Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Blowup in a chemotaxis model without
symmetry assumptions

by

Dirk Horstmann and Guofang Wang

Preprint no.: 67 1999







IMPORTANT NOTE: This is a preprint but not the final version of
the paper that did appear in the European Journal of Applied
Mathematics (2001), vol. 12, pp. 159-177

Blowup in a chemotaxis model without symmetry
assumptions

Dirk Horstmann® and Guofang Wang?
November 1999

Abstract: In this paper we prove the existence of solutions of the so-called Keller-
Segel model in chemotaxis, which blow up in finite or infinite time. This is done
without assuming any symmetry properties of the solution.

Keywords: Chemotaxis, Keller-Segel model, blowup, nonlocal nonlinear elliptic
boundary value problems, Neumann problem, Pohozaev’s identity

Mathematical subject classification numbers: 35J25, 35J60, 35K 20, 35K55,
35K57, 49R99, 92B05, 92D25

1. Introduction

The collective behaviour of the myxamoebae of the cellular slime mold Dic-
tyostelium discoideum has astonished many scientists since Dictyostelium was
found in 1935. During its life cycle a Dictyostelium myxamoebae population grows
by cell division as long as there is enough food. After the food resources are
exhausted the myxamoebae spread over the whole domain that they can reach.
Then a so-called founder cell starts to separate cyclic Adenosine Monophosphate
(cAMP) which attracts the starving myxamoebae. They start to move chemotac-
tically positive in direction of the founder cell and are also stimulated to separate
cAMP. During this process the myxamoebae not only produce cAMP but also
consume it and secrete a phosphodisterase, which converts the cAMP into chemo-
tactically inactive AMP. According to this chemotactically positive movement to
the founder cell the myxamoebae aggregate. At the end point of aggregation the
myamoebae form a pseudoplasmoid, where every myxamoebae maintains its indi-
vidual integrity. This pseudoplasmoid moves phototactically positive towards light.
Finally a fruiting body is formed and spores are spread. When the spores become
myxamoebae the life cycle is closed.

Since 1970 when E.F. Keller and L.A. Segel introduced their model for the
aggregation of Dictyostelium discoideum, which is given in a simplified version by



the equations

ay = V(Va - xaVe), €N t>0
ct = k.Ac—vye+ aa, €N, t>0 (1)
g—z = g—fl = 0, xed, t>0

CL(O,J?) = aO(x)a C(O,Jf) = CO(x)a T € Q:

many authors were interested in the possible blowup of the solution of system (1).
Here and in the following sections of the present paper n denotes the outer normal
vector field on 0f2.

In (1) the function a(z,t) represents the Dictyostelium myxamoebae density
in point x € Q at time ¢ and the function ¢(z,t) stands for the cAMP density,
which attracts the myxamoebae to move positive chemotactically in direction of
a higher cAMP concentration. &, ¥, k. and -y denote positive constants. For a
detailed derivation of the equations see for instance [11, 14] or [18].

That there might exist solutions which blow up for  C IR? has been expected
in connection with the studies concerning the conjectures by V. Nanjundiah in [18]
and by S. Childress and J.K. Percus in [4, 5], which say the following:

V. Nanjundiah [18] suggested in 1973 that “the end-point (in time) of aggregation
is such that the cells are distributed in form of 6—function concentration” (see [18,
p. 102]).

S. Childress and J.K. Percus formulated in [4, 5] the following statement for space
dimension N = 2:

e The myxamoebae density cannot form a J—function singularity, if the total
myxamoebae density on € C IR? is less than a critical number dq,.

e The myxamoebae density can form a d—function singularity, if the total
myxamoebae density on {2 is larger than a critical value Dq.

In the following years one was led to believe that the equality dg = Dgq should
hold for the critical values mentioned in the conjecture.

If one uses the transformation

2a(t, ) . 1 /
Alt,z) = ————, C(t,z) = c(t,z) — — [ c(t,x)dx 2
(17) = Foceige C®) = | ettr) — g [ ett. ¢l
Q Q
(see also [12, 14] and [18]) and the notation ax instead of ax [ a(z,t)dz/|Q] we
Q

get a transformed version of the Keller-Segel model. This transformed system is



given by

Ay = V. (VA-AVC0), €N, >0
Cy = kAC —~vC+ax(A-1), €N, >0
% = @—0 e, t>0 (3)
A0, x) = Ao( ) > 0, C(0,z) = Co(x), x=€
JAo(z) dz = 1|Q|, [C(t,z) = 0, t>0.
Q Q

In the present paper we will study the possibility that solutions of system (3)
might blow up.

For the sake of clarity we give the definition of solutions of system (3), which
we will refer as blowup-solutions.

Definition 1 We say that a solution of (3) blows up or is a blowup-solution of
(3), provided there is a time Ty,q. < 00 such that

lim sup ||A(, )|| o (@) = 00 or limsup ||C+(x,t)||Loo(Q) =00
t—=Tmas t—Tmax

where CT (x,t) denotes the positive part of the function C(x,t). If Thee < 00 we
say that the solution of (3) blows up in finite time and if T4 = 00 we will call it
blowup in infinite time.

Up to now the existence of blowup-solutions of system (3) is only known
under a radially symmetry assumption on the solution (see [9, 10] and [13] for
existence results of blowup-solutions of system (3) in the radially symmetric case).

In this article we will prove the existence of blowup solutions of (3) for a
smooth domain @ C IR? provided 47k, < ax|Q| and ax|Q|/k. # 47wm, where
m € IN. The proof will be based on the same idea that has been used in [13] to
prove the existence of blowup-solutions in the radially symmetric setting of (3)
with 7 = 0 and a generalization of results by Brézis-Merle [1] and Li-Shafrir [16]
which has been done in [22].

2. A summarizing section

In 1998 H. Gajewski and K. Zacharias proved the local existence of a weak
solution of (3), where the definition of a weak solution is given as follows:

Definition 2 [8] A pair of functions (A(t,z),C(t,z)) with

A€ L%(0,T; L () N L*(0, T; H' (Q)), Ay € L2(0,T; (H'(Q)7),
C € L®(0,T; L>() N C(0,T; HY(Y)), C; € L*(0,T; L*(2))

w



is called a weak solution of (3) if for all h € L*(0,T; H*(Y)) the following identities
hold:

T T
0 = /At, dt+//(VA—AVC)-Vhdmdt,
0 Q

o
Il
O\H (=]

T
/Cth dw dt+//(kcvc-vm(w—ax(A—n)-h) de dt.
Q 0 Q

Using the Lyapunov function

FA(),C(1) = / ﬁ (k| VOO? +4C(0)?) + A(t) (log A(t) — 1) + 1dz
Q

- / (A(t) — 1)C(t)dz

Q
and the lower estimate
1
FA®.00) > FIO®) = g [ KIVCOP +900° do
Q
-] log L/ec(t)dm 4)
oy,

for t > 0, it is possible to show for a smooth domain © C IR? that the Lyapunov
function is bounded from below, provided

ax|Q

< 1.
4k.m

This fact is a simple consequence from a Moser-Trudinger type inequality by S.-
Y.A. Chang and P. Yang [2, Proposition 2.3].

Remark 1 If the boundary of () is piecewise C? then one can bound the Lyapunov
function from below provided
ax|Q|
4k.©

where © denotes the smallest interior angle of 0S).

<1,

It results from the studies done by Nagai, Senba and Yoshida in [17] that in
such a case the L>®-norm of A(xz,t) and C(z,t) remains uniformly bounded for all
t > 0. Gajewski and Zacharias show in [8] that in this case the solution converges



at least for subsequences (t;)ren with t; — oo to a stationary solution of (3). In
[12] it was shown that this statement is in fact true for ¢ — oo.

So we know from [8, 12] that for ax|Q| < 4k.7:

A(t) = A*
in L*(Q) and
cit)y—~c*
in H'(Q) as t — oo, where
. _ 10
- [eCdx
o

and C* solves the nonlocal elliptic boundary value problem

—kAv+yo = ax|-EE 1), mQ
evdx b)
({ (5)
2 = 0, on 9N.

3. Existence of blowup-solutions for ax|Q| > 4k.7 and ayx||/k. not
equal to a multiple of an integer of 4.

In the case where ax|}| > 4k.m we know from Lemma 2 in [12] or Lemma
2.2 in [22] that there exists a sequence (v.).>0 C D = {v € H'(Q) | [v dz =0}
Q

such that
F(ve) = —o0 (6)

and
[Voe||L2(0) — o0 (7)

as € — 0. A consequence of these observations is that the Lyapunov function
F(A(t),C(t)) might become unbounded from below as t = Tyqz. If we now can
find a constant K such that .

Fv) > K (8)

holds true for all solutions of (5), we can construct initial data for (3), for which
the corresponding solution of (3) has to blow up in finite or infinite time. For the
radially symmetric case of (3) (with v = 0) this was possible for ax|Q| > 8k.m
and ax||/k. not equal 8wm for m € IN (see [13] for details).

That there are nontrivial solutions of (5) has been proved independently in
[12] and [22]. We will use results similar to those used in [22, Section 3] to show the



existence of a constant K such that (8) holds true for all solutions of (5), provided
ax|Q|/k. is not equal to 4mm, m € IN.

This claim will be shown by contradiction. Therefore let ax|Q2[/k. > 47 and
not be equal to 4mm, m € IN. If there is no constant K such that (8) holds true,
then there exists a sequence (vi)rew of solutions of (5) such that

[IVUrllL2@) — oo, (9)
/e”’“d:c - o0 (10)
Q
and
maxvg(z) — oo (11)
z€eQ

as k — oo. If (11) does not hold, we get a uniform L*°-bound of the righthand
side of (5) for all k, which gives us the existence of the constant K.

We now use the transformation

«@
Up = Vi + —X
So each uy solves the problem
—Auy, + klcuk = ppe¥, in
ou _
6_75 = 0, o on 69 (12)
Jurde = aXJ 3
Q
where Q)
ax
1 13
22" kcfe“kdm ( )
Q

and pr — 0 as k — oo.

According to the maximum principle for elliptic operators we notice that
ur > 01in Q. In the following we will show in the same way as it has been done
in [22] that the (ug)remw contain a subsequence (for the sake of simplicity again
denoted by (ur)ren) such that

Lk /e“’“dm — 4mm (14)
Q

for some integer m as k — oo.
But this would contradict the fact that ax|Q|/k. # 47m, m € IN.

To show (14) we make use of the following lemma:



2
Lemma 1l [3] Let L= ) aij%; be a uniformly elliptic operator, namely
i,j=1 o

ol < (aij)i<ij<2 < wil.

Then there exists a constant § = [B(vo,v1) such that for any solution u of the

following problem
Lu= f(z) in Q, u=0 on 09

N Blu(z)] )
!ep<wmum)dm§K'

Let us define the following set:

we have

there exists a sequence u; — 0, with corresponding
BS =< x € Q| solutions uy of (12), and a sequence (zy)ren(vx € ), (15)
such that ug(z) = 00, zx — x as k — oo

By our assumption BS # @ holds true.

Q
Ek = /,uke“’“dx <: %) .

Q
pre'r
der =1
/Ek ’

Q

We now set

Since

for all k, we can extract a subsequence of the uy (still denoted by wuj as mentioned
above) such that there exists a finite measure p in the set of all real bounded Borel
measures on {2 (denoted by M()), such that

u,
/'uk; p dr — /(p du (16)
Q Q

k

for all ¢ € Cg°(IR?) as k — oo.

For each boundary point zg € 9 we can strengthen the boundary (see [22]
and [19] for more details about this fact) and the Laplacian becomes

with a uniformly elliptic operator L, and |b;| < C = const. Using the compactness
of the boundary we can choose a uniform 3 = 3 in Lemma 1 for all L, zo € Of.
Now we define d-regular points of €.



Definition 3 For any § > 0, we call zo € Q a §-regular point if there is a function
p € CP(R?), 0< ¢ <1, with ¢ =1 in a neighbourhood of xo such that

Bo
/godu<1+35. (17)
Q

We also define the set X(8) of all points in Q which are not &-regular:
¥(8) = {zo € Q | o is not a § — regular point} (18)
We remark the following:

Lemma 2 For any 1 < g < 2, there is a constant Cy independent of k such that
IVurlly < Cy-

Proof:
Let ¢' = qi#l > 2. We know

IVuell < sup < | [ Vur Vi dol | 9 € L{@), [ ¢ do =0,y = 1
Q Q

By the Sobolev embedding theorem we have

llell o (@) < Ch.

It is clear that

|/Vuk-ch dz| = |/Aukcp dx|
Q Q

= |/ (klu’" - uke“k> ¢ dz|
C
Q

< /(uk + pre*)dz
Q
< (O
Here we have used the fact that u; > 0. O

Now we can use exactly the same arguments as in [22, Proof of Lemma 3.2
and Proof of Lemma 3.3] and [1] to see that

L. if @o is a d-regular point, then (uj)ren is uniformly bounded in
L>(QN Bpry(xo)), where Bg,(zo) denotes a ball with radius Rg
centered in xg.



2. BS = X(9) for any § > 0.
These two statements imply that
1 < card(BS) < oo.

Let BS = {P,, ..., Py}. We decompose BS into a boundary blowup set BSsq =
BS NN and an interior blowup set BSq = BS N ). For a small constant r > 0
we set

of(r): / prettd.
B (Fj)

We now see that for all small r the following equality holds true:

N
lim | ppe* dr = lim 0;? (r). (19)
k—o0 . k—o0
Q J=1
This implies the equality of
N
klirgo prettdr = 2 71“1—I>% klirgo aj(r), (20)
Q =

which would give us (14) and thus a contradiction to the value of ax|Q|/k. provided

lim lim af (r) = 4qrm (21)
r—0k—o00
for some ¢ € IN. But this is true as one can see in the following lemma, which is
similar to Lemma 3.4 in [22].
Lemma 3 Suppose P; € BSpq then lim lim af(r) = 4n. If P; € BSq then

r—0 k— oo
k

i J of ) =

Proof:
We first prove the case when P € BSsq. Recall that the Pohozaev identity for a
function u satisfying

Au—Pu+ f(u) =0, in U C R?
is given by
0 Vul?
/(_’%2+2]‘E(u))d5":/[(9C'VU)£—(96-TL)| ;' ]dS

U oU




where F(u) = [ f(s)ds.

Ot—g

Let f(u) = pre* and B = {-. We may assume without loss of generality that
P = 0. Now we set U, = B,.(0) NQ and consider the function wy, which is a solution
of the following problem

Qw  —  dw op JU,. (23)

Aw—pw = 0 in U,, }
on on

It is easy to see that wy = O(1) in C*(U,) since |86L7f| < C on 0U,.

If we put hy = (uk—wk)/(of (r)), we have that hy — G(-,0) in C3.(B,(0)NQ\{0}),
where G(-,0) satisfies

oG
—AG+ﬂG = 60 in Ur, % =0 on 6Ur
See a proof in [7] for this claim. By potential theory, it is easy to see that for |z|
small .
G(-,0) = —;log|x| + O(1).

Hence we have .

0; (r)

™

in C1(0U,) (here O(1) may depend on r but is uniform in k).

up = — log |z + O(1)

By Pohozaev’s identity we have

U,

2 2
/ [(:c . ka)% —(z - n)% + (z - n) <—ﬂu2—k + ppett — ,ukﬂ ds. (24)
o,

We now estimate each term on both sides of (24):

/u%d:c

Ur

/2uke“kd:c

Ur

O(r' 2 llurllLe(u,)) = O llukllwrsr ) = O?),

204 () + Olyur),

10



U,
Ouy, Uf(r)>2 (z-n)
(x - Vug)—=—dS = >~ +0(1)
JET e
IO
- (Z2) =+ 0m.
2 ot )\ T
/(m-n)—|v;k| s = < 175 )> (F+om),
oU,
/uidS’ = O(r),
U,
/(x-n)uke“’“ds = Our max ™) = O(u),
oU, ’
/(m-n),ude = O(ugr).
oU,

Here we used the statement of Lemma 2.

Now let £ — +oo first and then » — 0. We see that

1x :
. . k _ . : k 2
2ling i 07 () = Sy g (g o3 ()

lim lim of(r) = 4nx.

r—0 k—+o00

The case when P € BSq can be proved similarly. For convenience, we give a
sketch of the proof. Instead of (23), in this case we consider wy, satisfying

Aw—pw = 0 inU,, } (25)

w = wup on dU,.

We put hy, = (up—wy)/(0¥(r)) and assume that P = 0 € Q. Similarly, hy — G(-,0)

in C} (B, (0)/{0}), where G now is a Green function with Dirichlet boundary data:
—AG+ PG =6y in B,, G=0 on 9U,.

In this case, the Green function has following expansion near 0:

1
G(-,0) = —%log|m| +0(1).

11



We obtain the same estimates as in the first case when P € BSpq except

[ vt = (42)' [ (o)

oU,.

2 ok (r 2
/(m-n)%ds = <]2§r)> (m 4+ O(r)).

oU,
Now applying Pohozaev’s identity again, we have in this case

1
. . k _ : : k 2
2,05 () = g(im m es ()

lim lim U;-“ (r) =8 for P € BSq.

r—0k—+oco
This completes the proof. O
From Lemma 3, we get the following lemma:

Lemma 4 Suppose ax|Q|/4k.m > 1 and ax|Q|/k. # 4mm for m € IN, then there
exists a constant K € R (K < 0), such that for all solutions v of (5)

F)> K > -0
holds.

A direct consequence of this lemma, (6) and (7) is the following theorem,
which also collects some known facts concerning blowup-solutions:

Theorem 1 Let Q C IR? be a smooth domain and let K denote the constant from
Lemma 4. Furthermore assume that 4k.m < ax|{?| and that

Q
% # dmm

for m € IN, then there exist initial data (Ao, Co), such that
K > F(Ao, Co)

and the corresponding solution of (3) blows up in finite or infinite time. For these
blowup-solutions the following statements hold true:

1. lim Az, 1)]]z2(0) = oo

t—=Tmaa

12



2. tlgrr:amS{A(m,t)C(m,t) dr = 0o

5., lim |IVC(, 0l = o0

: C(z,t) _
4. t_}%riws{e dr = 0o

5. lim ||A(ac,t)||Loo(Q):tlim ||C(m,t)||Loo(Q):oo

t—=Thaz —Tma

6. If dwk. < ax|Q| < 8wk, and Q is a simply connected domain, then

lim eCEN/249 — oo,
t—=Trmas
[2]9]

Proof:
The existence of a blowup-solution follows from Lemma 4, (6) and (7).

The statements of the theorem can be shown by using the Lyapunov function
F(A(z,t),C(z,t)). We know that from Proposition 2 in [12] that 3. and 4. are
true for a blowup-solution of system (3). Furthermore we see by the properties of
F(A,C) that

K F(Ao(z),Co(z))

2
> F(A(z,t),C(x,1))
and thus

1 . N

Zev /kc|VC(ac,t)|2 +vC(z,t)%dr < /(A(m,t) -1)C(z,t)de + K (26)

X Q Q
holds true. This inequality gives us statement 2. and using Cauchy’s inequality we
also derive 1. Statement 5. is a direct consequence of 1. and 4.

We still have to show the last statement of the theorem. Therefore we remark
the following. Using Lemma 3 in [12] we can estimate the Lyapunov function
F(A, Q) for an arbitrary but fixed p € (1,87k./ax|€?|) from below by

I8
Q
ke pl9 2, 0 e
/<2ax W) IVC(t)] +2axc (t) da
Q

202
_%log /eqC(W2 dS | + Ki(p,q,ax, ke, 19])
Q

F(A(1),C() > ﬁ/kJVC(t)F%—yCQ(t) d — |0 1og L/eou)dm
Q

Y%

13



where ¢ = p/(p — 1) and K;(p, q, ax, k., |]) is a constant depending on the pa-
rameters in the brackets. So in view of 3. we get that

lim etC@D/2q8 — o
t—=>Tmae
oQ

for every q € (87k./(8mk. — axx|€]), 00). But it is possible to improve this result.

Independently from [12] Senba and Suzuki improved the statement of [12,
Lemma 3] and showed in [20, Proposition 2] that for v € H'() and a simply
connected, smooth domain  C IR? the following estimate holds:

1 1 1
- v < 2 -
log |Q|/e de | < 167T/|Vv| dw+2|8ﬂ|/vdS
Q Q o2
1 v/2
002

Here K is an absolute constant. Using this inequality instead of [12, Lemma 3] we
get the estimate

1 . . 1
> 2 2 _ C(t)
F(A{t),C(t) > —zax/kc|V0(t)| +4C2(t) dx — |9 log |Q|/e dz
Q Q

ke 12 2 T 2
> [ -
> /<2ax W) VOWOF + 5=C() do
Q
—ﬂ/C(t) dS — |9 log L/ecw/zds —- K|Q|
2109 EXS]
oQ o0
which finally leads us to 6. |

Lemma 3 and Lemma 4 also imply the following corollary for the radially
symmetric case of system (3).

Corollary 1 Suppose Q C IR? is a disk of radius R, which is centered in point
zo € R?. Furthermore assume that y > 0. If

ax|Q| > 8k,

then there exist radially symmetric blowup-solutions for system (3).

14



Remark 2 We know that 1 < card(BS) < oo holds true. Since

lim lim U;-“ (r) = 8,
r—0 k—o0
we see in the radially symmetric case that the claim of Lemma 4 is true provided

ax|Q| > 8nk.. This implies the statement of Corollary 1.

Remark 3 If v = 0 we still have to exclude in the radially symmetric case that
ax|Q|/ke is equal to a multiple of an integer of 8n. Let us briefly compare the
present paper with the results and proofs in [12]. In the present paper we used
the transformation uy, = vi + (ax /7). We concluded via mazimum principle that
ug > 0. This property was then used several times in the present paper.

However in [12] we used the transformation

1 .
’llk = Vg —log ﬁ/e”’“dw - Zé—k):i|$|2
Q

Unfortunately we can not apply the maximum principle in this case. We also get
some problems with Pohozaev’s identity for our transformed problem. Thus we
still have to exclude in the radially symmetric case of system (3) with v = 0 that
ax|Q|/ke is equal to a multiple of an integer of 8m. See [12] for more details about
this case.

Under the assumption that T),,, < oo it is known that for the solution of
system (1)
lim ||a(t)loga(t)||p1 (o) = o0

t—Thma

is true (see [20, Theorem 1]).

However it is absolutely not clear if either 7,4, < 00 or Tipq, = 00 is true for
a blowup-solution of system (3) (resp. system (1)). There is only one example of a
blowup-solution known, which blows up in finite time. This has been constructed
for the radially symmetric case by M.A.Herrero and J.J.L. Veldzquez in [10].

Suppose Tz < 00, then we also do not know if either

1. inf  F(A(t),C(t)) > —o0 or

0<t<Trmaz

2. lim F(A(t),C@t) = —cc.

t—=Thaz

15



In fact a numerical example for a blowup-solution of system (3) given by H.
Gajewski and K. Zacharias behaves in such a way that
lim F(A(t),C(t)) = —o0
t—=Thmaz
(see [8, Remark 4.5, page 94 & 95]), while one can also think about the possibility
that
s FAW,C) > o0,

since we are talking about finite time blow up.

Nevertheless we can formulate the following lemma, which gives us another
result for a blowup-solution, which is independent from the questions mentioned
above. (The statements from Theorem 1 are also independent from these facts, as
one can easily see from the proof given in the present paper.)

Lemma 5 Suppose the solution (A(t),C(t)) of system (3) blows up. Then

lim ||A(t)log A(t)| 11 (@) = oo. (28)

t—=Tma

The proof of Lemma 5 is similar to [21, Proof of Proposition 3.2].

Proof of Lemma 5
Let (A(t),C(t)) denote a blowup-solution of system (3). Since

/A(t) log A(t)dz > 1
Q

€

and

Faw.c) 2 - - (a0 - o+ ;
Q

ke
" IVCWlE20)

we get with the help of [6, Theorem 2 & 3] that
ICOIF2 () < KIVCD72 (),

where ®(s) = e®* — s — 1 (remember

JO(t) dr =0

for all t > 0).

Here and in the following L® () denotes the Orlicz space which corresponds
to the Young function ®(s) and || - |[ze(q) its norm. With ¥ we will denote the

16



Young function complementary to ® and consequently with LY (Q) the Orlicz space
with norm || - || ¥ () which corresponds to the Young function ¥. It is known that
U(s) = (s+ 1)log(s + 1) — s (see [15, Example 3.3.5. (iii)]). For more details on
Orlicz spaces we refer once again to [15].

Using Holder’s inequality for Orlicz spaces [15, Theorem 3.7.5, p. 152] we see
that

Q ke
Fm,00) > - - [0 - e + S IVCORae
Q
> B el @llaw - 1o + 5= IVCOI:
= e (@) @™ 20 L2(Q)
2 K > ke >
> - — A - 1 o - )
> - LA - U + (5 —¢) IVCI
where € < QIZCX. This however gives us together with [8, Lemma 6.3] and
/A(t) dz = |Q| (for all t > 0)
Q
the claim of Lemma 5. |

Remark 4 We get that

|A(#) log A®)|| 1 (@) < KI[A®)]|Lr () (29)
for every 1 < p (see [15, Theorem 3.17.1, page 185]) and consequently

lim  ([A®)]| (0 = 00

t—=Taz

for a blowup solution of system (3).

Remark 5 With exception of statement 6. the statements of Theorem 1 and
Lemma 5 are also true for blowup solutions of (3) if @ C IR* has a boundary,
which is piecewise C?.
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