and will still be denoted § by abuse of
notation. By further abuse of notation, the proof of Theorem 1.1 requires § to be
smaller than the last version of the number ¢ of this section, and also smaller than
the last version of the number ¢ of section 3. For x € IR", we write z = (z1,2') €
IR x IR"'. We also assume that g(z,t) is a continuous function defined on IR" x IR
throughout this section.

We shall use methods analogous to the proof of Lemma 3.1 to show

Lemma 4.1 Let % (t) be two smooth, oriented hypersurfaces of IR" which evolve
smoothly in time t € (=T, T). Suppose that X (t) N X (t) = 0 for t # 0, that
¥1(0) and £7(0) meet externally at the origin O of IR"™ (and possibly elsewhere),
and that the coordinate hyperplane z1 = 0 s the common tangent hyperplane to
YH(0) and £7(0) at the origin. Moreover, assume that XF(t) are strictly convex at
=0, t=0. Then there are positive numbers b, ', § and A, and a real number
B, such that for all —0 <t < 4, the graphs

x1 = 0|2’ |> FV2 + Bt, |2/|<A
lie outside or on XE(t), respectively.

Proof. Choose A and 6 small enough that ©*(¢) N {|z'| < A} is strictly convex,
and is a graph over the hyperplane z; = 0 for all =6 < ¢t < §. Write X% (¢) locally
as £11 = p4(2',t) for some smooth function ¢4 on BY 1(0) x (—4,6).

Let B be the common velocity of X% (¢) at ¢ = 0, = O in the positive z;-
direction; let 4b be a positive lower bound on second directional derivatives in the
z'-variables; and let 2b be an upper bound on the absolute value of its second
directional derivatives in the (z,t)-variables on BX *(O) x (—4,8). Then the only
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nonvanishing first derivative of ¢4 at (O,0) is 85’%(0,0) = +B. It follows from
Taylor’s theorem that

o+ (2',t) F Bt| > bl2'|> — b't?
for («',t) € B (O) x (—0,6). Here we may choose b := b+ 4b%/b. The computa-
tion is based on Schwartz’ inequality with appropriate weights, with respect to the
positive semi-definite matrix (D2¢) + 2b1. Q.E.D.

We are now ready to construct the two-parameter family of supersolutions I 1 (%)

which comprise the main tool for the results of this section.

Lemma 4.2 Let XF(t) and the numbers b, B, 6, and A be as in the statement of

Lemma 4.1. Let us also define a continuous function

gmax(t) = max {0, max{g(z, ) | |z| < A}}.
Then for each a € (0,min{2(73b)"1,1}), there is a positive continuous viscosity
supersolution 7 = ha(y,t) of the equation

Ohg n—2

h/l
4.1 = a —
A S T mE T h

+ gmax()V1+ (hL)2, yeR, 0<t<d

with initial condition
alogsec £ —qalogsec ¥ + /% if |y| < yq,

ha(y,0) = . . ,
(|yl — ya) tan 2= 4, /5= if 1yl > va

where yq is defined in (4.3) below. For each a > 0, the hypersurfaces of revolution
|#'| = ho(z1,t) + k in IR™ generated by the graph of he + k, with k > 0, defines a
foliation by hypersurfaces I'q . (t) moving by the normal velocity V- > H + gmax(t).

Moreover,
(4.2) Tox)NSE@) =0 for |2 < Ak >0, and 0 <t < 4.

Proof. We shall first prove T, (t) "X (¢) = 0. The case £ (¢) is equivalent, after
changing the sign of B.
Let f(y,t) be defined for y > 0,0 <t < J by :

r= f(y,t) = fily) := V/(y + V't2) /b + B't, where B’ = max{—B/b,0}.

According to Lemma 4.1, the hypersurface of revolution |z'| = f(z1,t) in IR" gen-
erated by the graph of f(z1,t), for f(z1,t) < A, 0 <t < 4, lies outside or on L7 (#).
Also for any a > 0, define G : IR — [0, 00) by

y=G(y) := alogsecg,
a
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which is known as the Grim Reaper, and denote by y, the unique value in (0, a7 /2)

satisfying

!/ ! 1 a
(43) filua) = G'(ya) = 57— = tan 2.

Then define a continuously differentiable, positive function A, : IR x [0, 00) — (0, 00)

for each ¢ > 0 by extending the Grim Reaper linearly, and moving upward with

(large) constant velocity:

alogsec? —alogsec ¥e + /¥ 1 CL if |y| < y,,
(44)  ha(y.1) = ‘ A ’
(Iyl = ya) tan % + /% + C if |yl > ya

where C' is defined in (4.6) and (4.10) below. Write y, =: a(n/2 — @) for some
0 < 6 < 7w/2. Then we have

%9§sin9:2c039\/b-a(g—9> 32\/19-@(%—9)

where the second equality follows from (4.3). It follows that

3 2
0<9§\/b-a%§1 for a< .

Consequently

1 1 1 2
4.5 — = < for a< —.
(4.5) sin  2/a cos0+/b(n/2 —0) ~ 2\/a cos1,/b(n/2 — 1) m3b

Thus by choosing C' satisfying

(4.6) C>1+go

1
2(cos 1)/b(m /2 — 1)] ’
where gy is chosen as an upper bound of gpax(t) for 0 < ¢ < 4, one has

a
1+ 9o

2
7 <C for a<min{ﬁ,l}.

sin
Then for |y| < y, and @ < min{2(73b) 1,1}

h 1
m + gmax(t)\/ 1 + (ha)2 == + gmax(t) Secg

a

1 Yo 1 1 1 a
S—+gosec—=—+go.—=—(1+go. )S
a a a sinf «a

Oun the other hand, for |y| > y,,

Ya Ya 1 C Ohg
9o/ 1+ (hg)? = goy /1 + tan g dosect S =goo S 5
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Therefore, since h:; =0, hg is a viscosity supersolution of (4.1) for |y| > y,, as well
as for |y| < y,. Note that h, is continuously differentiable.

We claim that any C' function h(y,t) which is a smooth supersolution except
along a smooth curve (the line y = g, in our case) and C? up to the curve from
either side, is a viscosity supersolution. To see this, let (yg,%p) be a point of the
curve, and suppose a smooth test function ¥ (yg,to) = h(yo,to) and ¥ < h in a
neighborhood. We need to show that 1) is a supersolution at (yg,%p). But the first
partial derivatives of 9 at (yo,%o) agree with those of h. Moreover by the one-sided
second-derivative test, the second directional derivatives of 1) at (yg,to) are less than
or equal to those of h, where the second derivatives of h are computed on either side
of the curve. It follows that v is a supersolution of the PDE at (v, %), and hence
that A is a viscosity supersolution.

To prove (4.2), let us first denote by y; the value at which the function hg(y,t) —
f(y,t) attains its minimum as a function of y for each time ¢ € (0,0). Then y;

satisfies

@) Lhagnt) = L ft) e tan ¥ = =

Ay Ay a  2b\/(y +V2)/b+ Bt

Further, y; decreases as t increases since tan(y/a) is monotonically increasing in y

-1
and (2()\/ (y +Vt?)/b+ B’ t) is monotonically decreasing in time ¢. Thus we have

(4.8) yr <y, for te€(0,9).

Then one has

(49) g7 mintha(t) = 70 00] = 51 halor,8) — £l 0] =

ot
d 0 oy C V't/b+ B'/2
—ha(yet) — —f e t)| - o + — — =
[ay (we:1) 8yf(yt )] o a \/ly+Vi?)/b+ B't

bt B
¢ 20| —+ — tan&,
a b 2 a

where the last equality follows from (4.7). Now by choosing C' satisfying
C S 1
26(0'0/b+ B'/2) ~ 2(cos1)\/b(r/2 — 1)

one has for a < min{2(73b) 1,1}

(4.10)

C 1 Ya Yt

> atan — > atan —
(Wa/b+ B2) ~ “sme -~ “M g Tetny

(4.11)
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where the first inequality is from (4.5) and the third inequality follows from (4.8).
Then by (4.9) and (4.11), one finds, whenever f(y,t) < A and 0 <t <, that

% Hgn{ha(y,t) —fly, )} > 0= Hgn{ha(y,t)—f(y,t)} > ha(Ya,0) = f(Ya, 0) = 0,

which implies (4.2).
Q.E.D.

Having constructed the hypersurfaces I'y 4 (t) which are supersolutions of V' >
H + g1az(t), we may now define a family of subsolutions v, of equation (1.1), whose
level sets are given by I', () for various values of k£ > 0.

Recall that, for given hypersurfaces ©*(t), we write Q(t) for the open set in IR"
lying outside of both X1 (¢) and of X~ (¢).

Lemma 4.3 Let XF(t), b, and A > 0 be as in the statement of Lemma 4.1. Let ug
be a continuous function, which is positive on Q(0) C IR™, and is equal to 0 on ©F(0).
Let u be the corresponding viscosity solution of (4.12) below with initial condition ug.
Fiz a € (0, min{-% 1 A% ) and let the foliation {I'qx(t) | k> 0,0 <t < 6} be as

VSR

in Lemma 4.2. Then there is a positive number 6 >0 and a continuous real-valued
function vy (z,t) defined for

(z,t) e |J [BANQW] x {t} C R" x R,
0<t<d
where B = {x € R" | |z| < A}, which is a viscosity subsolution of

ov Vo

(4.12) Tl |Vl <dz’vm — g(a:,t)) :

such that for all (z,t) € Ug<,5 [Ba NQL)] x {t}

)
0< Ua(xat) < U(:E,t),
06 (0, (£ 4+ /T%)é,t) >0 Veée R, |e| =1, where C is as in (4.4),

va 18 nondecreasing in the r = |z'| direction,

| Va = const on each T'y 1 (1).
Proof. For a fixed value a > 0, we first define a set SX by
SA={z€Q0)||z|=A and |z'| > he(z1,0)}.

(See (4.4) for the definition of h,.) By the continuity of u and the fact that wug is
positive on (0), we can find ¢’ > 0 such that

(4.13) §' < 6 of Lemma 4.1 and my, := m?gn u(z,t) > 0.
TESK
0§t<%’
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We shall show next that m, is nonincreasing as a function of @, from which it
follows that ¢’ can be chosen independently of a.

We first claim that (yq, hqe(ya,0)) is inside the circle of radius A, or equivalently,
that

2
(4.14) Ya + ha(Ye,0)* = yj + ( yf) < A%
Since 0 < y, < 7, it is enough to show that

(7;—a>2 + 22 < A2,

But the second term of the left-hand side is less than %AQ, since a < ATQI’; multiplying
this last inequality for ¢ with the hypothesis a < % makes the first term of the
left-hand side less than %, and the claim follows.

We next observe that y, is increasing as a function of «; this follows from the
fact that y = y, solves 1/(2/by) = tan(y/a) (see equation (4.3)), where 1/(2y/by)

is a decreasing function of y, while tany/a is increasing in y and decreasing in a.

Finally, given 0 < a < a' < min{ 2.1, ATZI’} , we have

w3b

ha(ya,0) > folya) = \/ 55 = har (4, 0),

where the first inequality holds since the straight-line part of h,(-,0) is tangent to

the concave function fy at y,, which is less than y,. Moreover,

1 1 '
tany—a = —tany—a

= > =
a 2y, 2v/byy

that is, the slope of the straight-line part of hy(-,0) is greater than the slope of

the straight-line part of hy(-,0). Hence, we conclude that, for y > y., hqe(y,0) >
ha'(y,0). Then, by this conclusion and the fact that the graph of hy(-,0) crosses
the circle of radius A on the straight-line part, which follows from (4.14) above, we
conclude that S2 is larger than S;‘, as sets. It now follows that m, > my, and in
particular that ¢’ can be chosen independently of a.

For any given a > 0 and = € BX NQ(0), if |2'| > hy(z1,0), define k(z) to be the
unique value such that © € T'y (,(0), by Lemma 4.2. Then define

Vg (z,0) = min {ma, krznki&) zeF:kn(iOr)lﬂBg uo(z)} if 2’| > ha(z1,0),
ve(z,0) =0 if |2'| < hge(z1,0).
Finally, define
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va(@r, 2’ — $t8,0) if 2| > ha(w1, ),

(4.15) va(x,t) = vo(x, 2, t) =
0 it 2| < ho(z1,t).

It follows directly from the construction that v, = const on each I'y (%), and
ve(®,t) = (k) for some nondecreasing function ¢ whenever (z,t) € I'y (), and
vg(z,t) = 0 otherwise, which means that v, is nondecreasing in the r direction.

Therefore v, is a viscosity subsolution of

ov

Fn = |Vy| <d1v Vo

Vol gmax(t)>

by Proposition 2.1 and Lemma 4.2, where gmax(t) is as in the statement of Lemma
4.2. Since g(z,t) < gmax(t) for all |z| < A, it follows that v, is a viscosity subsolution
of (4.12). Moreover, by the construction of v, (z, ),

0 <wvalw,t) <u(a,t) on (BXNQOIx{opu| |J a[BinQ®)] x {t}
0<t< o’

It follows from the comparison principle that 0 < v,(x,t) < u(z,t) for all (x,t) €
Uo<ics [BR N Q)] x {t} (see [GGIS], p. 463). Moreover, since a < ATQI’ by the
assumption on a, which implies \/5; < A, we can define 6>0 by

(4.16) 5= min{% (A—@) ,5’}

where ¢ is defined in (4.13). Then

(4.17) ct + 72r_Z <A  whenever 0<t <.
a

Moreover, with the same function fy as in Lemma 4.2,

(4.18) \/g = fo (ga) > fo(Ya) = ha(Ya,0) > ha(0,0).

It follows from (4.17), (4.18), and Lemma 4.2 that

< %) é) € BLNQ),

and, thus, v, (0 ( \/_) é t) is well defined for any |¢| = 1 and for 0 < ¢ < 5.
Then, since (0,/ZFé,0) € Tyx(0) for some & > 0 by (4.18) and Lemma 4.2,
v4(0, /55 €,0) > 0 by the definition of v, and the fact that ug is positive on
Q(0). Further since [(£ + /ZH)é| = fo(Za) + S > ha(0,0) + £ = hy(0,1),
va (0, (£ + /ZF) &,t) = v4(0, \/ﬁé 0) >0for0<t<5by (4.15). Q.E.D.

(4.19)

9|Q

:1
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Remark 5 Lemmas 3.4 and 4.8 show: if XF(t) are part of the moving boundary
for a nonnegative solution of (2.1), with the boundary condition: uw = 0 on LT (t),
disjoint except at t = 0, XT(0) NX(0) = O, XF(0) strictly convez at O, then for
0 <t < 8, the generalized solution {u = 0} includes a piece of Q(t) of size o< t'/3.

We are finally ready to prove an upper bound |z| < kg t'/? on the size of the
level set after fattening; this upper bound only applies to points z = (0,z') in the
hyperplane 1 = 0. Of course, one expects that the fattening may appear instan-
taneously at great distances along the hypersurfaces ¥ (¢), ¢t > 0; therefore some

restriction similar to z; = 0 is necessary in general.

Theorem 4.4 Let X% (t) be two smooth, oriented hypersurfaces in IR™ which evolve

according to
(4.20) V=H+g(zt)

for some continuous forcing term g(x,t). Suppose that LT () NL~(t) =0 for t # 0,
—T <t < T, and that there is a point zyp € L1(0) N X (0). Moreover, assume
that X% (t) are strictly convex at x = xg, t = 0. Let u(-,t)71(0) be the generalized
solution to (4.20) with initial condition u(-,—T)~1(0) = SH(=T)UX~(-T). That

is, u(x,t) satisfies the equation

% = |Vu (dw <|§—Z> - g(%ﬂ)

and u(x, —T) vanishes iff © € XF(=T). Then there exists § > 0 such that for all
0 <t <9, the generalized solution u(-,t)~1(0) has nonempty interior. Furthermore,
recall that Q(t) denotes the open set in IR"™ lying outside of both ¥7(t) and of ¥ (),
and define B = {z € IR" | |z — zo| < A}. Also, let b be as in the statement
of Lemma 4.3. Then there is kg > 0 and § > 0 so that for all 0 < t < § and
Py :=1z0+(0,2") € B NQUt), if u(Py,t) vanishes, then necessarily

P, € BKOtI/S (:Eo)
Furthermore, for |é| =1 and 0 <t < 9,
(4.21)  mo+ (0,k0t/%6) € BANQt), and thus u(zo + (0, ko t'/3€),t) > 0.

Proof. Our proof will be based on the family of subsolutions v,(z,t) given in
Lemma 4.3. Assume for simplicity 2o = O € IR"™. We may assume u(z,0) > 0 for
2 € 9(0) and u(z,0) < 0 for z inside X*(0); see Theorem 5.6 of [CGG].
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Let us pick any « satisfying

2
(A1) 0 < a < min i,l,ﬂ ,
3b s
A2 — 32 VT _ S=mind Z(A_ . /T2 5
(A2) to =0 C\/8_6<6 min § = 5 ,0

as in (4.16), that is, ¢’ is defined in (4.13) and C is defined in (4.4). (See (4.23)

below to understand the meaning of ¢,.) Let b be as in the statement of Lemma 4.1

and
Ot Ta 1/3
fau(t) = —+ \/ o Y (> 0).
Since 3/2
' — _ (&
foslt) =0 at to=(35)"

we may compute

_¢ [ma s _ _E\E sp 1 /T
fa,n(ta)—ata+ 5% Kty —\/c_z[ 3\ 3% \/5+ 5|

Thus, we define k¢ independent of a by

2 [1 1 [n 277C\ /?
~1/2 _ =2 |13 _ ‘:
a 7 fao(ta) 3\/;%0 7c V3 0< Ko : ( %0 ) )

Then since f(;:,ﬁ(t) > 0,

(4.22) faro(ta) =0 and  fon(t) >0 if t#t, and t>0.

For this choice of kg, we have

(4.23) t _(@)3/2_ i (LY (2mON _ VT
' «=\3¢) ~% \3C 8b — o8

Note that r = rot'/? is tangent to the straight line r = % + /5 at t =14, and

forms the envelope of this family of straight lines with parameter a. Then, by (A2),

t, satisfies t, < 6 for ¢ defined in (4.16), and we can apply Lemma 4.3 for this ¢,

whenever a satisfies (A1)—(A2), or equivalently, as long as

32 VT }:-5
mmC\/8_b .
A2

where G := min {% , 1, T} Furthermore, by the fact that v, is nondecreasing

in the r direction, we obtain

Ct [ra
u (O,xl’ta) 2 Ua(O,x',ta) 2 Va <0, <Ta + %> m,ta> >0
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whenever (0,z') € BXNQ(ty), 0 <ty < 6 and |z'| > ‘C;‘l +VE| = Kot (the last
equality follows from (4.22)). By replacing t, by t, we conclude that u (0,2',¢) > 0
whenever (0,2') € B NQ(t), 0 <t <4, and |2'| > kot'/3. Therefore, for 0 < t < §

and (0,z') € BR NQ(t),
w(0,2',t) =0 may only occur if |2| < rot'/3.

Finally, (4.21) follows from (4.19) and (4.22). Q.E.D.

Remark 6 Although Theorem 1.1 deals with two disjoint pieces of hypersurface
YE(t) evolving by V = H + g(z,t), the reader may note that this includes the case
of a connected hypersurface X(t) which touches itself at some time t = 0 and then
pulls away. In this situation, X (t) may be chosen as appropriate neighborhoods of

the contact point.
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