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Towards H�Matrix Approximation of Linear Complexity

Wolfgang Hackbusch and Boris N� Khoromskij

Abstract

In the preceding papers ���������� a class of matrices �H�matrices� has been analysed which are data�
sparse and allow an approximate matrix arithmetic of almost linear complexity	 Several types ofH�matrices
were shown to provide good approximation of nonlocal �integral� operators in FEM and BEM applications	

In the present paper� we develop special classes of H�matrices with improved data sparsity to
approximate elliptic problems posed in Rd � d 
 �� �� �	 For the evaluation of integral operators on spatial
domains in Rd � the idea is to apply degenerate kernel expansions supported only on the boundaries of the
geometrical clusters	 This results in an algorithm of linear storage expenses� O�n�� which includes one call
for an optimal Dirichlet solver �e	g	� multi�grid method� on the involved cluster	 In the case of a tensor
product 
nite element ansatz space� we propose improved degenerate expansions of the kernel based on a
separation with respect to the full set of one�dimensional variables		

For BEM applications applied to rather general elliptic operators� our approach reduces the order of
expansion from O�logd n� down to O�logd�� n�	

AMS Subject Classi�cation� ��F��� ��F��� ��F��� ��R��� ��A��

� Introduction

In the present paper� we develop special classes of H�matrix approximations for elliptic problems which have
linear memory requirements and allow a fast matrix�vector product of linear�logarithmic complexity under
standard assumptions on the smoothness of fundamental solutions	

For the evaluation of potential 
elds as well as for the calculation of particular solutions in elliptic problems�
we are interested in the data�sparse approximation of integral operators on a spatial domain in Rd � d � �� �� ��
whose kernels satisfy the property ��	�
	 The idea is to build the degenerate kernel expansions only on the
boundaries of certain geometrical clusters and to use their elliptic extension into the corresponding interior
product domain	 As a result� the domain integrals are transformed into equivalent surface integrals	 This
leads to an algorithm of linear complexity	 It requires one call of an optimal Dirichlet solver �say� multi�grid
method
 on each geometrical cluster	 We call the new approach the wire�basket H�matrix approximation	 For
a general class of kernels� this approach essentially reduces the amount of data �memory requirements
 for

each n� � n� matrix block from O�n� log
d n
 for the standard H�matrices down to O�n

��d
� logd�� n � n� 
�

where n� � n� is the corresponding blocksize and n is the global dimension	
In the case of a tensor product 
nite element basis� we construct data�sparse expansions of the matrix

blocks with sublinear complexity O�n
��d
� log�d n
 and with the expansion order� O�log�d n
	 It is based on

the idea of data�sparse approximations of the matrix blocks with locally analytic kernels by fully separated
expansions �see the smoothness requirements formulated in Assumption �	� of Section �	�
	 In this way� we
allow to increase the local rank� but at the same time� we gain additional sparsity of the approximation ansatz
de
ned now on a low dimensional tensor product space	 In the framework of the H��matrix concept with fully
separable expansions of variable order� we are led to schemes of linear complexity	

As a by�product� we derive degenerate expansions of the order O�logd�� n
 for kernels of boundary integral
operators	 The e�ciency of the corresponding expansions in BEM does not depend on the smoothness of the
computational boundary �	 However� the constructive way to avoid this dependence and to retain expansions
of the optimal order O�logd�� n
� needs to compute the restriction of elliptic extension on pieces of the
boundary � located within associated �volume clusters� covering a part of the curve�surface in the spatial
product domain	

�In this paper� the order of expansion is de�ned as the total number of terms in the separable approximation of the kernel�

�



� H�Matrix Approximation Revisited

��� Integral Operators in Elliptic Problems

We consider the case of scalar elliptic operators	 Let

L � �
dX

j�k��

�jajk�k �

dX
j��

bj�j � c� ��j ��
�

�xj

 ��	�


be a second order elliptic operator with real constant coe�cients ajk � bj and c�	 We assume that L has a
fundamental solution S satisfying LS � ��� where �� is the Dirac distribution at the origin	 The associated
weakly singular kernel s�x� y
 � S�x � y
 de
nes a class of integral operators speci
ed by their domain of
de
nition	 The function �x� y
 � s�x� y
 is C� outside the diagonal of Rd � Rd and satis
es Assumption �	�
from Section �	�	 Moreover�

Lxs�x� y
 � �L�ys�x� y
 � ��x� y
� ��	�


where L� is the formal adjoint of L with respect to the L� inner product h�� �i	 We further assume that L is
H�
� ��
�elliptic which implies that the bilinear form

a��u� v
 ��

Z
�

�

dX
j�k��

ajk�ku�jv �

dX
j��

bj ��ju
 v � c�uv
dx

satis
es the inequality

a��u� u
 � cjjujj���� for all u � H�
� ��
 with c � ��

Note that the bilinear form a���� �
 is continuous on H���
�H���
	
We consider the h�version of the Galerkin FE method for approximating the continuous integral operator

A � V � V � de
ned in the Sobolev space V � Hr��
 and deal with integral operators of the form

�Au
�x
 �

Z
�

s�x� y
u�y
dy �x � �
� ��	�


with s being the kernel function mentioned above or with s replaced by a suitable directional derivatives Ds
of s	 We distinguish two di�erent cases�

�A
 � is a bounded �d� �
�dimensional manifold �BEM applications
�

�B
 � is a polyhedron in Rd � d � �� � �FEM applications
	

In the latter case� we con
ne ourselves to the case of the unit cube � � ��� �
d� and an ansatz space
Vh �� spanf�igi�I � V of piecewise constant�linear basis functions with respect to a quasiuniform tensor�
product mesh	 Therefore� we specify V � Hr

����
 or V � Hr��
� r � ������ ����� and d� � d � � in
Case �A
� while V � H����
� d� � d for evaluation of the volume integral operators in Case �B
	 An
extension of our approach to more general domains in Rd � d � �� �� is possible	

��� Construction of H�Matrices

We construct a data�sparse H�matrix approximation for the integral operators A with asymptotically smooth
kernels �cf	 ��	��

� and with locally analytic kernels �cf	 ��	��

	 For the ease of presentation� we 
rst consider
the case of the piecewise constant Galerkin ansatz space Vh � V 	 Modi
cations for piecewise linear�bilinear
elements will be discussed in Remark �	� below	

�



For the sake of completeness� we recall the important de
nition of an admissible block partitioning	 Let
I be the index set of unknowns �e	g	� the FE�nodal points
	 For each i � I� the support of the corresponding
basis function �i is denoted by X�i
 �� supp��i
� The cluster tree T �I
 is characterised by the following
properties� �i
 all vertices of T �I
 are subsets of I � �ii
 I � T �I
 is the root� �iii
 if � � T �I
 contains more
than one element� the set S��
 of sons of � consists of at least � disjoint subsets satisfying � �

S� ��S��� ��
�iv
 the leaves of the tree are fig for all i � I� For � � T �I
 we extend the de
nition of the supports X��
 by
X��
 �

S
i�� X�i
�

In the standard quasiuniform FE application� the cluster tree T �I
 is obtained by a recursive division of I
into subsets of almost equal size having a diameter as small as possible	 In the quasiuniform case� the term
�almost equal size� can be understood in a geometrical sense �i	e	� diam�X�� �

 � diam�X�� ��

 as well as
with respect to the cardinality �� � � �� ��� An appropriate construction of T �I
 will ful
l both criteria	

The matrix entries belong to the index set I� I� In a canonical way �cf	 ����
� a block�cluster tree T �I� I

can be constructed from T �I
� where all vertices b � T �I � I
 are of the form b � � � � with �� � � T �I
�
Given a matrix M � RI�I � the block�matrix corresponding to b � T �I � I
 is denoted by M b � �mij
�i�j��b�
A block partitioning P� � T �I � I
 is a set of disjoint blocks b � T �I � I
� whose union equals I � I� A block
partitioning P� determines the H�matrix format	 We use the following explicit de
nition of H�matrices	

De�nition ��� Let a block partitioning P� of I � I and k 	 n be given� The set of real H�matrices induced
by P� and k is

MH�k�I � I� P�
 �� fM � R
I�I � for all b � P� there holds rank�M b
 
 kg� ��	�


An admissibility condition is used to balance the size of matrix�blocks b and the distance between �
and � �see ���� for more details
	 It takes into consideration the singularity location of the kernel function
s�x� y
� �x� y
 � ���	 We assume that the following admissibility condition

minfdiam��
� diam��
g 
 �	 dist��� �
 ��	�


holds for all � � � � P�� where 	 
 � is a 
xed threshold parameter	 Here both dist and diam are de
ned
with respect to the given norm jj � jj in Rd 	 In general� this norm will depend on the coe�cients of the elliptic
operator	 Speci
cally� let L � �aij


d
i�j�� � Rd�d be the symmetric and positive de
nite coe�cient matrix from

��	�
	 De
ne the matrix dependent scalar product and norm in Rd by hu� vi � �L��u� v
 and jjujj � hu� ui����
respectively� where ��� �
 is the Euclidean scalar product	 In Section �� we apply this construction to anisotropic
elliptic equations	

For computational needs� we further use the splitting P� � Pfar � Pnear � where

Pfar �� f� � � � P� � dist�X��
� X��

 � � g� ��	�


Due to our assumption of a piecewise constant FE basis� the index set I is isomorphic to the disjoint supports
Xi	 While � � � � T �I � I
 indicates a matrix block� X��
 � X��
 � � � � is called the corresponding
geometrical block	 The standard H�matrix approximation of the integral operator consists of three essential
steps�

�a� the admissible block�partitioning P� � Pfar � Pnear of the tensor product index set I � I 	
�b� the construction of an approximate integral operator AH � L�V� V �
 with the kernel sH��� �
 de
ned

for each geometrical block X��
�X��
 with �� � � Pfar by a separable expansion s��� �
Pk

i�� ai�x
ci�y
 of
the order k 	 n � dim Vh� In the near�
eld area� the kernel function is unchanged	

�c� the setup of the Galerkin H�matrix AH � hAH�i� �jii�j�I for the operator AH� where f�ig is the FE
basis of Vh	

Remark ��� In the case of piecewise linear�bilinear elements there is a minor di�erence in the de�nition
of the local separable expansions at Step �b�� Since now the supports X��
 � X��
 for di�erent � � � may
overlap� the kernel function sH � ���� R is de�ned by a multi�valued mapping in the overlap� This allows
to use a smooth version of sH for all aij � �i� j
 � � � � � The error analysis can easily be modi�ed�

�



��� Complexity and Approximation

A bound of the solution error caused by Step �b
 as well as the computational complexity of the H�matrix
formats for quasiuniform meshes were considered in ����	 An almost linear complexity bound was proven in
����� which is valid in both cases �A
 and �B
	

Proposition ��� Let d � f�� �� �g� A � MH�k�I � I� P�
� and 	 �
p
d

�� � 
 � �� �� ��� Then the storage and
matrix�vector multiplication expenses are bounded by

Nst 
 ��d � �
�
p
d	�� � �
d pkn� NMV 
 Nst� ��	�


where the cost unit of NMV is one addition and one multiplication� Both estimates are asymptotically sharp�

The main goal of the present paper is the essential improvement of inequality ��	�
 in Case �B
 described
in Sections � and �	

The perturbation of the matrix induced by AH � A yields a perturbed discrete solution of the original
variational equation

h��I �A
u� vi � hf� vi for all v � V �� Hr��
� r 
 �� ��	�


where � � R is a given parameter	 For the given ansatz space Vh � V of piecewise constant�linear FEs�
consider the perturbed Galerkin equation for uH � Vh�

h��I �AH
uH� vi � hf� vi for all v � Vh� ��	�


Our error analysis can be based on either of the two following smoothness assumptions	 The 
rst one
requires analyticity of the kernel for x �� y	

Assumption ��� For any x�� y� � �� x� �� y�� the kernel function s�x� y
 is analytic with respect to x and y
at least in the domain

jx� x�j� jy � y�j � jx� � y�j� ��	��


A similar condition is used in ���� for the analysis of the Galerkin wavelet approximations in BEM	
An alternative assumption requires that the singularity function s is asymptotically smooth� i	e	�

Assumption ��� For all x� y � Rd � x �� y� and all multi�indices 
� � with j
j � 
� � � � �� 
d let

j��x ��y s�x� y
j 
 c�j
j� j�j
jx � yj��j�j�j�j�d��r for all j
j� j�j 
 m� ��	��


Here �r � R is the order of the integral operator A � Hr��
� H�r��
 in Case �A
 with the possible choice
r � f� �

� � ��
�
�g	 In Case �B
� we specify r � � �

� � such that the operator A � H����
 � H���
 is continuous	
Similar smoothness prerequisites are common in the wavelet or multi�resolution techniques ��� �� ���� in the
multipole expansion method �cf	 ��� and references therein
 as well as in the related mosaic�skeleton approach
�cf	 ����
	

Theorem ��	 Assume that �	�

� is valid and that Vh allows the standard inverse inequality� Suppose that
the operator �I �A � L�V� V �
 is V �elliptic and let r � ������ ����� Then there holds

jju� uHjjV � inf
vh�Vh

jju� vhjjV �
c���m


m�
	mNd��� jjujjV � ��	��


Proof� The proof is a minor modi
cation of the arguments from ����	

��� Cluster Tree on the Tensor�Product Index Set

To design �super�fast� matrix operations �see Section � for fully separable expansions
� we will be interested
in the H�matrix approximation of an integral operator A de
ned in ��	�
 with � � ��� �
d and d � �� �� �	
Here we brie y recall the recursive construction of H�matrices �cf	 ����
 for a special index set	 Consider the
regular grid

I � fi � �i�� � � � � id
 � � 
 ik 
 N� k � �� � � � � dg� N � �p� ��	��


�



and de
ne the norm jij� � max
��k�d

jikj	 The cardinality of I is n � Nd � �pd�

The cluster tree T� � T �I
 of I is based on a division of the underlying cubes into �d subcubes	 The blocks

t�j � fi � �p��j� � � 
 i� 
 �p���j� � �
� � � � � �p��jd � � 
 id 
 �p���jd � �
g for j � f�� � � � � �� � �gd

belong to level �	 S�t���j� 
 �� ft�j � j with � 
 �j�k � jk 
 � for � 
 k 
 dg de
nes the set of sons of the cluster
t���j� 	 Hence� the tree T� consisting of all blocks at all levels � � f�� � � � � pg is a binary� quad� or octree for

d � �� �� �� respectively	 The number of clusters on level � equals O��d�
�
Each index i � I is associated with the d�dimensional cube

Xi �� f�x�� ���� xd
 � �i� � �
h 
 x� 
 i�h� � � � � �id � �
h 
 xd 
 idhg� ��	��


which is the support of a piecewise constant function for the index i	 Using the Euclidean norm� we obtain
the diameter diam��
 �

p
d �p��h �

p
d��� for blocks of level �� Let � � t�j � � � t�j� be two blocks of level �

characterised by j and j�	 Then

dist��� �
 � ���
q
��j� � j��
� � � � �� ��jd � j�d
� ��	��


with ���
 �� maxf�� j�j � �g	 Let T� � T �I � I
 be the block�cluster tree corresponding to the cluster tree
T� � T �I
� The de
nition of T� implies the following remark �cf	 ����
	

Remark ��
 Let � � � � T �I � I
� Then �� � � T �I
 belong to the same level � � f�� � � � � pg�

The set of clusters � � T �I
 from level � is called T �
� 	 In view of Remark �	�� for � � f�� � � � � pg� we denote

by T �
� the set of clusters � � � � T� such that blocks �� � belong to level �	 In particular� T �

� � fI � Ig is the
root of T� and T p

� � ff�x� y
g � x� y � Ig is the set of leaves	 Correspondingly� we de
ne P �
� �� P� 
 T �

� 	

� H�Matrices via Wire�Basket Expansions

��� Basic Idea� Description on the Continuous Level

The basic idea of the wire�basket approach is the interface representation of the scalar product hAHu� vi�
u� v � Vh� for the hierarchical approximation to the operator A from ��	�
	 By de
nition� there holds

hAHv� ui �
X

����P�

Z
X����X���

s����x� y
u�x
v�y
dydx� ��	�


First� we consider the exact Galerkin ansatz hAv� ui with the kernel�function s�x� y
 instead of s��� and
transform each domain integral for � � � � Pfar into its boundary form	 For notational convenience� de
ne a
set of geometrical blocks �product subdomains
 Xfar �� fX��
 �X��
 � � � � � Pfarg	 In view of ��	�
� we
have

Lxs�x� y
 � L�ys�x� y
 � � for �x� y
 � X��
�X��
 � Xfar� ��	�


In the following� the symbol � is used as variable for a domain	 Let a���� �
 be the bilinear form associated
with the operator L as above	 Then the 
rst Green formula holds�

hv�Lui� � a��u� v
� h��u� vi��	� for all u � H����L
� v � H���
� ��	�


where h�� �i��� with � �� �� is the L���
�scalar product and �� is the conormal derivative

�� ��

dX
j�k��

njajk�k �
dX

j��

njbj

with �j � ���xj and nj being the components of the outward unit normal vector	

�



Denote W � � H���
 
H�
� ��
	 For any z � L���
� introduce a function gz � W � �note that convexity of

the domain � implies the full elliptic regularity� jjgzjj��� 
 cjjzjj���
 such that

a��gz� 	
 � hz� 	i��� for all 	 � H�
� ��
� ��	�


The continuous operator L��� � L���
 � W � is de
ned by L��� z � gz� which has a continuous extension as
a mapping L��� � H����
 � H�

� ��
	 In the case of a hierarchical cluster tree T� of depth p� the far�
eld
component Pfar from ��	�
 may be speci
ed by the choice of parameter p� � N of size O��
 yielding the
alternative de
nition

Pfar � �p�p���� P �
� � Pnear � �p��p�p���P �

� �

We recall that on block�clusters from Pfar� we approximate the kernel function by degenerate expansions�
while matrix entries corresponding to Pnear are computed exactly �we assume that the computation of one
matrix entry costs O��
 arithmetical operations
	 Note that ��	�
 implies the Galerkin orthogonality

a� �gu�x
� s�x� y

 � a��gv�y
� s�x� y

 � � for �x� y
 � X��
�X��
 � Xfar� ��	�


Lemma ��� For any u� v � L���
 there holds

hAv� ui �
X

����Pfar

Z
	X���

Z
	X���

s�x� y
��gv�y
��gu�x
dxdy ��	�


�
X

����Pnear

Z
X����X���

s�x� y
u�x
v�y
dxdy�

Proof� ��	�
 and ��	�
 with u � Lxgu and v � Lygv lead toZ
X����X���

s�x� y
u�x
v�y
dxdy

�

Z
X���

�
a��gv�y
� s�x� y

�

Z
	X���

s�x� y
��gv�y
dy

�
Lxgu�x
dx

�

Z
	X���

�
�a� �gu�x
� s�x� y

 �

Z
	X���

s�x� y
��gu�x
dx

�
��gv�y
dy

�

Z
	X���

Z
	X���

s�x� y
��gv�y
��gu�x
dxdy

for all � � � � Pfar	 Hence� ��	�
 follows	
Assume we are given a degenerate expansion

s	��	� �

k�X
���

a��x
c��y
� �x� y
 � �X��
� �X��
� ��	�


for each � � � � Pfar such that

js�x� y
� s	��	��x� y
j 
 c 	mfdist��� �
g��d for �x� y
 � �X��
� �X��
�

where k� � O�md��
	 Then we introduce the wire�basket representation of the operator AH by

hAHv� ui �
X

����Pnear

Z
X����X���

s�x� y
u�x
v�y
dxdy ��	�


�
X

����Pfar

X
�

Z
	X���

a��x
��gu�x
dx �
Z
	X���

c��y
��gv�y
dy� u� v � L���
�

The second sum will be abbreviated by hv�AHuifar	 Particular constructions of s	��	� will be considered in
Section �	

Below� we introduce the Galerkin approximation to the second sum in ��	�
	 To this end� we represent
each integral over �X��
 �or �X��

 in terms of domain integrals using an easily computable extension of
a��x
 and b��y
 into the interior of X��
 and X��
� respectively	

�



Remark ��� Let Ex � H�����X��

 � H��X��

 be any continuous extension operator de�ned for each
� � T�� Due to ����� there holdsZ

	X���

a��x
��gu�x
dx � �a� �gu� Exa�
 � �u�Exa�
��X���� ��	�


The same extension with respect to the y�variable is denoted by Ey �

With the given ansatz space Wh � H��X��

� let gh�z � W �
h�� �� Wh 
H�

� �X��

 be the Ritz projection
of gz de
ned by

a� �gh�z� 	
 � �z� 	
��X��� for all 	 �W �
h�� � ��	��


The FE Galerkin approximation to the far�
eld contribution in ��	�
 is de
ned for any u� v � Vh by
substituting gh�u �resp	 gh�v
 into the right�hand side of ��	�
 and choosing Ex �resp	 Ey
 as the
extension into Wh by FE functions with minimal support inside X��
	

Corollary ��� For any u� v � Vh� the FE Galerkin approximation A	H�h � Ah for the operator AH is de�ned
by

hAhv� ui �
X

����Pnear

Z
X����X���

s�x� y
u�x
v�y
dxdy ��	��


�
X

����Pfar

k�X
���

�
�u�Exa�
��X��� � a� �gh�u� Exa�


� �
�v� Eyc�
��X��� � a��gh�v� Eyc�


�
�

Remark ��� Note that the Galerkin ansatz space Vh � L���
 restricted to the geometrical clusters X��
 may
di�er from Wh de�ned above� However� for the ease of presentation� we further assume Vh � Wh for each
� � T��I
�

��� Matrix Representation and Complexity Bound

The representation ��	��
 de
nes the generalised H�matrices which inherit the standard hierarchical block
structure from the P��partitioning� but now the rank�k structure of the blocks b � P �

� is given implicitly based
on the factorisation by local Schur�complement matrices	 Such a factorisation allows to reduce the amount
of data for the storage and matrix arithmetic essentially	 To build the explicit representation of the matrix
block A���

h of the resulting H�matrix� we introduce the local Schur�complement operator
S��h �W

�
h�� � �h�� ��Whj	X����

by

hS��hz� wi �� �z� Exw
��X��� � a� �gh�z� Exw
� z �W �
h�� � w � �h�� � ��	��


which� in fact� provides a FE variational approximation of the operator S � ��L��� � L��X��

� H�����X��

	
The construction is independent of the extension operator Ex due to the Galerkin orthogonality �see ��	��

	

The L��projection operator Qh�� onto �h�� is given by

�Qhu� v
��	X��� � �u� v
��	X��� for all v � �h�� �

Let ah��� ch�� be the vector representations of Qha� and Qhc�� while S��h and S��h are the matrix represen�
tations of S��h and S��h	 The matrix block A���

h de
ned by ��	��
 for the product index�set � �� � Pfar has
the factorisation

A���
h �

k�X
���

�ST��h � ah��
 � �cTh�� � S��h
 � ST��h

�
k�X
���

ah�� � cTh��
�
S��h� ��	��


where S��h � R
n� � Rn�� � ah�� � Rn�� � n� �� dimWh�� � n	� � dim�h�� and the same for S��h� ch��	 Clearly�

��	��
 de
nes a matrix block with rank 
 k�	

�



Denote by E��h the discrete L�harmonic extension operator in X��
	 Assume that the Ritz projection gh�u
in ��	��
 and the extension operator E��h �the same for gh�v and E��h
 can be evaluated on each geometrical
cluster X��
 with linear cost cRPn� �say� by the multi�grid method� see also the algorithm in Section �	� based
on the reuse of particular solutions
	

The advantage of the presented method is the reduction of the order of expansion� on the one hand� and
the linear bound for Q��� with respect to the block�size n� � on the other hand	 The latter is due to reduction
to the boundary	 Moreover� the constant in the asymptotical complexity is essentially dominated by cRP
which may be smaller then the corresponding constant in the H�matrix arithmetic� especially for d � �	

Lemma ��� Let our construction be based on a hierarchical cluster tree of the depth p� For the variable order
approximation with k���
 � �a��p � �
 � b�


d�� �as used for the H��matrices in 

�� 
��� the storage and
matrix�vector multiplication expenses are dominated by

Nst � O�pn
� NMV � O�n
 � cRPO�pn
�

Proof� The storage for the implementation of the Schur�complement operator from ��	��
 is dominated byP
����P far

�

�� � O��p� p�
n
	 On the other hand� a simple estimate n� � O��d�p���
 � �p��O�n	� 
 implies

that the coe�cients of Rk�matrix blocks from ��	��
 need only a storage size of O�k�n	� 
 � O�k�n��
��p
	

This proves the linear�logarithmic bound for Nst	
The matrix�vector product for each block has the complexity

Q��� � ck��n	� � n	�
 � �cRP �n� � n�
� ��	��


In fact� due to ��	��
� the implementation of S��h is of linear cost	 Furthermore� the matrix�vector product
by ST��h is equivalent to the implementation of the elliptic extension E��h due to the relation ��	��
 and the
Galerkin orthogonality�

hz� ST��hwi � �z� E��hw
��X��� � a� �gh�z� E��hw
 � �z� E��hw
��X��� ��	��


for z �W �
h�� � w � �h�� 	 Thus� the matrix�vector product for all blocks on level � has the complexity

Q��� � ck�n��
��p � �cRPn� � ��	��


Summation over all the blocks � � � � P� completes our proof	

��� Further Optimisation by Reusing Particular Solutions

Further� we brie y consider an optimised construction of the wire�basket scheme based on the reuse of
particular solutions	 Assume we are given a balanced hierarchical cluster tree T� of the depth p	 The idea
is that subdomain solvers are used only on few coarse levels � � �� � � � � �� while the restriction of these
solutions to the smaller domains corresponding to the levels � � �� yield particular solutions �with wrong
Dirichlet data
	 Assuming a correction scheme for the Dirichlet data of the cost O�n	� log

q n	� 
� q � O��

�see Remark �	�
� linear complexity of the overall scheme holds	

Again� we start from the continuous case	 Given �� � N� �� � �� we assume the covering property

���
���

�
����P �

�

� �

���
���

�
����P �

�

� � I� ��	��


where �� � O��
� In most of the cases� ��	��
 holds with either �� � � or �� � �	 For the ease of exposition�
we assume �� � �	 We denote the L�harmonic extension operator by E� � H������
� H���


Assumption ��	 We assume furthermore� that for all � � T �
� with � � � the Poincar�e�Steklov operator

SL � ��E� can be approximated accurately with the cost O�nq� 
� q � ��

Remark ��
 For most of the common elliptic operators of the form �	�
�� the discrete Poincar�e�Steklov
operator S� de�ned by ���	�� can be evaluated with the complexity O�n	� log

q n	� 
� q � O��
� In fact� for
the Laplace� biharmonic� Stokes and Lam�e operators on rectangular domains� sparse approximation of linear�
logarithmic complexity O�n	� log

� n	� 
 are known �cf� 

�� 
���� An extension of these results to the case of
polygonal domains is possible�

�



Let T���
 be the largest subtree of T��I
 having the root � � T��I
	 Denote by E� � H������
 � H���

the L�harmonic extension operator in �	 Then� we obtain the representation

L��� � rX�� ��u � rX�� ��L��� u�E� �r	X�� ��L��� u for all � � � T���
 � T��I
� ��	��


where u � L��X��

 and r� is the restriction operator onto the given domain�manifold �	
Substitution of ��	��
 into ��	�
 instead of gu �the same for gv
 results in the fast Schur�complement

scheme which may be discretised in the variational framework	 In this way� we need an optimal elliptic solver
only on each cluster of the low level � � � �for coarse subdomains
	 Now� the far�
eld contribution in the
right�hand side of ��	�
 takes the form

hv�A�uifar �
X

����P �

�

X
�

Z
	X���

a���gudx

Z
	X���

c���gvdy ��	��


�

p�p�X
��	

X
� �����P �

�

X
�

Z
	X�� ��

a��x
�� �rX�� �� �E� �r	X�� ��
gu��dx

�
Z
	X����

c��y
���rX���� �E��r	X����
gv��dy�

where �� � are the clusters from T� such that � � � T���
� �
� � T���
 and gu�� � L��rX���u	 For computational

needs� the boundary integrals in ��	��
 may be rewritten� as above� in terms of domain integrals using �minimal
support� extensions of the elements a� and c� into X�� �
 and X���
� respectively	 As above� we assume a
linear cost cRPn� for the implementation of L��� 	

In the 
rst step of the matrix�vector multiplication� we compute the action of all matrix blocks A���
	H on

the level � � � which amounts to O�n
 operations	 In the second step� we treat the blocks � ���� � P �
� � � � �	

Its implementation uses the data from the level � � �� i	e	� the Schur�complement matrices are multiplied by
the vector via

S� ��hu �� �S�R��� � � S� �R��	� �
gu�� � S���hv �� �S�R���� � S��R��	��
gv�� �

where R��� � �R��	� �
 denotes a matrix representation of the restriction operator rX�� �� �rX�	� ��
 and S� is the
FE approximation to the operator �� 	 In turn� S� � is the Schur�complement FE approximation to the elliptic
Poincar!e�Steklov operator SL � ��E� � H������
� H�������
 now de
ned for � � X�� �
�

hS� �z� wi �� a� ��E� ��hz� Exw
 for all z� w � �h�� � � ��	��


Furthermore� gu�� �resp	 gv��
 is the vector representation of the Ritz projection gh�u on � �resp	 gh�v on �
	
Denote by E��h the matrix representation of E��h� then the action of ST� ��h is performed using the matrix E��h�
see ��	��
	 The quadratic form and matrix�vector product in question have now the representations

�A� ����
	H v�u
 �

k�X
���

�
�ah�� � cTh��
d� �d�

�
� ��	��


and

A� ����
	H v � E� ��h

k�X
���

ah�� � �ch���d�
� ��	��


respectively� where d� � �S�R��� � � S� �R��	� �
gu�� �similar for d�
 with d� � R
n� � d� � R

n� 	

Lemma ��� The reuse of the particular solutions from level �� in the matrix operations from ���	
� and
���		� leads to the linear complexity Nst � O�n
 and NMV � O�p n
� for the variable order approximation�
The bilinear form �A	Hv�u
 can be evaluated with O�n
 operations�

Proof� For the right�hand sides in ��	��
 and ��	��
 the matrix S� can be multiplied by the vector with O�n	� �

arithmetical operations	 The assertion follows from the representations ��	��
� ��	��
 and Remark �	�	

�



��� Approximation Error

In the following� we estimate the approximation error of the scheme de
ned above	 The optimal error bound
O�h
 is based on the full elliptic regularity of the local problems ��	�
 on � � X��
� � � T��I
� as well as on
the technical assumption concerning the �stability� of expansion coe�cients �see ��	��
 below
	 In the case
of non�convex clusters� we arrive at an accuracy O�h�
� � � � � �� depending on the elliptic regularity of the
subproblems	

Assumption ��� For each � �� � Pfar� the coe�cients a��x
� c��y
 for �x� y
 � �X��
� �X��
 from �����
satisfy the estimates

k�X
���

�
jja�jj����	X���jjc�jj����	X��� � C��

�
����� � C��

�
��������

�

 c dist��� �
��r � ��	��


where

������� � jja�jj����	X���jjc�jj��	X��� � jja�jj��	X���jjc�jj����	X����

���������� � jja�jj����	X���jjc�jj�����	X��� � jja�jj�����	X���jjc�jj����	X����

Assumption ���
 The operator L satis�es the Maximum�Minimum Principle �
��� �

Lemma ���� Let k� � O�pd��
 and r � ����� Under Assumptions ��� and ��
��

jhv� �A �A	H
uij 
 �c	mnq � C��� h	�� � C��� h
jjujj�jjvjj� � ch�jjujj�jjvjj�� � jjujj��jjvjj�
� q � O��
�

holds for all u� v � L���
�

Proof� First� we use the representation

hv� �A�A	H
ui � hv� �A �AH
ui� hv� �AH �A	H
ui ��	��


indicating that the total error contains the standard consistency error hv� �A � AH
ui� as well as the error
involved by the local Ritz projections	 The 
rst term in the right�hand side in ��	��
 is estimated using the
stability of problem ��	�
 with respect to the Dirichlet data on �X��
��X��
	 In fact� the Maximum�Minimum
Principle with respect to both the x� and y�variables leads to

max
�x�y��X����X���

					s�x� y
�X
�

E�a��x
E�c��y


					

 max

�x�y��	X����	X���

					s�x� y
�X
�

a��x
 c��y


					 
 c 	mdist��� �
��d�

Then� similarly to the proof of Theorem �	�� the following estimate holds

jhv� �A�AH
uij 
 c 	mnq jjvjj���jjujj����
To estimate the second term in ��	��
� we 
rst note that the choice image�Ex
 � image�Ey
 �Wh implies that
the terms �u�Exa�
��X��� and �v� Eyc�
��X��� arising in ��	��
 can be evaluated exactly	 Then� it is su�cient
to consider the bound of

hv� �AH �A	H
ui �
p�p�X
���

X
����P �

�

X
��k�

�e�� � e�� � e	� � e
�
� ��	��


where

e�� � a� �gh�u � gu� Exa�
 � a��gh�v� Eyc�
�

e�� � a� �gh�u� Exa�
 � a��gh�v � gv� Eyc�
�

e	� � ��u�Exa�
��X��� � a��gh�v � gv� Eyc�
�

e
� � �a� �gh�u � gu� Exa�
 � �v� Eyc�
��X����

��



Using the Galerkin orthogonality for gh�z and gz� the a priori estimate for the Dirichlet boundary value problem
in X��
 and the standard H��error bound for the Ritz projection yield

ja� �gh�u � gu� Exa�
j � ja� �gh�u � gu� E��ha�
j 
 c hjjujj��X���jja�jj����	X����

The L��estimate of the discrete L�harmonic function

jjE��hc�jj��X��� 
 cjjc�jj�����	X��� ��	��


is valid in the case of full elliptic regularity� the proof is similar to the case of Laplace equation� considered in
���	 This implies

ja��gh�v� Eyc�
j 
 c�jjgh�vjj��X���jjE��hc�jj��X��� � jjvjj��X���jjE��hc�jj��X���



 cjjvjj���X���jjc�jj����	X��� � cjjvjj��X���jjc�jj�����	X����

where jj � jj���� is the norm of H����
 �
�
H�
� ��


��
	 Therefore�

je��j 
 c hjjujj��X���jja�jj����	X����jjvjj���X���jjc�jj����	X��� � jjvjj��X���jjc�jj�����	X��

�

je��j 
 c hjjvjj��X���jjc�jj����	X����jjujj���X���jja�jj����	X��� � jjujj��X���jja�jj�����	X���
�

Using similar arguments and applying the bound

jjEyc�jj��X��� 
 ch���jjc�jj��	X���� ��	��


but now to both a� and c�� we obtain

je	�j 
 c h	��jjujj��X���jjvjj��X���jja�jj��	X���jjc�jj����	X����

je
�j 
 c h	��jjujj��X���jjvjj��X���jja�jj����	X���jjc�jj��	X����

Finally� the substitution of these estimates into ��	��
 yields

jhv� �AH �A	H
uij

 c� h

X
����P�

�jjujj��X���jjvjj���X��� � jjujj���X���jjvjj��X���
 �
p
j� jj�j

X
��k�

jja�jj����	X���jjc�jj����	X���

� c� h
X

����P�
jjujj��X���jjvjj��X���

p
j� jj�j

X
��k�

����������

� c� h
	��

X
����P�

jjujj��X���jjvjj��X���

p
j� jj�j

X
��k�

�������


 c� h


�p�p�X
���

jjujj���
X

����P �
�

j�j jjvjj���X��� �

p�p�X
���

jjvjj���
X

����P �
�

j� j jjujj���X���

�A
� �c� h

	�� � c�h
jjujj���
p�p�X
���

jjvjj��X���

X
����P �

�

p
j� jj�j�

Hence� the assertion follows	

Remark ���� Lemma ��

 guarantees a hierarchical approximation of the exact Galerkin sti�ness matrix
with an error O�h
 with respect to the spectral norm�

��



� Construction of Kernel Expansions �Case B�

��� Polynomial Approximation of Multivariate Functions

We assume that our kernel function s�x� y
 satis
es Assumption �	� �cf	 Section �	�
	 For deriving the desired
low order expansions� we use classical approximation results for functions which are analytic in the interval
I� � ���� ��	
De�nition ��� A function f � C��I�
 has Bernstein�s regularity ellipse EH�I�
 if it admits an analytic
extension to the closed ellipse EH�I�
 � C with foci in z � �� and the sum of semi�axes equal to H � ��

The de
nition of EH�I�
 for other intervals than ���� �� is obvious	
The following statement goes back to the classical result of S	N	 Bernstein �see also ���� for more details
	

In particular� we apply the result from ����	

Proposition ��� Assume that the function f � C��I�
 has the regularity ellipse EH�I�
� according to
De�nition ��
� Let �INf ��x
 � PN �I�� on ���� �� be the interpolation polynomial with respect to the Chebyshev�
Gauss�Lobatto nodes �j � cos
jN � j � �� � � � � N � Then the following approximation property holds�

jjf � INf jjL��I� 
 cN
H�N

H � �
max
z�EH

jf�z
j� ��	�


For multivariate functions f � f�x�� ���� xd
 � R
d � R� we use the tensor product interpolant

INf � I�N � � � IdNf � PN �I
d
� ��

where I iNf denotes the interpolation polynomial with respect to xi� i � �� � � � � d� at the Chebyshev�Gauss�
Lobatto nodes	 The interpolation points ��� 
 � �i�� ���� id
 � Nd� � in Id� are obtained by the Cartesian product
of the one�dimensional nodes�

�� ��



cos

�i�
N

� � � � � cos
�id
N

�
�

Denote by X�i the subset X�i �� fx�� � � � � xi��� xi��� � � � � xdg of d�� spatial variables	 Related to De
nition
�	�� we are interested in polynomial approximations of the following class of functions	

Assumption ��� For a given function f � C��Id� 
� assume that there is an H� � � such that for each of the
subset zi � X�i� i � �� ���� d� there exists an analytic extension with respect to xi � EH�

�Ii
 � C �

Proposition ��� Let Assumption ��� be valid� Then� for � � H � H� there holds

jjf � INf jjL��Id
�
� 
 cN logd��N

H�N

H � �
MH�f
� ��	�


MH�f
 � max
j�d

fmax
X�j

max
xj�EH�Ij�

jf�x�� ���� xd
jg�

Proof� The multiple use of ��	�
 and the triangle inequality lead to

jf � INf j 
 jf � I�Nf j� jI�N �f � I�N � � � IdNf
j

 jf � I�Nf j� jI�N �f � I�Nf
j� jI�NI�N �f � I	Nf
j� � � �� jI�N I�N � � � Id��N �f � IdNf
j


 c



max
X��

max
x��EH�I��

jf�x
j � logN max
X��

max
x��EH�I��

jf�x
j �

� � �� logd��N max
X�d

max
xd�EH�Id�

jf�x
j
�
N

H�N

H � �
�

where� similar to ����� we apply the L��estimate of the scalar interpolant I iN with respect to each space
variable xi� i � �� ���� d�

jjI iNf jjL��Ii� 
 c logN jjf jjL��Ii� for f � C��Ii
�

Hence ��	�
 follows	

Remark ��� In the case of a scaled domain Id� � I� � ���� ��� � � �� the corresponding exponent in the error
estimates ���	�� ����� is equal to �H��
���

��



��� Application to Volume Integral Operators �Case B�

Consider the kernel function s�x� � x�
 � S�x� �x�
� �x� � x�
 � X��
�X��
 associated with the fundamental
solution S of ��	�
 satisfying Assumption �	�	

In the case d � � and with the standard Euclidean metric� let � � � � P �
� be a block satisfying the

admissibility condition ��	�
	 In the following� we use the notation x� � �x�� � x�� 
� x� � �x�� � x��
	

��

�
�

���

�
�

���

��� �	� ��� �	�

��

Figure �� Location of the geometrical clusters X��
 and X��
	

We assume that X��
 is a rectangle with the boundary �X��
 � �
i���i� and �X��
 � �
i���i� with
j�i�j � j�i� j � ��� see Fig	 �	 Suppose that the edges �	� and ��� are parallel to the x��axis and satisfy
dist��	� ��

�
� 
 � ��	 Construct a kernel expansion on the subset �	� � ��� � �X��
� �X��
	

Due to assumptions from above� the coordinates x�� for x� � �	� and x�� for x� � ��� are both 
xed	
Hence� in Euclidean distance� the function of two variables f�x�� � x�� 
 � s�x�� � x�� � x�� � x��
 has the family
of regularity ellipses EH�

in the sense of Assumption �	� and with H� � a � b� where a� � b� � �� and the
small semiaxis b is bounded by b � dist��� �
	 Due to ��	�
� there holds dist��� �
 � p

d�	�� implying the

upper bound b �
p
d�	�� and also a �

p
� � d	�� �	 This yields

H� �
�p

d	�� �
p
� � d	��

�
�� ��	�


In particular� for the choice 	 �
p
d
� with d � �� �� �� we obtain

H� �
�
� �

p
�
�
�� ��	�


Applying Proposition �	� with the scaling argument from Remark �	� leads to the following estimate on the
exponent in a convergence rate of the polynomial approximation


H

�

���

 	�

�p
d�

p
d� 	�

�
�

The constant MH�f
 may be estimated by

MH�f
 
 c max
j�j�

p
d�
���b

jS��
j�

Assume that jS��
j 
 cj log j�jj	 Solving the simple optimisation problem

min
��b�

p
d�
��

H�m

H � �
MH�f
 with H � b�

p
�� � b�

leads to an error estimate of the form

jjf � Imf jjL��I�
�
� 
 cmq logq� m �c�	


m� q� � O��
 ��	�


with c� � ��
�p

d�
p
d� 	�

�
� uniformly with respect to n and 	 
 �	 The bound ��	�
 implies the uniform

L��estimate

jjf � Imf jjL� 
 ch� � c���p

��



with the polynomial degree m � O�p
 for all 
 � O��
	 Let fTi�x�� 
g and fTj�x��
g be the bases of the
corresponding univariate polynomial sets PN de
ned on ��� and �

	
�� respectively �say� Chebyshev polynomials
	

The number of terms k in the product�polynomial interpolant

Im f ��
mX
i��

mX
j��

aijTi�x�� 
Tj�x��
�

where coe�cients aij are the linear combinations of the values f���
 in the tensor product set of nodes ��� is
then estimated by k � m��� � O�p�
	 Let j��� j 
 j�	�j for de
niteness	 Then combining all terms having the
factor Ti�x�� 
� i � �� �� � � � �m� we obtain the desired expansion of the order k � O�p
�

�Im f ��x� � x�
 ��

mX
i��

Ti�x�� 
 �Gi�x��
� Gi�x��
 �

mX
j��

aijTj�x��
� ��	�


A similar construction for d � � leads to expansions of the order O�pd��
� using Proposition �	�	 The
result is based on the polynomial approximations for multivariate analytic functions on a rectangular product
piece �i� � �j� � R


 of �X��
� �X��
� i� j � �� � � � � �	

Remark ��	 Note that the corresponding Taylor interpolant with respect to the Chebyshev centre of ��� may
be also applied for the construction of the wire�basket expansion� It has the same order k � O�pd��
 but
involves a larger constant c� � ��� in ����� �cf� 


��� This is consistent with Chebyshev�s classical result that
the best polynomial approximation of an analytic function is by far more accurate than the Taylor interpolant�
Moreover� ����� is based only on the pointwise evaluation of the kernel at the Chebyshev�Gauss�Lobatto points�

Remark ��
 The global degenerate expansion of the order O�pd��
 on �X��
� �X��
 is constructed in two
steps� First� we obtain an expansion on ��� ��X��
 by composing �agglomerating� the expansions for �j����� �
j � �� � � � � �� based on a �xed polynomial basis fT�gm��� on ��� � and then by assembling the corresponding
representations constructed for each �i� � i � �� ���� �� separately� as above� This approach is suited for the FE
approximation of the elliptic extension operator in ���
��� ���		��

To estimate the computational complexity of such an approximation� we proceed as follows	 Instead of one

globalRk��matrix S ��
k�P
���

ah���cTh�� corresponding to ��	�
� we consider the ��� blockwiseRk�approximation

of the form

bS ��


BB�
C B A TBT
D F TBT G
H TDT C TDT

TDT G TBT F

�CCA �� fbSijg
i�j���
with respect to the degrees of freedom located on the product pieces �i���j�� i� j � �� � � � � �� see Fig	 �	 Here� T

denotes the proper permutation matrix of the size dim�ih�� 	 We introduce the wire�basket rank Rwb � Rwb�bS

and the reduced wire�basket rank Rrwb � Rrwb�bS
 of the matrix�block bS by

Rwb�bS
 �� �

�


X
i�j��

R�bSij
� ��	�


and

Rrwb�bS
 �� �

�
�R�A
 �R�B
 �R�C
 �R�D
 �R�F 
 �R�G
 �R�H

 � ��	�


respectively� where R�A
 is the rank of A	 The value Rwb characterises the complexity of matrix�vector

multiplication by the block eS� while Rrwb speci
es the memory requirements	 The numerical results estimating
Rwb and Rrwb for the harmonic kernel in �D will be presented at the end of this section	

Remark ��� Another alternative construction of the wire�basket expansions is designed for using the ex�
act L�harmonic extensions instead of E��h� For this purpose� we apply generalised harmonic polynomials in

��
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Figure �� Approximation of the blocks A� B� C and D in bS	
the tensor�product domain� see also 

��� concerning the �operator adapted spectral element methods�� For
example� in the case of the Laplace equation� we apply the system of trigonometric harmonic polynomials
sin�k � x
 exp��k � y
� k � �� �� � � � � in a rectangle� Then the approximation of the kernel by trigonometric
polynomials on the edges �i� of a computational cluster allows the exact harmonic extensions into the interior
by the harmonic polynomials de�ned above� The details will be discussed in a forthcoming paper�

It is worth to note that in the particular case of harmonic kernel s�x� y
 � �


jx�yj for d � �� we obtain

an expansion with almost the same number of terms compared with the familiar multipole expansion of the
optimal order k � O�p�
	 In fact� let x and y have spherical coordinates �r� �� �
 and ��� 
� �
� respectively	
De
ne spherical harmonics Y �

� ��� �
� � � �� �� �� � � � and 
 � ��� � � � � �� by

Y �
� ��� �
 ��

s
�� � �

��

�� � j
j
�
�� � j
j
� P

j�j
� �cos �
ei���

where P�
� are the associated Legendre functions�

P�
� �x
 �� ���
���� x�
���

d�

dx�
P��x
�

and P��x
 is the Legendre polynomial of degree �	 It is shown in ��� �� that the multipole expansion of the
form

�

jx� yj �
�

r

mX
���

�X
����

��
r

��
Y �
� �
� �
Y

��
� ��� �
 �Rm ��	�


��
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Figure �� Approximation of the blocks F� G and H in bS versus the multipole expansion	

provides the error estimate

jRmj 
 c

jx� yj
�m��

��� �
�
� � �

�

�

diam �

dist��� ��

� �� ��	��


where �� is the Chebyshev centre of � 	 With the choice 	 �
p
	
� in the admissibility condition� we obtain

� � �p
	
� ����� while for d � �� there holds c�	 � �� �

p
�
�� � ����� by virtue of ��	�
	 Therefore� a

bound like ��	�
 provides better asymptotic convergence rate than ��	��
	 However� both the wire�basket and
multipole expansions have faster convergence than the Taylor interpolant	

For the �D harmonic potential s�x� y
 � �
�
 log jx � yj� the convergence rate for the multipole expansion

with 	 �
p
�
� is estimated by � �

p
�
	 � ����� while the wire�basket expansion again yields c�	 � ����	 Applying

the degenerate polynomial approximation of kernels on the product domains �i� � �j� by interpolation at the
Chebyshev�Gauss�Lobatto points� we obtain the following results for Rwb and Rrwb� depending on �� see
Fig	 � and �	 Here we present the maximal approximation error of all blocks in bS versus the degree of the
interpolation polynomials	 The last picture in Fig	 � presents the accuracy provided by the �D multipole

expansion corresponding to the exponent � �
p
�
	 	 Fig	 � presents the corresponding rank Rwb�bS
 and

Rrwb�bS
 de
ned by ��	�
 and ��	�
� respectively� depending on the approximation accuracy achieved	 Here
Rmp corresponds to the multipole expansion� while RToepl stands for the factor c logn characterising the
linear�logarithmic complexity of matrix�vector multiplication by a Toeplitz matrix associated with any pair of
parallel edges from �� � �� 	 This con
rms our theoretical estimates	

��
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Figure �� Computational rank for di�erent approximations of bS	
��� Fully Separable Expansions

Now we describe fully separable domain�based expansions and the corresponding wire�basket counterparts
reducing the asymptotic complexity considerably	 The idea is to use separable expansions for the kernel
s�x� y
 not only with respect to the two multi�dimensional variables x and y� but also with respect to the �d
vairables x�� � � � � xd� y�� � � � � yd	 We further assume that the FE ansatz space Vh has the tensor�product basis
f�ig � f�i� � ��� ��idg with �iq � spanf�ign�i��� q � �� ���� d� such that for the restriction on cluster of level �
there holds jij� � �p��	

We start from an expansion of the order k � O�p�d
 de
ned on the product domain X��
 � X��
 �the
corresponding parametric domain is given by Id� � Id� 
 using the tensor�product polynomial approximation
from Proposition �	� �for d � �
�

s��� �

mX
jjj��

mX
jij��

aji �Tj� � Tj� � Tj�
� �Ti� � Ti� � Ti�
�

where fT�g stands for the basis set of polynomials �say Chebyshev polynomials
 which is used to represent

corresponding univariate polynomial interpolants� analysed in Proposition �	�	 Here� the tensor aji with
multiindices i� j � Nd � represents expansion coe�cients of the Lagrange interpolant in the product�polynomial
basis	 Such an expansion allows an asymptotically optimal data�sparse approximation of the smooth kernel
with sublinear storage size O�p�d � �p��
 for the blocks on level � � �� �� � � � � p� p�	 Indeed� in the case d � ��

��



the corresponding matrix blocks have the following tensor�product form

A��� �

mX
jjj��

mX
jij��

aji �Tj� �Tj� �Tj� 
 � �Ti� �Ti� �Ti� 
� ��	��


with m � O�p
� where T� � Rn� � � � �� � � � �m� n� � �p��	 The vector T� � f� T � � �i
gn�i�� represents the
component of tensor product Galerkin sti�ness matrix with respect to the nodal basis f�ig	

For the given trial vector u � Rn� compute the ���ortho�projection u� �
Pm
jij�� ui��Ti� �Ti� �Ti� onto

the �md��
�dimensional subspace spanfTi� �Ti� �Ti�gmjij��	 We denote by u � fui��g the coe�cient vector
of u�	 Then� the matrix�vector multiplication has the representation

A���u �

mX
jjj��

�

mX
jij��

ajiui��
�Tj� �Tj� �Tj� 
�

The scalar product has the even simpler representation

�z�A���u
 �� �z�Zu
 with Z � fajig�

In both cases� the cost O�m�d
 � O�log�d n
 grows only logarithmically with n	 We assume that the projection
u� can be computed by a fast trasform �e	g	� by FFT in the case of trigonometric polynomials
 with the cost
O�n� logn� 
 arithmetical operations	 As a result� we prove the following complexity bound	

Lemma ��� The storage and matrix�vector multiplication expenses for the block with a fully separable
expansion are bounded by

Nst�A
���
 � O�p�dn��d� 
� NMV �A

���
 � O�n� logn� � p�d
�

Now we discuss the wire�basket version of fully separable expansions	 For de
niteness� consider the case
d � �	 We analyse one typical block de
ned on the parametric domain Id��� � Id��� involved in the overall
expansion on �X��
 � �X��
� see Remark �	�� and corresponding to the product domain ��� � �	� 	 For
this purpose� we build the expansion of the order k� � O�p��d���
 which yields an asymptotically optimal
approximation of the kernel with complexity O�p��d��� ��p��
 of storage for blocks of level � � f�� �� � � � � p�p�g	
The corresponding contribution A���

�	 to the whole matrix block A��� has the form

A���
�	 � ST��h


� mX
jij��

mX
jjj��

aji � �Tj� �Tj�
 � �Ti� �Ti� 


�AS��h �� ST��hA�
S��h� ��	��


with the same notations as above	 The corresponding matrix operations with the rank�k matrix A� � k � m��
are analysed similarly as in Lemma �	�	

Remark ���
 A sparse approximation may be also applied to a more general class of kernels with bounded
mixed derivatives� see ���
��� If the Galerkin ansatz space is de�ned on the same sparse grid as the approxi�
mation of kernel function� we obtain an algorithm of complexity O�n
 for Case �B�� Note that the H�matrix
technique using sparse grids requires the weakened smoothness condition					 �j�j�j�js�x� y


�x��� ����x�dd �y��� ����y�dd

					 
 c jx� yj��	d��r �j
j�� j�j� 
 �� x �� y
 ��	��


for the kernel function s�x� y
� where �r is the order of integral operator �see Assumption 	����

��



��� Complexity of Matrix Addition and Multiplication

The class of H�matrices with the block structure of the special form ��	��
 corresponding to the fully separable
expansions for d � �� �� may be regarded as a special case of standard H�matrices but with an improved
representation of the rank�k�blocks �Rk�blocks
	 Obviously� the matrix block ��	��
 de
nes an Rk�matrix

with k � pd and needs a storage size of O�p�dn
��d
� 
� see Lemma �	�	 Note that the matrix block of the

standard H�matrix based on the kernel expansion of the same order has the complexity O�pd n� 
 for both the
storage and matrix�vector multiplication	

It is easily seen that the matrix addition of two blocks ��	��
 �using the same polynomial system fT�g

has the complexity O�p�d
	 Full complexity analysis of the truncated matrix�matrix multiplication is quite
involved	 However� the product of two blocks like ��	��
 is performed exactly in the given format �similar to

the case of Rk"matrices
	 It is equivalent to the calculation of the product cli of two tensor coe�cients a
j

i and
blk characterising the corresponding matrix blocks	 For the ease of discussion� we assume that the system fT�g
is ���orthogonal	 Then we obtain

mX
jjj���jij��

aji �Tj� �Tj� �Tj�
 � �Ti� �Ti� �Ti�


mX
jlj���jkj��

blk �T�� �T�� �T��
 � �Tk� �Tk� �Tk�


�

mX
jlj���jij��


� mX
jjj���jkj��

ajib
l
k

�A �T�� �T�� �T��
 � �Ti� �Ti� �Ti�
�

Hence� it has a logarithmic complexity O�p	d
	 The full analysis of the formatted matrix�matrix product will
be considered separately	

� BEM Applications

	�� General Remarks

Consider the case of a polygonal�polyhedral boundary � � ��� � � Rd � d � �� �	 To apply the wire�
basket expansions in BEM� we assume that for each pair of admissible clusters � � � � P �

� there exist two

parallelepipeds bX��
� bX��
 � Rd which contain X��
 and X��
� respectively� and are admissible considered
as spatial domains	 Speci
cally� they satisfy the geometrical admissibility condition� similar to ��	�
�

minfdiam� bX��

� diam� bX��

g 
 �	 dist� bX��
� bX��

� ��	�


This condition speci
es the choice of bX��
 and bX��
	 Then the desired expansion for s�x� y
� �x� y
 � X��
�
X��
� is the restriction of the separable L�harmonic extension

s��� ��
X
�

rX���E bX���a��x
 � rX���E bX���c��y
� ��	�


where a� and c� are the coe�cients from ��	�
 describing the kernel expansion on the product boundary of

spatial domain � bX��
�� bX��
 and E
bX���� E bX��� denote the elliptic extension operators onto

bX��
 and bX��
�

respectively	 The complexity of performing ��	�
 may depend on the geometry of the pieces X��
 and X��
	

If a planar piece X��
 �resp	 X��

 is parallel to some facet of � bX��
 �resp	 � bX��

 then the evaluation of
restrictions in ��	�
 needs O�n� log

� n�
 arithmetical operations	 Here n� is the number of degrees of freedom

on X��
	 For arbitrary plane section of bX��
 �resp	 bX��

 this expense is estimated by O�n� log
	 n�
� see

���� ��� for more details	 In the case of curvilinear patches X��
� X��
� the linear�logarithmic complexity
may be achieved by multilevel extension procedure or by using the L�harmonic polynomials �see Remark �	�

which will be discussed separately	 However� regardless of the particular extension procedure� we arrive at
expansions of the order O�pd��
 in rather general BEM applications	

��



	�� Anisotropic Laplacian

We consider the example of the kernel expansion in FEM�BEM for d � � corresponding to the anisotropic
Laplace operator	 We will be especially interested in the robust and accurate approximations for the singularly
perturbed equation	

For the most common operators of the form ��	�
� the fundamental solution is known in the explicit form
�see ��� and references therein� as well as ���
	

Consider the anisotropic elliptic operator with

L � diagfa�� � � � � adg� ai � ��i � �� b � �� c� � �� ��	�


S�x
 ��

�
�

�

p
detL

log �
jxjL for d � �

�



p
detL

�
jxjL for d � �

in the case d � �� a� � ��� a� � �� � � � 
 �	 Let � � � � P �
� be an admissible �rectangular
 block satisfying

condition ��	�
	 The suitable norm involved in the de
nitions of diam �� diamL and dist is now the anisotropic

norm jjxjj �� jjxjjL ��
�
x�L��x

����
	 The coe�cient dependent separation scheme is based on the criteria

�� � � �� ��� diam � � � diam � ��

for all sons � �� � �� � � of the parent cluster � 	 Fig	 � shows those clusters from the resulting tree T��I
 which
correspond to level � � � dependent on the singular perturbation parameter �	 For small enough �� we have the
decomposition into stripes like in the semi�coarsening variant of the multi�grid method	 The arising H�matrix
becomes close to the block�diagonal one with the blocks corresponding to the vertical grid�lines	

� � ��� � � ��
� � �

Figure �� Anisotropy�dependent separation strategies

The error and complexity analysis is identical to the case of the Laplace operator after applying the
coordinate transform y� � y� x� � �

�x� Therefore� we skip the details	
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