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Towards H-Matrix Approximation of Linear Complexity

Wolfgang Hackbusch and Boris N. Khoromskij

Abstract

In the preceding papers [10]-[14], a class of matrices (H-matrices) has been analysed which are data-
sparse and allow an approximate matrix arithmetic of almost linear complexity. Several types of H-matrices
were shown to provide good approximation of nonlocal (integral) operators in FEM and BEM applications.

In the present paper, we develop special classes of H-matrices with improved data sparsity to
approximate elliptic problems posed in R?, d = 1,2,3. For the evaluation of integral operators on spatial
domains in R?, the idea is to apply degenerate kernel expansions supported only on the boundaries of the
geometrical clusters. This results in an algorithm of linear storage expenses, O(n), which includes one call
for an optimal Dirichlet solver (e.g., multi-grid method) on the involved cluster. In the case of a tensor
product finite element ansatz space, we propose improved degenerate expansions of the kernel based on a
separation with respect to the full set of one-dimensional variables..

For BEM applications applied to rather general elliptic operators, our approach reduces the order of
expansion from O(log? n) down to O(log?~! n).

AMS Subject Classification: 65F50, 65F30, 65F05, 65R20, 15A09

1 Introduction

In the present paper, we develop special classes of H-matrix approximations for elliptic problems which have
linear memory requirements and allow a fast matrix-vector product of linear-logarithmic complexity under
standard assumptions on the smoothness of fundamental solutions.

For the evaluation of potential fields as well as for the calculation of particular solutions in elliptic problems,
we are interested in the data-sparse approximation of integral operators on a spatial domain in R?, d = 1, 2, 3,
whose kernels satisfy the property (2.2). The idea is to build the degenerate kernel expansions only on the
boundaries of certain geometrical clusters and to use their elliptic extension into the corresponding interior
product domain. As a result, the domain integrals are transformed into equivalent surface integrals. This
leads to an algorithm of linear complexity. It requires one call of an optimal Dirichlet solver (say, multi-grid
method) on each geometrical cluster. We call the new approach the wire-basket H-matriz approzimation. For
a general class of kernels, this approach essentially reduces the amount of data (memory requirements) for
each n, X ny matrix block from O(n, log?n) for the standard H-matrices down to O(ni/d log" ' n + n,),
where n, ~ n, is the corresponding blocksize and n is the global dimension.

In the case of a tensor product finite element basis, we construct data-sparse expansions of the matrix
blocks with sublinear complexity O(ni/dlogw n) and with the expansion order' O(log??n). It is based on
the idea of data-sparse approximations of the matrix blocks with locally analytic kernels by fully separated
expansions (see the smoothness requirements formulated in Assumption 2.4 of Section 2.3). In this way, we
allow to increase the local rank, but at the same time, we gain additional sparsity of the approximation ansatz
defined now on a low dimensional tensor product space. In the framework of the H2-matrix concept with fully
separable expansions of variable order, we are led to schemes of linear complexity.

As a by-product, we derive degenerate expansions of the order O(logd*1 n) for kernels of boundary integral
operators. The efficiency of the corresponding expansions in BEM does not depend on the smoothness of the
computational boundary I'. However, the constructive way to avoid this dependence and to retain expansions
of the optimal order O(logd_1 n), needs to compute the restriction of elliptic extension on pieces of the
boundary I' located within associated “volume clusters” covering a part of the curve/surface in the spatial
product domain.

Mn this paper, the order of expansion is defined as the total number of terms in the separable approximation of the kernel.



2 ‘H-Matrix Approximation Revisited

2.1 Integral Operators in Elliptic Problems
We consider the case of scalar elliptic operators. Let
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be a second order elliptic operator with real constant coefficients aj;,b; and cg. We assume that £ has a
fundamental solution S satisfying £S5 = Jg, where do is the Dirac distribution at the origin. The associated
weakly singular kernel s(z,y) = S(z — y) defines a class of integral operators specified by their domain of
definition. The function (z,y) — s(z,y) is C™ outside the diagonal of R? x R? and satisfies Assumption 2.4
from Section 2.3. Moreover,

Lys(z,y) = —Lys(z,y) =6z —y), (2.2)

where £* is the formal adjoint of £ with respect to the L? inner product (-,-). We further assume that £ is
H{} (Q)-elliptic which implies that the bilinear form
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satisfies the inequality
agq(u,u) > c||u||fQ for all u € Hg (Q) with ¢ > 0.

Note that the bilinear form agq(-,-) is continuous on H*(2) x H! ().
We consider the h-version of the Galerkin FE method for approximating the continuous integral operator
A :V — V' defined in the Sobolev space V = H"(X) and deal with integral operators of the form

(Au)() = / swyu@dy  (ze€x), (2.3)

with s being the kernel function mentioned above or with s replaced by a suitable directional derivatives Ds
of s. We distinguish two different cases:

(A) X is a bounded (d — 1)-dimensional manifold (BEM applications);
(B) X is a polyhedron in R?, d = 2, 3 (FEM applications).

In the latter case, we confine ourselves to the case of the unit cube ¥ = (0,1)¢= and an ansatz space
Vi := span{p; }ic; C V of piecewise constant/linear basis functions with respect to a quasiuniform tensor-
product mesh. Therefore, we specify V. = HJ(X) or V. = H"(X), r € [-1/2,1/2], and ds = d— 1 in
Case (A), while V.= H™!(X), dx = d for evaluation of the volume integral operators in Case (B). An
extension of our approach to more general domains in R, d = 2, 3, is possible.

2.2 Construction of H-Matrices

We construct a data-sparse H-matrix approximation for the integral operators A with asymptotically smooth
kernels (cf. (2.11)), and with locally analytic kernels (cf. (2.10)). For the ease of presentation, we first consider
the case of the piecewise constant Galerkin ansatz space Vj, C V. Modifications for piecewise linear/bilinear
elements will be discussed in Remark 2.2 below.



For the sake of completeness, we recall the important definition of an admissible block partitioning. Let
I be the index set of unknowns (e.g., the FE-nodal points). For each i € I, the support of the corresponding
basis function ; is denoted by X (i) := supp(y;). The cluster tree T'(I) is characterised by the following
properties: (i) all vertices of T'(I) are subsets of I, (ii) I € T'(I) is the root; (iii) if 7 € T'(I) contains more
than one element, the set S(7) of sons of 7 consists of at least 2 disjoint subsets satisfying 7 = Uaes(r) o;
(iv) the leaves of the tree are {i} for all i € I. For 7 € T'(I) we extend the definition of the supports X(-) by
X(r) = Ue, X (i),

In the standard quasiuniform FE application, the cluster tree T'(I) is obtained by a recursive division of I
into subsets of almost equal size having a diameter as small as possible. In the quasiuniform case, the term
“almost equal size” can be understood in a geometrical sense (i.e., diam(X (7')) ~ diam(X(7"")) as well as
with respect to the cardinality #7' &~ #7''. An appropriate construction of T'(I) will fulfil both criteria.

The matrix entries belong to the index set I x I. In a canonical way (cf. [11]), a block-cluster tree T'(I x I)
can be constructed from T'(I), where all vertices b € T'(I x I) are of the form b = 7 x ¢ with 7,0 € T(I).
Given a matrix M € R/, the block-matrix corresponding to b € T'(I x I) is denoted by M® = (m;) i jyes-
A block partitioning P, C T'(I x I) is a set of disjoint blocks b € T'(I x I), whose union equals I x I. A block
partitioning P, determines the H-matrix format. We use the following explicit definition of H-matrices.

Definition 2.1 Let a block partitioning P> of I X I and k < n be given. The set of real H-matrices induced
by P> and k 1is

Mo (I x I, Py) :={M € R™*! : forall b € Py there holds rank(M®) < k}. (2.4)

An admissibility condition is used to balance the size of matrix-blocks b and the distance between 7
and o (see [12] for more details). It takes into consideration the singularity location of the kernel function
s(z,y), (x,y) € L x X. We assume that the following admissibility condition

min{diam(e), diam(7)} < 27 dist(o, 1) (2.5)

holds for all o x 7 € Py, where n < 1 is a fixed threshold parameter. Here both dist and diam are defined
with respect to the given norm || - || in R?. In general, this norm will depend on the coefficients of the elliptic
operator. Specifically, let L = (a;;){;_; € R**¢ be the symmetric and positive definite coefficient matrix from
(2.1). Define the matrix dependent scalar product and norm in R? by (u,v) = (L™ u,v) and |[[u]] = (u,u)*/?,
respectively, where (-, -) is the Euclidean scalar product. In Section 4, we apply this construction to anisotropic
elliptic equations.

For computational needs, we further use the splitting P> = Ppqr U Ppeqr, Where

Ptor :={o x 1€ P, :dist(X(r),X(0)) >0}. (2.6)

Due to our assumption of a piecewise constant FE basis, the index set I is isomorphic to the disjoint supports
X;. While 0 x 7 € T(I x I) indicates a matrix block, X (o) x X(7) C ¥ x X is called the corresponding
geometrical block. The standard H-matrix approximation of the integral operator consists of three essential
steps:

(a) the admissible block-partitioning P» = Prqr U Ppeqr of the tensor product index set I x I.

(b) the construction of an approximate integral operator Ay € L£(V,V') with the kernel sy (-,-) defined
for each geometrical block X (o) x X (1) with o x 7 € Pj4, by a separable ezpansion s, , = Zle a;(z)c;(y) of
the order £ <« n = dim Vj; In the near-field area, the kernel function is unchanged.

(c) the setup of the Galerkin H-matrix Ay = (Ay i, ;)i jer for the operator Ay, where {¢;} is the FE
basis of V.

Remark 2.2 In the case of piecewise linear/bilinear elements there is a minor difference in the definition
of the local separable expansions at Step (b). Since now the supports X (o) x X(7) for different o x 7 may
overlap, the kernel function sy : X X ¥ — R is defined by a multi-valued mapping in the overlap. This allows
to use a smooth version of sy for all a;;, (i,5) € 0 x 7. The error analysis can easily be modified.



2.3 Complexity and Approximation

A bound of the solution error caused by Step (b) as well as the computational complexity of the H-matrix
formats for quasiuniform meshes were considered in [11]. An almost linear complexity bound was proven in
[12], which is valid in both cases (A) and (B).

Proposition 2.3 Let d € {1,2,3}, A € My (I x I,P), and n = ‘2/—5, uw = 1,2 ... Then the storage and
matriz-vector multiplication expenses are bounded by

Net < @1 =D)(Vdn™ + 1)%pkn,  Nyv < N, (2.7)
where the cost unit of Nayrv is one addition and one multiplication. Both estimates are asymptotically sharp.

The main goal of the present paper is the essential improvement of inequality (2.7) in Case (B) described
in Sections 3 and 4.

The perturbation of the matrix induced by Ay — A yields a perturbed discrete solution of the original
variational equation

(M + A)u,v) = (f,v) forallve V:=H"(¥), r <1, (2.8)

where A € R is a given parameter. For the given ansatz space Vj;, C V of piecewise constant/linear FEs,
consider the perturbed Galerkin equation for uy € Vj,

(M + Ay)ugg,v) = (f,v) for all v € V},. (2.9)

Our error analysis can be based on either of the two following smoothness assumptions. The first one
requires analyticity of the kernel for = # y.

Assumption 2.4 For any xo,yo € Q, To # Yo, the kernel function s(x,y) is analytic with respect to x and y
at least in the domain

|z — zo| + [y — yo| < |20 — yol- (2.10)

A similar condition is used in [18] for the analysis of the Galerkin wavelet approximations in BEM.
An alternative assumption requires that the singularity function s is asymptotically smooth, i.e.,

Assumption 2.5 For all x,y € RY, x # y, and all multi-indices a, 3 with |a| = a1 + ... + aq let
3 1—|o|—|3|—d—2
1020 s(z,y)| < c(|al, |8)| —y|*~1=IPI=4=2r 0 for all |al,|B] < m. (2.11)

Here 21 € R is the order of the integral operator A : H"(X) — H~"(X) in Case (A) with the possible choice
r € {—%,0,3}. In Case (B), we specify r = —3, such that the operator A : H=*(€2) — H'(Q2) is continuous.
Similar smoothness prerequisites are common in the wavelet or multi-resolution techniques [2, 3, 20], in the
multipole expansion method (cf. [6] and references therein) as well as in the related mosaic-skeleton approach

(ct. [23]).

Theorem 2.6 Assume that (2.11) is valid and that V}, allows the standard inverse inequality. Suppose that
the operator \XI + A € L(V, V") is V -elliptic and let r € [-1/2,1/2]. Then there holds

. c(0,m
b=l < inf = wally + S8 g N (212)

Proof. The proof is a minor modification of the arguments from [12]. |

2.4 Cluster Tree on the Tensor-Product Index Set

To design “super-fast” matrix operations (see Section 4 for fully separable expansions), we will be interested
in the H-matrix approximation of an integral operator A defined in (2.3) with ¥ = (0,1)¢ and d = 1,2, 3.
Here we briefly recall the recursive construction of H-matrices (cf. [12]) for a special index set. Consider the
regular grid

I={i=(i1,...,iq): 1< ix <N, k=1,...,d}, N =2 (2.13)



and define the norm [i|o = max. lit|. The cardinality of I is n = N4 = 2rd,

The cluster tree Ty = T'(I) of I is based on a division of the underlying cubes into 2¢ subcubes. The blocks
ti={i: 227 +1<i <27 G+ 1), ..., 22750+ 1 <ig <2 (ja+ 1)} forjeq0,..., 2" -1}

belong to level £. S(tf,_l) = {tf :j with 0 < 25, — jr < 1for 1 <k < d} defines the set of sons of the cluster
tffl. Hence, the tree T} consisting of all blocks at all levels £ € {0,...,p} is a binary, quad- or octree for

d = 1,2, 3, respectively. The number of clusters on level ¢ equals O(24%).
Each index i € I is associated with the d-dimensional cube

Xi={(z1,..yxq) : (1 —D)h <z <ith,...,(ig— 1)h < zq < igh}, (2.14)

which is the support of a piecewise constant function for the index i. Using the Euclidean norm, we obtain
the diameter diam(r) = v/d2P='h = v/d/2" for blocks of level £. Let 7 = t{, 0 = t{, be two blocks of level £
characterised by j and j'. Then

dist(r, 0) = 24\/5(]'1 — 2+ + 8 — )2 (2.15)

with §(¢) := max{0,|{| — 1}. Let T = T'(I x I) be the block-cluster tree corresponding to the cluster tree
T, =T(I). The definition of T implies the following remark (cf. [10]).

Remark 2.7 Let 7 x 0 € T(I x I). Then 1,0 € T'(I) belong to the same level £ € {0, ... ,p}.

The set of clusters 7 € T'(I) from level £ is called T}. In view of Remark 2.7, for £ € {0,... ,p}, we denote
by Tf the set of clusters 7 x o € T such that blocks 7,0 belong to level £. In particular, T = {I x I} is the
root of Ty and 17§ = {{(x,y)} : =,y € I} is the set of leaves. Correspondingly, we define Pf := P, N T¥.

3 H-Matrices via Wire-Basket Expansions

3.1 Basic Idea: Description on the Continuous Level

The basic idea of the wire-basket approach is the interface representation of the scalar product (Ayu,v),
u,v € V}, for the hierarchical approximation to the operator A from (2.3). By definition, there holds

(Apv,u) Z / Sro(x,y)u(z)v(y)dyde. (3.1)

rXo€EP, X(t)xX(0o)

First, we consider the exact Galerkin ansatz (Av,u) with the kernel-function s(z,y) instead of s,, and
transform each domain integral for 7 x o € Py, into its boundary form. For notational convenience, define a
set of geometrical blocks (product subdomains) Xy, 1= {X(7) x X(0) : 7 X 0 € Pto,}. In view of (2.2), we
have

Lys(z,y) = Lys(z,y) =0 for (z,y) € X(7) x X(0) € Xsqr. (3.2)

In the following, the symbol ) is used as variable for a domain. Let aq(:,) be the bilinear form associated
with the operator £ as above. Then the first Green formula holds:

(v, Lu)o = ag(u,v) — (Dyu,v), sq for all uw € H*(Q, L), v € H'(Q), (3.3)
where (-,-), v, With ¥ := 09 is the L*(X)-scalar product and 9, is the conormal derivative

0, = Z n;a;r0k — an

J,k=1

with 0; = 0/0z; and n; being the components of the outward unit normal vector.
J J J g



Denote W0 = H?(Q) N H}(Q). For any z € L*(2), introduce a function g, € W° (note that convexity of
the domain 2 implies the full elliptic regularity, ||g||2,0 < ¢||#||o,2) such that

a(g=,m) = (z,m)eq  forallne Hy(Q). (3.4)

The continuous operator L, L L2(Q) —» WO is defined by Eélz = ¢,, which has a continuous extension as
a mapping £g' : H1(Q) — H(Q). In the case of a hierarchical cluster tree 7) of depth p, the far-field
component Py,, from (2.6) may be specified by the choice of parameter py € N of size O(1) yielding the
alternative definition

— 4 4
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We recall that on block-clusters from Py,., we approximate the kernel function by degenerate expansions,
while matrix entries corresponding to P,.., are computed exactly (we assume that the computation of one
matrix entry costs O(1) arithmetical operations). Note that (3.2) implies the Galerkin orthogonality

ar(gu(2),s(z,y)) = ac(go(y), s(z,y)) =0 for (z,y) € X(7) x X(0) € Xfar- (3.5)
Lemma 3.1 For any u,v € L*(2) there holds
W= > f / (40090 (1) gul) drdy (36)
TX0EPqn 0X(1)JOX (o
- / y)ue)o(y)dedy.
TXTEPycar T)XX(J

Proof. (3.3) and (3.5) with u = £,g, and v = L,g, lead to

s(z,y)u(z)v(y)drdy
X(r)xX(0)

/ {ao<gu<y>,s<x,y>>— / s(ay)aygv(y)dy}zzgm)dw
X(7) 80X (o)

:/ {—a.,—(gu(l'),s(l',y)) +/ S(may)augu(w)dw} al/g’l)(y)dy
8X (o) oX(7)

- / / 5(2, )90 9o (4)9, gul2)derdy
0X (o) JOX (1)

for all 7 x 0 € Pjq,. Hence, (3.6) follows. |
Assume we are given a degenerate expansion

sor00 = Y Ga(2)ca(y), (z,y) € X (7) x 0X(0), (3.7)

for each 7 x 0 € Ppqp such that
|s(,y) — sor,00 (x,y)| < cn™{dist(r,0)}*"¢  for (z,y) € IX(7) x dX (o),

where k; = O(m?'). Then we introduce the wire-basket representation of the operator Ay by

(Apou) = 3 / y)u(z)o(y)dedy (3.8)

TX0EPnear T)XX(U

DYDY

)0, gu(2)dz: - / ca)go)dy,  wv € LX(Q).
TXO'GPf BX()

X(T

The second sum will be abbreviated by (v, AHu)f er. Particular constructions of ss; 5, will be considered in
Section 4.

Below, we introduce the Galerkin approximation to the second sum in (3.8). To this end, we represent
each integral over 0X (1) (or 0X (o)) in terms of domain integrals using an easily computable extension of
aq(x) and b, (y) into the interior of X () and X (o), respectively.



Remark 3.2 Let E, : H'/?(0X(1)) — HY(X (7)) be any continuous extension operator defined for each
7 € Ty. Due to (3.4) there holds

/&) ( )aa(x)&,gu(x)dx = —a:(gu, Ezaa) + (u, Ezaa)o, x(r)- (3.9)
X

The same extension with respect to the y-variable is denoted by E,.

With the given ansatz space Wy, C H'(X (7)), let gn,. € W) := Wi N Hg(X (7)) be the Ritz projection
of g, defined by

ar(gn,zn) = (2,m)o0,x(r) for all n € Wy _. (3.10)

The FE Galerkin approximation to the far-field contribution in (3.8) is defined for any w,v € Vj by
substituting g, (resp. gp,o) into the right-hand side of (3.9) and choosing E, (resp. E,) as the
extension into W), by FE functions with minimal support inside X (7).

Corollary 3.3 For any u,v € V},, the FE Galerkin approzimation Ay p = Ay for the operator Ay is defined
by

Aoy = 3 / s(z, y)u(z)o(y)dedy (3.11)

TX0EPnhear X(T)x X (o)

k1
+ Z Z ((U, Ezaa)O,X(-r) —ar (gh7u; Ezaa)) ((U; Eyca)O,X(a) - ao‘(ghﬂ/; Eyca)) .

TXTEPsq, a=1

Remark 3.4 Note that the Galerkin ansatz space Vi, C L?(2) restricted to the geometrical clusters X (1) may
differ from Wy, defined above. However, for the ease of presentation, we further assume Vi, = W), for each
T E T1 (I)

3.2 Matrix Representation and Complexity Bound

The representation (3.11) defines the generalised H-matrices which inherit the standard hierarchical block
structure from the P-partitioning, but now the rank-k structure of the blocks b € PY is given implicitly based
on the factorisation by local Schur-complement matrices. Such a factorisation allows to reduce the amount
of data for the storage and matrix arithmetic essentially. To build the explicit representation of the matrix
block A7*? of the resulting H-matrix, we introduce the local Schur-complement operator

th : W}?ﬂ. = Tpr = Wh\BX(‘r)a
by
(Srpz,w) = (2, Baw)o,x(r) — a7 (9n,z, Eow), €Wy, weTlh,, (3.12)

which, in fact, provides a FE variational approximation of the operator S = 9, £ ! : L*(X (1)) — HY?*(8X (7).
The construction is independent of the extension operator E; due to the Galerkin orthogonality (see (3.10)).
The L2-projection operator Qj . onto I'y, - is given by

(Qnu,v)o,0x(r) = (U, v)0,0x(r) forall v € I'y, ;.

Let aj q,cp o be the vector representations of Qpa, and Qpcq, while S, and S, , are the matrix represen-
tations of S; ; and S, 5. The matrix block A;X" defined by (3.11) for the product index-set 7 X 0 € Pyq, has
the factorisation

k1

A;XU = Z(szh : ah,a) * (Cia ‘Do, h <Z Ap,q * Cpy a) o,h> (313)

a=1

where S, : R~ — R"7, a;, , € R, n, :=dim W} ;, ng, = dimI'y , and the same for S, j, cp o. Clearly,
(3.13) defines a matrix block with rank < k.



Denote by E; j the discrete £-harmonic extension operator in X (7). Assume that the Ritz projection gj
in (3.11) and the extension operator E; ;, (the same for g, and E, j) can be evaluated on each geometrical
cluster X (7) with linear cost cgpn, (say, by the multi-grid method; see also the algorithm in Section 3.3 based
on the reuse of particular solutions).

The advantage of the presented method is the reduction of the order of expansion, on the one hand, and
the linear bound for @), with respect to the block-size n,, on the other hand. The latter is due to reduction
to the boundary. Moreover, the constant in the asymptotical complexity is essentially dominated by crp
which may be smaller then the corresponding constant in the 7-matrix arithmetic, especially for d = 3.

Lemma 3.5 Let our construction be based on a hierarchical cluster tree of the depth p. For the variable order
approzimation with ki () = (a1(p — €) + b1)4"* (as used for the H?-matrices in [10, 14]) the storage and
matriz-vector multiplication expenses are dominated by

Nst =O0(pn),  Nuv = O(n) + crpO(pn).

Proof. The storage for the implementation of the Schur-complement operator from (3.12) is dominated by
eraepzf‘” #7 = O((p — po)n). On the other hand, a simple estimate n, = O(2%P~9) = 2P~¢O(ny,) implies
that the coefficients of Rk-matrix blocks from (3.13) need only a storage size of O(kinp,) = O(kin,2¢7P).
This proves the linear-logarithmic bound for N.

The matrix-vector product for each block has the complexity

Q‘na =ck, (na-,— + nag) + QCRP(TLT + ng). (314)

In fact, due to (3.12), the implementation of S, j is of linear cost. Furthermore, the matrix-vector product
by Szh is equivalent to the implementation of the elliptic extension E:j due to the relation (3.12) and the
Galerkin orthogonality,

<Za S?—jhw> = (Za ET7hw)0,X(T) - aT(gh7za E‘nhw) = (Zy E‘nhw)O,X(T) (315)

for z € Wf?,‘r’ w € I'y, ;. Thus, the matrix-vector product for all blocks on level ¢ has the complexity

Qro = ckin, 2P 4+ 2cgppn,. (3.16)

Summation over all the blocks 7 X o € P, completes our proof. [

3.3 Further Optimisation by Reusing Particular Solutions

Further, we briefly consider an optimised construction of the wire-basket scheme based on the reuse of
particular solutions. Assume we are given a balanced hierarchical cluster tree T7 of the depth p. The idea
is that subdomain solvers are used only on few coarse levels ¢ = 2,...,{y while the restriction of these
solutions to the smaller domains corresponding to the levels £ > £y yield particular solutions (with wrong
Dirichlet data). Assuming a correction scheme for the Dirichlet data of the cost O(ng, log? no.), ¢ = O(1)
(see Remark 3.7), linear complexity of the overall scheme holds.

Again, we start from the continuous case. Given £y € N, ¢y > 2, we assume the covering property

U U =U U e=1 (3.17)

{=2rxo€P} =2 rx0€Pj

where £y = O(1). In most of the cases, (3.17) holds with either ¢, = 2 or £y = 3. For the ease of exposition,
we assume £y = 2. We denote the £-harmonic extension operator by Eq : H/?(8Q) — H'(Q)

Assumption 3.6 We assume furthermore, that for all T € T} with £ > 3 the Poincaré-Steklov operator
S = 0, E; can be approzimated accurately with the cost O(nl), g < 1.

Remark 3.7 For most of the common elliptic operators of the form (2.1), the discrete Poincaré-Steklov
operator S, defined by (3.20) can be evaluated with the complexity O(nas. log? ns,), ¢ = O(1). In fact, for
the Laplace, biharmonic, Stokes and Lamé operators on rectangular domains, sparse approximation of linear-
logarithmic complezxity O(ng, log” na,) are known (cf. [16, 17]). An extension of these results to the case of
polygonal domains is possible.



Let T1(7) be the largest subtree of T} (I) having the root 7 € Ty (I). Denote by Eq : H/?(0Q) — H'(Q)
the £-harmonic extension operator in 2. Then, we obtain the representation

ﬁ:,lrx(rz)u =rx Ly u—EoroxnLtu for all 7' € T\ (7) C T1(I), (3.18)

where u € L?(X (7)) and rq is the restriction operator onto the given domain/manifold 2.

Substitution of (3.18) into (3.8) instead of g, (the same for g,) results in the fast Schur-complement
scheme which may be discretised in the variational framework. In this way, we need an optimal elliptic solver
only on each cluster of the low level £ = 2 (for coarse subdomains). Now, the far-field contribution in the
right-hand side of (3.8) takes the form

(U,Agu)f‘” = Z Z/ aaa,,gudw/ Co 0y gudy (3.19)
0X (1) 60X (o)

‘r><o'€P22 «

pP—Ppo

+ Z Z Z/SX(T’) aa(l')a,,(’l“x(.,./) - ET/TBX(TI))gU7Td$

=3 T’XO”EPQZ e}

/ ca(y)aV(TX(a’) - EJ’TBX(J’))ngdy;
60X (o")

where 7, 0 are the clusters from T such that 7/ € Ti(7), o’ € Ti(0) and gu,r = L™ x()u. For computational
needs, the boundary integrals in (3.19) may be rewritten, as above, in terms of domain integrals using “minimal
support” extensions of the elements a, and ¢, into X (7') and X (o'), respectively. As above, we assume a
linear cost cgpn, for the implementation of £ 1.

In the first step of the matrix-vector multiplication, we compute the action of all matrix blocks Ag;(f on
the level £ = 2 which amounts to O(n) operations. In the second step, we treat the blocks 7/ x ¢’ € P§, £ > 3.
Its implementation uses the data from the level £ = 2, i.e., the Schur-complement matrices are multiplied by
the vector via

ST/7hu = (SVRTJ’ - ST/RT78T/)gu7T7 So”7hv = (SVR0'70'/ - So” Rcrﬁcr’)gmo’;

where R; - (R; s,/) denotes a matrix representation of the restriction operator rx (/) (rx(s-)) and S, is the
FE approximation to the operator 0,. In turn, S,/ is the Schur-complement FE approximation to the elliptic
Poincaré-Steklov operator Sy = 8,Fq : H/?(0Q) — H~/?(0Q) now defined for Q = X ('),

(Sriz,w) == ar (Er pz, Eyw) for all z,w € T'p ;. (3.20)

Furthermore, g, , (resp. gy,,) is the vector representation of the Ritz projection gy, on 7 (resp. g, on o).
Denote by E; j, the matrix representation of F p, then the action of S? 5, is performed using the matrix E; 5,
see (3.15). The quadratic form and matrix-vector product in question have now the representations

k1

(A5 v,u) =Y ((ana *cf 4)dy,d;) (3.21)
a=1
and
k1
Ag')—?a V= ETIJL Z ah,a . (ch,av do‘): (322)
a=1

respectively, where d; = (S,R; . — SR 9,/)8y,r (similar for d,) with d, € R*", d, € R".

Lemma 3.8 The reuse of the particular solutions from level £y in the matriz operations from (3.21) and
(8.22) leads to the linear complexity Nyt = O(n) and Npy = O(pn), for the variable order approzimation.
The bilinear form (Agpv,u) can be evaluated with O(n) operations.

Proof. For the right-hand sides in (3.21) and (3.22) the matrix S, can be multiplied by the vector with O(na,/)
arithmetical operations. The assertion follows from the representations (3.21), (3.22) and Remark 3.7. |



3.4 Approximation Error

In the following, we estimate the approximation error of the scheme defined above. The optimal error bound
O(h) is based on the full elliptic regularity of the local problems (3.4) on Q@ = X(7), 7 € T1(I), as well as on
the technical assumption concerning the “stability” of expansion coeflicients (see (3.23) below). In the case
of non-convex clusters, we arrive at an accuracy O(h?), 0 < 8 < 1, depending on the elliptic regularity of the
subproblems.

Assumption 3.9 For each 7 X 0 € Py, the coefficients aq(z), ca(y) for (z,y) € 0X (1) x 0X (o) from (3.7)
satisfy the estimates

k1
Z (||aa||1/2,ax(r)||Ca||1/2,aX(a) + Cov6.1/2 + 0171&/27_1/2) < c dist(r,0) %", (3.23)
a=1
where
7&1/2 = ||aa||1/276X(r)||Ca||o7ax(o) + ||aa||078X(‘r)||ca||1/276X(a)7
7?/2,—1/2 = ||aa||1/278X(r)||Ca||71/276X(a) + ||aa||71/278X(‘r)||ca||1/278X(a)-

Assumption 3.10 The operator L satisfies the Maximum-Minimum Principle (/9]) .

Lemma 3.11 Let ky = O(p? 1) and r = —1/2. Under Assumptions 3.9 and 5.10,

(v, (4 = Ao)u)| < (en™n? + Cg B2 + 7 )| [ullollollo + eh([Jullol[v]| -1 + ull-1[lvllo), ¢ =O(1),
holds for all u,v € L*(Q2).
Proof. First, we use the representation
(v, (A = Agn)u) = (v, (A = Agu) + (v, (Ay — Aop)u) (3.24)

indicating that the total error contains the standard consistency error (v, (A — Ay )u), as well as the error
involved by the local Ritz projections. The first term in the right-hand side in (3.24) is estimated using the
stability of problem (3.2) with respect to the Dirichlet data on 0X (7)x 90X (). In fact, the Maximum-Minimum
Principle with respect to both the x- and y-variables leads to

max
(z,y)eX(T)xX(0)

s(@,y) = 3 Braq (@) Epcaly)

< en™dist(r,0)? 4

s(2,y) - 3 aa(@) caly)

< max
(z,y)€dX (1) %X (0)

Then, similarly to the proof of Theorem 2.6, the following estimate holds
(v, (A = Ag)u)| < en™n|vllo.olullo.g-

To estimate the second term in (3.24), we first note that the choice image(E,) = image(E,) C W}, implies that
the terms (u, Byaq)o,x(r) and (v, Eyca)o,x(s) arising in (3.11) can be evaluated exactly. Then, it is sufficient
to consider the bound of

Pb—Po

(0,(Ag = Aopdu) = D Y > (eh +el+eh+eh), (3.25)

=2 TXO'GPQZ a<ki

where
e(l)[ =ar (gh7u — Gu, Ezaa) * Qg (ghﬂli Eycoc)a
ei = ar (gh,u: Emaa) : aa(gh,v — Gv, Eyca):
ei = _(U: Emaa)mX(‘r) * Qg (gh,v — Gv, Eyca)a
ei = _a‘r(gmu - gu;Ewaa) : (UyEyca)O,X(o)~

10



Using the Galerkin orthogonality for g5, . and g., the a priori estimate for the Dirichlet boundary value problem
in X(7) and the standard H'-error bound for the Ritz projection yield

|a'r(gh,u — Gu; Ewaa)| = |a'r(gh,u — Gu; E‘r,haa)| < ch||u||07X(‘r)||aa||1/278X(‘r)-
The L2-estimate of the discrete £-harmonic function
[|1E7 hcallo,x (o) < clleall-1/2,0x (o) (3.26)

is valid in the case of full elliptic regularity, the proof is similar to the case of Laplace equation, considered in
[1]. This implies

|lac (gn,v, Eyca)| < C(”ghm”l,X(a)||E07hca||1,X(a) + ||U||O,X(a)||E07hca||0,X(a))
< C||U||—1,X(a)||ca||1/2,ax(a) + c||v||0,X(a)||ca||—1/2,8X(a)7
where || - ||1,0 is the norm of H(Q) = (H3(Q))". Therefore,
leal < ehllullo,xlaallij2.ox @) ([0]l-1.x (@) llcalli/2,0x @) + [[V]lo,x (o) Icall-1/2,0x(0))s
le2] < chllollo,x (o) llcall/2,0x (o) (lull-1,x () llaall 2,05 () + o, x () laall-1/2,0x (r)-
Using similar arguments and applying the bound
1Eycallo,x(0) < ch'’?||callo,ox (o), (3.27)
but now to both a, and c¢,, we obtain
|€i| < ch3/2||u||07X(T)||U||07X(0)||aa||078X(T)||ca||1/278X(0)7
|ei| < Ch3/2||U||0,X(r)||U||0,X(a)||aa||1/2,8X(r)||0a||o,ax(a)-
Finally, the substitution of these estimates into (3.25) yields
(v, (A — Aoz )u)|
<eh Y (lullox@lll-1.x0) + lull-1.x@ollo.x@) - VIrllol D llaallz.oxmllcall2.ox @)

TXOEP> a<ki
+erh Y0 lulloxnllollox o) VITllolT D i1y
TXOEP, a<ki
+ e b3 lulloxn)llollo,x o) VITlloT Y 76y
TXOEP, a<k;
P—Po P—Po
<ah | D lulloe D lollloll-ixe@) + Y- llolloe Y- Il lull-1,x()
=2 TXUEle =2 ‘I'><0'€P2Z
pP—po
+ (2B +ab)lullog Y llollox@) Y. VIrllol:
=2 ‘r><(7€1:’21Z
Hence, the assertion follows. [

Remark 3.12 Lemma 3.11 guarantees a hierarchical approximation of the exact Galerkin stiffness matriz
with an error O(h) with respect to the spectral norm.
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4 Construction of Kernel Expansions (Case B)

4.1 Polynomial Approximation of Multivariate Functions

We assume that our kernel function s(z,y) satisfies Assumption 2.4 (cf. Section 2.3). For deriving the desired
low order expansions, we use classical approximation results for functions which are analytic in the interval
L =[-1,1].

Definition 4.1 A function f € C°(I,) has Bernstein’s regularity ellipse Ey(I1) if it admits an analytic
extension to the closed ellipse Egy (1) C C with foci in z = £1 and the sum of semi-axes equal to H > 1.

The definition of £ (I;) for other intervals than [—1,1] is obvious.
The following statement goes back to the classical result of S.N. Bernstein (see also [22] for more details).
In particular, we apply the result from [21].

Proposition 4.2 Assume that the function f € C®(I1) has the regularity ellipse Eg(I), according to
Definition 4.1. Let [In f](x) € Pn[l1] on [-1,1] be the interpolation polynomial with respect to the Chebyshev-
Gauss-Lobatto nodes {; = cos3t, j =0,...,N. Then the following approzimation property holds:

—-N

— max |f(z)]. (4.1)

z€EH

H
I[f = INfllLe() < N &

For multivariate functions f = f(z1,...,zq) : R® = R, we use the tensor product interpolant
Inf=1Iy--INf € Py[I{],

where I f denotes the interpolation polynomial with respect to z;, i = 1,...,d, at the Chebyshev-Gauss-
Lobatto nodes. The interpolation points &y, a = (i1, ...,i4) € N&, in I{ are obtained by the Cartesian product

of the one-dimensional nodes,
T Tig
&o = COSW,... ,COSW .

Denote by X_; the subset X_; := {z1,...,2;—1,Tit1,... ,Zq} of d —1 spatial variables. Related to Definition
4.1, we are interested in polynomial approximations of the following class of functions.

Assumption 4.3 For a given function f € C*(I{), assume that there is an Hy > 1 such that for each of the
subset z; € X_;, i =1, ...,d, there ezists an analytic extension with respect to x; € Em,(I;) C C.

Proposition 4.4 Let Assumption 4.3 be valid. Then, for 1 < H < Hy there holds

_ HN
I1f = Infllpoe(re) < cN log? 1NﬁMH(f); (4.2)

nD) = ety agy, Ve el

Proof. The multiple use of (4.1) and the triangle inequality lead to
\f =INfI < |f = INFI+ N (f = IR - IR )]

<NfF=INFIH NG = IR OI+ INIR (f = IR O]+ oo+ NI I (f = I8 )
< + log N +
< c (gm0 b s, 105
d—1 HN
oot log" ™t N N——,
RIS GO v |f($)|> H-1

where, similar to [18], we apply the L°°-estimate of the scalar interpolant I with respect to each space
variable x;, 1 = 1,...,d,

||I]l\/'f||L°°(I,) SC]OgN”f”Loo(L) fOI“fECO(Il)
Hence (4.2) follows. u

Remark 4.5 In the case of a scaled domain I{, I5 = [—8,8], 6 > 0, the corresponding exponent in the error
estimates (4.2), (4.4) is equal to (H/§)™1.
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4.2 Application to Volume Integral Operators (Case B)

Consider the kernel function s(z,,z,) = S(z: —2,), (zr,2,) € X(7) x X(0) associated with the fundamental
solution S of (2.1) satisfying Assumption 2.4.

In the case d = 2 and with the standard Euclidean metric, let 7 x o € P{ be a block satisfying the
admissibility condition (2.5). In the following, we use the notation z, = (z1,, %2, ), To = (T15, T2, )-

Iz r2

r: rs rt rs

ri ri

Figure 1: Location of the geometrical clusters X (7) and X (o).

We assume that X (7) is a rectangle with the boundary dX(r) = U} Tt and 0X (o) = U{_;I" with
ITi| = |T%| = 26, see Fig. 1. Suppose that the edges I'> and I'lL are parallel to the zs-axis and satisfy
dist(I'3,T'L) = 26. Construct a kernel expansion on the subset I'> x 't C 0X (o) x 90X (7).

Due to assumptions from above, the coordinates x1, for x, € I'> and x;, for =, € T'L are both fixed.
Hence, in Euclidean distance, the function of two variables f(x2y,x2r) = $(x1+, T2r, T14, T2, ) has the family
of regularity ellipses £, in the sense of Assumption 4.3 and with Hy = a + b, where a? = b* + § and the
small semiaxis b is bounded by b < dist(r,). Due to (2.5), there holds dist(r, ) > v/ddn~' implying the
upper bound b < Vdén~! and also a < \/1+ dy=2 6. This yields

Ho < (\/En*1 /1 dn—Q) . (4.3)
In particular, for the choice n = @ with d = 1,2, 3, we obtain

Hy < (2+V5)3. (4.4)

Applying Proposition 4.4 with the scaling argument from Remark 4.5 leads to the following estimate on the
exponent in a convergence rate of the polynomial approximation

()" < (vas vaep).

The constant Mg (f) may be estimated by

Mu(f) < € o i 1S

Assume that |S(§)| < c|log|€||- Solving the simple optimisation problem

Mu(f) with H = b+ /62 + b?

—m

min
o<b<vdsy-t H—1

leads to an error estimate of the form
I1f = Lnfllpe2) < emTlog® m (an)™, ¢ = O(1) (4.5)

with ¢ =1/ (\/E +d+ 772), uniformly with respect to n and 5 < 1. The bound (4.5) implies the uniform
L°-estimate

If = T fllee < ch® =277
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with the polynomial degree m = O(p) for all @ = O(1). Let {T;(x2,)} and {Tj(z2,)} be the bases of the
corresponding univariate polynomial sets Py defined on I'! and I'2, respectively (say, Chebyshev polynomials).
The number of terms & in the product-polynomial interpolant

Z Z mZT mZU)

i=0 j

where coefficients a;; are the linear combinations of the values f(&,) in the tensor product set of nodes &,, is
then estimated by k = m? + 1 = O(p?). Let |[['}| < |T'3| for definiteness. Then combining all terms having the
factor T;(z2,), 4 = 0,1,... ,m, we obtain the desired expansion of the order k = O(p),

m

I fl(zr,20) = ZTz‘(iEQr) -Gi(@a,), i(@20) Z aijTj(z20). (4.6)

i=0

A similar construction for d = 3 leads to expansions of the order O(p?~!), using Proposition 4.4. The
result is based on the polynomial approximations for multivariate analytic functions on a rectangular product
piece I't x I'J € R* of 0X(7) x 0X(0),i,j=1,...,6.

Remark 4.6 Note that the corresponding Taylor interpolant with respect to the Chebyshev centre of TL may
be also applied for the construction of the wire-basket expansion. It has the same order k = O(p®~') but
involves a larger constant ¢y ~ 1.0 in (4.5) (c¢f. [11]). This is consistent with Chebyshev’s classical result that
the best polynomial approzimation of an analytic function is by far more accurate than the Taylor interpolant.
Moreover, (4.6) is based only on the pointwise evaluation of the kernel at the Chebyshev-Gauss-Lobatto points.

Remark 4.7 The global degenerate expansion of the order O(p®=') on 0X (1) x 0X (o) is constructed in two
steps: First, we obtain an expansion on I': x 0X (o) by composing (agglomerating) the expansions for T2 x 'L
j = 1,....,4, based on a fized polynomial basis {T;};~, on T'L, and then by assembling the corresponding
representatwns constructed for each T, i = 1,...,4, separately, as above. This approach is suited for the FE
approzimation of the elliptic extension operator in (3.15), (3.22).

To estimate the computational complexity of such an approximation, we proceed as follows. Instead of one
global Rk;-matrix S := %1: ah,a*cia corresponding to (3.7), we consider the 4 x4 blockwise Rk-approximation
of the form o

c B A TBT
8= Z T1F7T TgT TgT = (Sl
TDT G TBT F

with respect to the degrees of freedom located on the product pieces I xI'J i, = 1,... ,4, see Fig. 1. Here, T

denotes the proper permutation matrix of the size dim F}'H. We introduce the wzre—basket rank R, = wa(g)
and the reduced wire-basket rank R,., = Rmb(g) of the matrix-block S by

4
1 .
Ruy(8) = § §_: R(S;; (4.7)

and

~ 1
Ryy(S) = 1 (R(A) + R(B) + R(C) + R(D) + R(F) + R(G) + R(H)) , (4.8)
respectively, where R(A) is the rank of A. The value R, characterises the complexity of matrix-vector
multiplication by the block S, while R, specifies the memory requirements. The numerical results estimating
R, and R, for the harmonic kernel in 2D will be presented at the end of this section.

Remark 4.8 Another alternative construction of the wire-basket expansions is designed for using the ez-
act L-harmonic extensions instead of E; . For this purpose, we apply generalised harmonic polynomials in
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k=rank(S,) k=rank(S..)

ij ij

Figure 2: Approximation of the blocks A, B, C and D in S.

the tensor-product domain, see also [19], concerning the “operator adapted spectral element methods”. For
ezample, in the case of the Laplace equation, we apply the system of trigonometric harmonic polynomials
sin(kwx)exp(xkny), k = 1,2,..., in a rectangle. Then the approzimation of the kernel by trigonometric
polynomials on the edges Tt of a computational cluster allows the ezact harmonic extensions into the interior
by the harmonic polynomials defined above. The details will be discussed in a forthcoming paper.

It is worth to note that in the particular case of harmonic kernel s(x,y) = m for d = 3, we obtain
an expansion with almost the same number of terms compared with the familiar multipole expansion of the
optimal order k = O(p?). In fact, let x and y have spherical coordinates (r,6,¢) and (p, a, 3), respectively.
Define spherical harmonics Y/(0,¢), v =0,1,2,... and p = —v,... ,v, by

_ (1) ing
Y8, ¢) = \/ I () PH(cos §)e'™?,

where P} are the associated Legendre functions,

i) = (~1)h(1 — 2?2 L p

(@) = (1)1 (1 = )2 TP ()

and P,(z) is the Legendre polynomial of degree v. It is shown in [6, 4] that the multipole expansion of the
form

= S (D) V@, 0,0) + R (4.9)

|z -y ==
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Figure 3: Approximation of the blocks F, G and H in S versus the multipole expansion.

provides the error estimate

c ™! 1 diamr7

R, | < I _1
|m|_|ac—y|(1—’y)2’ 77 3 dist(o, )

<1, (4.10)

where 7, is the Chebyshev centre of 7. With the choice = ? in the admissibility condition, we obtain

v = % ~ 0.58, while for d = 3, there holds ¢1n = (2 + v/5)~' ~ 0.24, by virtue of (4.4). Therefore, a
bound like (4.5) provides better asymptotic convergence rate than (4.10). However, both the wire-basket and
multipole expansions have faster convergence than the Taylor interpolant.

For the 2D harmonic potential s(z,y) = % log |z — y|, the convergence rate for the multipole expansion

withnp = 72 is estimated by v = % ~ 0.47, while the wire-basket expansion again yields ¢;n ~ 0.24. Applying
the degenerate polynomial approximation of kernels on the product domains I'2. x I'J. by interpolation at the
Chebyshev-Gauss-Lobatto points, we obtain the following results for Ry, and Ry, depending on e, see
Fig. 2 and 3. Here we present the maximal approximation error of all blocks in S versus the degree of the
interpolation polynomials. The last picture in Fig. 3 presents the accuracy provided by the 2D multipole
expansion corresponding to the exponent v = ‘/TZ . Fig. 4 presents the corresponding rank wa(g) and

~

R,5(S) defined by (4.7) and (4.8), respectively, depending on the approximation accuracy achieved. Here
Rmp corresponds to the multipole expansion, while RToepl stands for the factor ¢ logn characterising the
linear-logarithmic complexity of matrix-vector multiplication by a Toeplitz matrix associated with any pair of
parallel edges from I'; x I';. This confirms our theoretical estimates.
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Figure 4: Computational rank for different approximations of S.

4.3 Fully Separable Expansions

Now we describe fully separable domain-based expansions and the corresponding wire-basket counterparts
reducing the asymptotic complexity considerably. The idea is to use separable expansions for the kernel
s(x,y) not only with respect to the two multi-dimensional variables z and y, but also with respect to the 2d
vairables x1,... ,Zq4, Y1,... ,Yyq. We further assume that the FE ansatz space V}, has the tensor-product basis
{pi} = {pi, ® ... ® @i, } with ¢;, € span{p;};,, ¢ = 1, ...,d, such that for the restriction on cluster of level ¢
there holds |i|o, = 2P7¢.

We start from an expansion of the order k = O(p??) defined on the product domain X (7) x X (o) (the

corresponding parametric domain is given by I§ x I{) using the tensor-product polynomial approximation
from Proposition 4.4 (for d = 3),

St,0 = Z Z a‘g (le ®Tj2 ®Tj3) ® (Ti1 ®Ti2 ®Ti3)7
lil=0 |i|=0

where {T,} stands for the basis set of polynomials (say Chebyshev polynomials) which is used to represent
corresponding univariate polynomial interpolants, analysed in Proposition 4.4. Here, the tensor ag with
multiindices i,j € N, represents expansion coefficients of the Lagrange interpolant in the product-polynomial
basis. Such an expansion allows an asymptotically optimal data-sparse approximation of the smooth kernel
with sublinear storage size O(p?? - 2P~%) for the blocks on level £ =2,3,... ,p — po. Indeed, in the case d = 3,
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the corresponding matrix blocks have the following tensor-product form

(le & TJz & TJ3) (Th ® Tiz ® Ti3)7 (4'11)

>

3

I
™
Ms

with m = O(p), where T, € R™, v = 1,... ,m, n, = 2P=%. The vector T, = {( T, ¢;)}1*, represents the
component of tensor product Galerkin stiffness matrix with respect to the nodal basis {cpl}

For the given trial vector u € R" compute the ¢>-ortho-projection ug = Zmzo ui,0 T, ® Ty, ® Ty, onto
the (m? + 1)-dimensional subspace span{T;, ® T;, ® T;, }Hij=o- We denote by @ = {uio} the coefficient vector
of ug. Then, the matrix-vector multiplication has the representation

m

m
A™*%u Z Zau,o (T;, ® Tj, ® T},),
|=0 |i|]=0

The scalar product has the even simpler representation
(z, A™*u) := (Z,Zu) with Z = {d}}.

In both cases, the cost O(m?%) = O(log?? n) grows only logarithmically with . We assume that the projection
uy can be computed by a fast trasform (e.g., by FFT in the case of trigonometric polynomials) with the cost
O(n;logn,) arithmetical operations. As a result, we prove the following complexity bound.

Lemma 4.9 The storage and matriz-vector multiplication expenses for the block with a fully separable
expansion are bounded by

Nst(A‘rxo) — O(p2dn1/d) NMV(ATXO') — O(’n.,— lognT +p2d).

Now we discuss the wire-basket version of fully separable expansions. For definiteness, consider the case
d = 3. We analyse one typical block defined on the parametric domain I¢~" x I~ involved in the overall
expansion on X (1) x 0X (o), see Remark 4.7, and corresponding to the product domain I'! x I'3. For
this purpose, we build the expansion of the order &y = O(p 2(‘1’1)) which yields an asymptotically optimal
approximation of the kernel with complexity O(p*(¢~1 -2P~¢) of storage for blocks of level £ € {2,3,... ,p—po}.
The corresponding contribution AT;? to the whole matrix block A™*¢ has the form

m m
A‘{;J = S‘lj;h Z Z a‘; * (le & sz) * (Til ® Ti2) SUJL = SZ:hA,YS(th (412)
lil=1j|=1
with the same notations as above. The corresponding matrix operations with the rank-k matrix A.,, k = m?,
are analysed similarly as in Lemma 4.9.

Remark 4.10 A sparse approzimation may be also applied to a more general class of kernels with bounded
mized derivatives, see (4.18). If the Galerkin ansatz space is defined on the same sparse grid as the approxi-
mation of kernel function, we obtain an algorithm of complexity O(n) for Case (B). Note that the H-matriz
technique using sparse grids requires the weakened smoothness condition

OV Pwt) | ooy 52 (oo Bloe < 2.7 £ ) (4.13)
8.%'(111- amdday11‘ aygd = Y 0 0o S 4, Yy .

for the kernel function s(z,y), where 2r is the order of integral operator (see Assumption 2.5).
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4.4 Complexity of Matrix Addition and Multiplication

The class of H-matrices with the block structure of the special form (4.11) corresponding to the fully separable
expansions for d = 2,3, may be regarded as a special case of standard H-matrices but with an improved
representation of the rank-k-blocks (Rk-blocks). Obviously, the matrix block (4.11) defines an Rk-matrix
with & = p? and needs a storage size of O(deni/ d), see Lemma 4.9. Note that the matrix block of the
standard H-matrix based on the kernel expansion of the same order has the complexity O(p?n.) for both the
storage and matrix-vector multiplication.

It is easily seen that the matrix addition of two blocks (4.11) (using the same polynomial system {7}, })
has the complexity O(p??). Full complexity analysis of the truncated matrix-matrix multiplication is quite
involved. However, the product of two blocks like (4.11) is performed exactly in the given format (similar to
the case of Rk—matrices). It is equivalent to the calculation of the product c% of two tensor coefficients aJ; and
bj. characterising the corresponding matrix blocks. For the ease of discussion, we assume that the system {7}, }
is £y-orthogonal. Then we obtain

m m
Z a‘; (le & sz & Tj3) * (Til ® Tiz ® Tia) Z bL (Th ® sz ® Tf3) * (Tk1 & Tkz & Tk3)
li|=0,]i|=0 [11=0,|k|=0
= Z Z a’.:b%( (T, @ Ty @ Tyy) * (T, @ Ty @ Ty).

[11=0,1i|=0 \lj|=0,|k|=0

Hence, it has a logarithmic complexity O(p3?). The full analysis of the formatted matrix-matrix product will
be considered separately.

5 BEM Applications

5.1 General Remarks

Consider the case of a polygonal/polyhedral boundary I' = 9Q, © € R?, d = 2,3. To apply the wire-
basket expansions in BEM, we assume that for each pair of admissible clusters 7 x o € Pf there exist two

parallelepipeds X (T),X (0) € R which contain X () and X (o), respectively, and are admissible considered
as spatial domains. Specifically, they satisfy the geometrical admissibility condition, similar to (2.5),

min{diam(X (¢)), diam(X (7))} < 2n dist(X (), X (7)). (5.1)

This condition specifies the choice of X () and X (o). Then the desired expansion for s(z,y), (z,y) € X () x
X (o), is the restriction of the separable £-harmonic extension

Sro = ZTX(T)E)?(T)aa(m) -rX(a)E)?(J)ca(y), (5.2)

where a, and ¢, are the coefficients from (3.7) describing the kernel expansion on the product boundary of
spatial domain 0X (1) x X (¢) and E% ;) Ex(,) denote the elliptic extension operators onto X(7) and X (o),
respectively. The complexity of performing (5.2) may depend on the geometry of the pieces X (7) and X (o).

If a planar piece X (1) (resp. X (o)) is parallel to some facet of 8)?(7') (resp. 8)?(0)) then the evaluation of
restrictions in (5.2) needs O(ny log” ny) arithmetical operations. Here ny is the number of degrees of freedom
on X(7). For arbitrary plane section of X(T) (resp. )/f(o)) this expense is estimated by O(nr log® nr), see
[16, 17] for more details. In the case of curvilinear patches X(7), X (o), the linear-logarithmic complexity
may be achieved by multilevel extension procedure or by using the £-harmonic polynomials (see Remark 4.8)
which will be discussed separately. However, regardless of the particular extension procedure, we arrive at
expansions of the order O(p?~!) in rather general BEM applications.
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5.2 Anisotropic Laplacian

We consider the example of the kernel expansion in FEM/BEM for d = 2 corresponding to the anisotropic
Laplace operator. We will be especially interested in the robust and accurate approximations for the singularly
perturbed equation.

For the most common operators of the form (2.1), the fundamental solution is known in the explicit form
(see [9] and references therein, as well as [5]).

Consider the anisotropic elliptic operator with

L = diag{as,... ;aa}, a;=¢; >0, b=0, co=0; (5.3)
1 1 B
S(z) := { Wlolgm ford=2
17v/det L 121 ford=3

in the case d = 2, a; =%, a3 =1,0 < e < 1. Let 7 x 0 € P{ be an admissible (rectangular) block satisfying
condition (2.5). The suitable norm involved in the definitions of diam := diamy, and dist is now the anisotropic

1/2 . . : o
norm ||z|| := ||z||y := (z,L'z) /2. The coefficient dependent separation scheme is based on the criteria
#1 ~ #r", diam 7' ~ diam 7"’

for all sons 7/, 7" € 7 of the parent cluster 7. Fig. 1 shows those clusters from the resulting tree T3 (1) which
correspond to level £ = 2 dependent on the singular perturbation parameter . For small enough ¢, we have the
decomposition into stripes like in the semi-coarsening variant of the multi-grid method. The arising H-matrix
becomes close to the block-diagonal one with the blocks corresponding to the vertical grid-lines.

e=1 =272 g=2"1

Figure 5: Anisotropy-dependent separation strategies

The error and complexity analysis is identical to the case of the Laplace operator after applying the
coordinate transform y' =y, o’ = La. Therefore, we skip the details.
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