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Abstract

In this paper we deal with the existence and relaxation issues in variational
problems from the mathematical theory of elasticity. We consider minimiza-
tion of the energy functional in those classes of deformations which make the
problem essentially scalar.

It turns out that in these cases the relaxation theorem holds for integrands
that are bounded from below by a power function with power exceeding the
dimension of the space of independent variables. The bound from below can
be relaxed in the homogeneous case. The same bounds were used previously
to rule out cavitation and other essential discontinuites in admissible defor-
mations. In the homogeneous case we can also indicate a condition which is
both necessary and sufficient for solvability of all boundary value minimiza-
tion problems of the Dirichlet type.
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1 Introduction

In this paper we deal with the existence and relaxation issues in variational
problems of mathematical theory of elasticity. First general existence the-
orems were proved by J.M. Ball in [B1], for later work see e.g. [MQY],
[GMS]. The results of those papers assert that the minimization problem

J(u) = /L(Du)dx — min, u‘ag =f (1.1)

has a solution in a Sobolev class of mappings u : 2 C R® — R" if the
integrand L is polyconvex and has sufficiently fast growth at infinity. Here
polyconvexity means that

L(Du) = L(Du, adjDu, detDu), (1.2)

where L is a convex function of its variables and adjA is the adjugate matrix
of A.
The integral functional is sequentially weakly lower semicontinuous (s.w.l.s.)
in W?(Q; R") if
L(Du) > max{|Dul?, |adjDu|"}, (1.3)

where e.g. p >n—1,r > p/(p—1). In this case each minimizing sequence
converges weakly to a solution of the minimization problem. A remarkable
fact is that the theorem even covers energy densities L which meets the basic
requirement coming from elasticity, which is

L(Du) — oo as detDu — +0 and L(Du) = oo if detDu < 0. (1.4)

The proof relies on two observations: weak continuity of the functionals
Du — adjDu and Du — detDu with respect to the sequential weak conver-
gence in Sobolev spaces associated with the exponents in (1.3), cf. [B1], and
lower semicontinuity of integral functionals £ — [, F'(£(z))dz with convex
integrands F' with respect to weak convergence of sequences in L'.

Until this time no other existence or relaxation results meeting the re-
quirement (1.4) were available in spite of extensive work devoted to some
model cases where L has power growth at infinity or satisfies some estimates
from above and below with power functions having sufficiently close expo-
nents, see e.g. [BFM], [FM] and papers mentioned therein. Even the case



of energies generated by isotropic materials is not completely studied. Recall
that in the latter case L depends only on the main invariants of the matrix
Du!Du. The polyconvexity requirement holds for a number of such materials
(see [B1], [C]), however does not cover all of them. For recent discussions
see e.g. [B2], (B3], [MSSp|.

In the model case

A1|D’U,|p + Bl S L(DU) S A2|D'U/|p + BQ, A2 Z A1 > 0, p > 1 (15)

a condition, which characterizes s.w.l.s. property, is well known. In 1952
C. Morrey showed that an integral functional with a continuous integrand L
is lower semicontinuous with respect to weak™ convergence of sequences in
WL if and only if the integrand L is quasiconves, i.e.

/QL(A + D¢(z))dx > L(A) meas €2

for each function ¢ € Wy™, [Mo]. The fact that this requirement still
characterizes s.w.l.s. in W for integrands satisfying (1.5) was established
in [AF] in case of dependence of L upon x and u also. For a simple proof in
the homogeneous case see [Ma)], see also [Me].

In case of general integrands L with p-growth the quasiconvexification

1 .
—
meas §?

L9(z, u, A) = nf¢€W01,oo/QL(x,u,A+ Do(y))dy

presents an integral functional for which the relaxation property holds, i.e.
given u € W' we can find a sequence u, — u in WP such that J(uy) —
J%(u). Note that J9 < J everywhere and that J? is a functional which is
lower semicontinuous with respect to the weak convergence in W' since L%
is a quasiconvex function, see [AF]|, [D1], [S4]. Therefore in this case we
have the relaxation result in full generality, i.e. the functional J9¢ presents
the lower semicontinuous extension (in the weak topology of W) of the
original functional J.

Recall that quasiconvexity implies rank-one convezity, where L : R™ X
R" — R is called rank-one convex if for every matrices A, B € R™*" with
rank(A — B) =1 the function t — L(A + (B — A)t) is convex, cf. e.g. [B1],
[BM]. Moreover the converse is false if m > 3, c¢f. [Sv1]. The case m =2 is
an open problem. In the case m = 1 quasiconvexity reduces to convexity.



Note that quasiconvexity by itself is not enough to assert s.w.l.s. of gen-
eral integral functionals. In fact, an example in [BM, §7] shows that even
the simplest quasiconvex integrand |detDu| is no longer weak lower semicon-
tinuous with respect to the weak convergence in WP if p < n (the latter
holds if p > n). Using this example one can construct an integrand satisfy-
ing the requirements (1.2), (1.4), and the requirement L(Du) > a|DulP + v
with a > 0, p > 1, which is not sequentially weak lower semicontinuous (see
e.g. [JS]). However the fact that quasiconvexity or similar property fails to
characterize s.w.l.s. in the latter case can still be explained by slow growth of
integrands at infinity. In fact derivation of the total energy in the form (1.1)
holds under assumptions of the continuum body model, cf. [C, Ch.2]. At the
same time failure of assumptions (1.3) may result in occurrence of cavitation
and other essential discontinuites (i.e. in this case the total energy can have
a different form). The latter phenomena was discovered by Ball in [B4] and
was studied in many subsequent papers, see e.g. [JS], [MSp]|, [MSSp| and
papers mentioned therein. In particular Svefak [Sv2] and later Miiller, Qi, &
B.S.Yan [MQY] showed that the assumptions (1.3) or their weakened form
p>n—1,r>n/(n—1) prevent cavitation. Therefore one still may expect
that the lower semicontinuity and the relaxation results hold for integrands
satisfying (1.3), i.e. in the case when admissible deformations do not allow
essential discontinuites.

In this paper we are able to give complete analysis in cases when the
minimization problems are essentially scalar. We study minimization in the
classes of deformations which include the following ones:

1. generalized anti-plane shear deformations

w:(xy, .oy xy) = (1, Tp1, h(21, -2 xy)), By, >0 ace..

A subclass consisting of deformations with h,, = 1 a.e. is known as
a class of anti-plane shear deformations. In this case detDu = 1 a.e.
The slightly more general case which we consider here requires that we
deal with integrands L : 2 — R U {oo}, see (1.4).

2. u € ug+ V. a.e., where given ¢ € R" the set V, is defined as

Vei={g € Wl’p(Q;R") tg=cQq}.



In fact, we can extend the second class to the class of functions u €
WhP(Q; R™) with u € ug + V,, a.e. in €, where the sets ;, | € N, are
Lipschitz, open and disjoint and meas {2\ U, } = 0.

In all cases the problem (1.1) can be rewritten as a scalar problem. There-
fore we will assume further that the Carathéodory integrand

L:QxRxR"— RU{oo}
satisfies the following basic assumptions

(H1) for a.e. z € Q the integrand L is bounded in a neighborhood of each
point (x,u,v) € R*! where its value is finite

(H2) L(z,u,v) > a|vlP+v, p>1, a>0.

To state the first result recall that a function F' : R™ — RU{oc} is called
conver at a point vy if

for every v; € R, ¢; > 0,4 € {1,...,q}, such that Y ¢; =1, 3 ¢;v; = vyg. We
say that F is strictly convex at vg if the inequality (1.6) is strict under the
additional assumption v; # vy, i =1,...,q.

Recall that a function F'is convex at a point vg if and only if its subgradient

OF (vg) :={f € R": F(v) — F(v) — (f,v —1v) > 0,Vv € R"}
is nonempty, cf. [S1], [Y1, §56].

Theorem 1.1 Let L satisfy the requirements (H1), (H2) with p > n.
Then the function L**, which is obtained by convexification of L with respect
to v, is a Carathéodory integrand which satisfies (H1), (H2).

Moreover, for each ug € WhY(Q) with J¢(uy) < oo, where J¢ is the
integral functional associated with the integrand L**, there exists a sequence

up € WHH(Q) such that uk‘aﬂ = uo‘ag, ur, — ug in WHH(Q), and

J(ug) = J(ug) as k — oc.

The equality J(uy) = J(ug) holds if and only if for a.e. x € Q the func-
tion L(x,ug(x),-) is convex at the point Dug(x). In this case the convergences
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up, — ug in WU J(uy) — J(ug) imply the convergence Duy — Dug — 0 in
L' (and also the convergence L(-, ug(+), Dug(+)) — L(-,uq(+), Dug(+)) in L')
if and only if for a.e. x € Q the function L(x,uy(x),-) is strictly convez at
the point Dugy(x).

Remark 1.2 The assumption (H1) does not guarantee a possibility to
approximate ug by piece-wise functions wuy with J(ug) — J(ug). In fact, for
each pair of convex functions 6,6, with superlinear growth and such that
lim|y| 00 O02(v) /01 (v) = 00 one can construct an integrand L : R xR xR" —
R such that #; < L < 6, and for some Sobolev function wuy there is no
approzimation in energy by Lipschitz functions w; with u, — uy in L', see
[S2]. Therefore the standard approach through approximation in energy
functions with finite energy by smooth or piece-wise affine ones (see e.g.
[ET], [MS], [Bu]) can not be applied in this case.

Remark 1.3 The theorem implies that J¢ is the lower semicontinuous
envelope of J since the functionals having Carathéodory integrands with con-
vex dependence on Du are automatically sequentially lower semicontinuous
in the weak topology of W' see e.g. [Ba], [D2], and [S2]. Therefore the
relaxed problem has a solution.

In case of homogeneous problems we can prove the relaxation result for
L satisfying the requirement (H2) with p > n — 1. The latter inequality is a
part of the set of conditions preventing occurrence of cavitation, see e.g. [Sv
2], [MQY]. Moreover in this case we can indicate a condition characterizing
solvability of all minimization problems of the type (1.1).

Theorem 1.4 Let L : R" — R U {oo} be a continuous function such
that L(-) > a| - [P+, where a« > 0, p >n—1 if n > 3 and L has at least
superlinear growth at infinity if n = 2. Then:

1) for each boundary datum f with J°(f) < oo the problem

J¢(u) — min, u‘aﬂ =f, ue Wh(Q)
has a solution. Moreover for each such solution ug there exists a sequence

up € ug + Wyt (Q) with J(up) — J(ug), up — ug in W5(Q). We have
J(ug) = J(up) if and only if L is conver at Dug(x) for a.e. x € Q. In



this case the convergences uy — ug in L', J(ux) — J(ug) imply the conver-
gence Duy, — Dug in L' (and automatically the convergence L(Dug(-)) —
L(Duy(+)) in L') if and only if for a.e. x € Q the function L is strictly
convez at the point Dug(x).

2) Moreover for each admissible f the original problem
J(u) — min, u‘aﬂ =f, ue WH(Q)

has a solution if and only if the following condition holds for each v € R"
with L¢(v) < 00

(C)  either OL(v) # 0 or there exist vy, . .., v, such thatv € int co{vy,...,v,}

and N, 0L(v;) # 0

Remark 1.5 Note that arguments similar to the ones we use in the
proofs of Theorem 1.1 and Theorem 1.4 can be applied to show that the
relaxation property holds on deformations of the types 1 and 2 for the rank-
one convexification

L™ :=sup{H : H < L, H is rank-one convex in Du}

of L provided L has sufficiently fast growth at infinity. Therefore in those
particular cases when L' gives a lower semicontinuous functional we ob-
tain the relaxation result in full generality (at the deformations of the type
discussed above).

We will include a detailed proof of this assertion in a forthcoming paper.

Remark 1.6 Note that the condition (C) from Theorem 1.4 character-
izes solvability of all boundary value minimization problems under a number
of different assumptions. In [S3] we showed that superlinear growth of L
at infinity is enough to assert that it characterizes solvability in the class of
boundary data satisfying so-called bounded slope condition, see [Gi]. More-
over an observation of Sverak [Sv3] allows us to conclude that a similar result
holds if L meets the requirement of p-growth (1.5), see [S3] for more detailed
information.

Note also that we will prove that given v the condition (C) characterizes
solvability of the minimization problem with linear boundary data f :=[,.



This fact was established in [Ce]|, [F] for continuous integrands with super-
linear growth at infinity and our arguments follow the lines of the proof from
those papers.

All the results still hold if continuity of L is replaced by lower semicontinu-
ity. To show this one can refine the arguments given here using constructions
from [S3]. However, this is not the purpose of the paper and we leave the
details to the interested reader.

Note that previously minimization of isotropic energies in the class of
anti-plane shear deformations was studied in case of dependence of L only
on the first invariant of the matrix Du!Du, which is |Du|?, cf. [BP], [GT],
[R], [SH]. In this case the requirement L = L(|Du|) does not contradict the
assumptions (1.5) under which standard relaxation theorems hold and, con-
sequently, the attainment question can be reduced to finding a solution of the
relaxed problem along which values of the original and the relaxed integrands
coincide. Our results show that the same scheme still can be applied in the
case of general anti-plane shear problems, including the nonhomogeneous
case.

Throughout the paper we use standard notation. For a subset U of R"”
the sets intU, coU, and extrU are respectively the interior of U, the convex
hull of U, and the set of extreme points of U (a point a belongs to extrU if it
can not be represented as a convex combination of other points of U). The
set B(a, €) denotes the open ball of radius € which is centered at the point
a € R". Q(a,e€) is the open cube with side length € and the center a. The
function [, is an affine function with the gradient equal to a everywhere.

We assume that 2 C R" is a bounded Lipschitz domain unless otherwise
indicated. A function u : Q — R™ is piece-wise affine if u € WhH°(Q; R™)
and there is a decomposition of €2 into a negligible set and an at most count-
able collection of the closures of Lipschitz domains on each of which the
restriction of u is affine.

The weak and strong convergences will be denoted — and —, respectively.

The paper is organized as follows. In §2 we recall some basic facts from
Young measure theory, which presents some technical tools necessary in this
paper. We view Young measures as measurable functions, see [S4], [S5], since
it allows us to use some additional tools that are not easily available from the



standard viewpoint of Young measures as elements of the duals of appropriate
Banach spaces. These properties are especially convenient for studies of the
behavior of integral functionals on weakly convergent sequences. In §3 we
prove some auxiliary results. In §4 we prove Theorem 1.1 as a consequence
of a more general Theorem 4.1. In §5 we prove Theorem 1.2.

2 Basic facts from Young measure theory
Recall the definition of Young measures.

Definition 2.1 A family (v;)zcq of probability measures v, € Co(R!)
15 called a Young measure if there exists a sequence of measurable functions
2k + Q — R! such that for each ® € Cy(RY)

D(z1,) —* @ in L®(), where ®(z) = (P;v,)
(here and later on (®;v) denotes the action of the measure v on @ ).

Recall that each sufficiently regular sequence of measurable functions con-
tains a subsequence generating a Young measure. This result shows that
Young measures presents reasonable extension of standard functions.

Theorem 2.2 ([Y1], [Y2], [T1], [B5]) Each sequence of measurable
functions & : 0 — R! contains a subsequence generating a Young measure
(Va)zeq provided it is bounded in L (), r > 0. Moreover this subsequence
converges in measure if and only if v, is a Dirac mass for a.a. x € ).

A starting point of our approach is the characterization of Young measures
as measurable functions given by Theorem 2.3.

Recall that the weak* convergence of elements of the set M.(R'), which
is the set of all Radon measures supported in R' with the total variation
bounded by ¢, is equivalent to convergence in the metric

> 1
= siar (@i — (Piv)),
p(1.) = 3 g (@) = (@)



where {®;} is a dense sequence of elements of the space

Co(R') = {@ € C(R') : lim |®(v)| = 0}.

The metric p characterizes Young measures.

Theorem 2.3 [S4]

Let (vy)zeq be a family of probability measures. Then the following asser-
tions are equivalent:

1) (Vp)zeq is a Young measure,

2) the function v : Q — (M, p) is measurable ,

3) the maps x — (®;v,) are measurable for all ® € Cy(RY).

The idea of our approach is to use the characterization 2) of Young mea-
sures as measurable functions. Although these functions have more complex
nature than the standard measurable functions with values in R", they still
have quite a broad spectrum of properties. In fact these properties allow us
to prove all standard results of Young measure theory, cf. [S4], [S5].

The three basic properties of these functions are the following.

1. Note that the convergence (®; 1/(’“,)> —* (®;1(,) in L™ means conver-

gence of the integrals [ (®; vF)dx to the integral [5(®; v, )da for all measur-
able subsets (2 of 2. On the other hand the functional

® — (1/meas Q) /Q(CI); Vg )dx

is given by the action of a Radon measure which we denote Av(v,),cq, i-e.

. 2\ 1 . [
(% AV(1)gea) = — /Q (®; v, )dz, ¥ € Cy(RY).

To compare actions of two families of measures (), g and (v2),.q we
have to compare the distance between the measures Av(v,), .4 and Av(v2), .4
in p-metric. The following proposition presents such estimates, see [S4], [S5]
for proofs. Here we consider families of those Radon measures, which are
elements of M. (R!). In this case the average Av is also an element of M, (R!).
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Lemma 2.4 Let v',v? : Q — (M., p) be measurable functions.

1. If p(AV(1Y) ey AV(1V2) seq) < 0 with Q C Q such that meas (Q\ Q)
dmeas Q, then p(Av(v))seq, Av(V2)seq) < (2¢+ 1)6.

2. If p(vh,v?) < 6 for a.a. @ € Q C Q with meas (Q\ Q) < d meas 9,

)T

then p(Av(v))zeq, Av(V2)seq) < (2¢+ 1)6.

IN

In particular given a measurable function v : Q — (My, p) we have

P(AV(Vy)yeB(m,e), vz) = 0 ase— 0, a.e in .

The other two properties of Young measures come from the general theory
of measurable functions with values in a compact metric space.

2. The second property of such functions is the Lusin property.

Theorem 2.5 Let Q2 C R"™ be a measurable set, and let (K,d) be a com-
pact metric space. The function £ : Q — (K, d) is measurable in the usual
Lebesque sense (i.e. preimages of closed sets are measurable sets) if and only
if it has the Lusin property: for each € > O there exists a compact subset (),
of 0 such that meas (2 \ ) < € and the function £|  is continuous.

Qe

The proof of this theorem is almost identical to the proof in the case
(K, d) equals R" with the Eucledian metric.

3. The third property is a version of the theorem on measurable selections
proved first in [K-RIN] (for more sophisticated versions of such theorems
see [CV]). This property shows how to construct a Young measure (v;).cq
knowing that for a.a. x € (2 all possible choices of measures v, are given by
the sets V' (x).

Let € be a bounded measurable subset of R™ and let (K, d) be a compact
metric space. A mapping V :  — 25 is a closed measurable multi-valued
mapping if, for a.a. x € Q, the set V() C K is closed and if for each closed
subset C' of K the set {x € Q: V(x) N C # (0} is measurable.

Theorem 2.6 IfV : Q — 2K is a closed measurable multivalued mapping
then there exists a measurable selection, i.e. a measurable mapv : Q — (K, d)
such that v(z) € V(z) for a.a. x € Q.
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We need also a result on relation of the values of an integral functional
along a sequence and the value it assumes on a Young measure generated by
the sequence.

Theorem 2.7 Let Q) be a bounded measurable subset of R™ and let L(x,v) :
QO x R — RU{oc} be a Carathéodory integrand which is bounded from be-
low. Suppose that a sequence of measurable functions & generates a Young
measure (Vy)zeq-
Then
lim inf QL(ar,fi(x))dx > /Q<L(:1:, ); vy )de.

1—00
Moreover, lim;_, [ Jr: L(z, &(2))de — [ Jri(L(z,v); ve)dz if and only if
the functions L(-,&(+)), i € N, are equi-integrable. In this case L(-, &(-)) —
(L(-,v); vy) in L'

Proof
This can be found in [Ba], [Kr|, [S4] in the case when L satisfies the
requirements of the theorem and has finite values.

In the general case the result follows by approximation the integrand L
by the integrands Ly := min{L, k}. QED

3 Some auxiliary results
In this section we prove three auxiliary lemmas.

Lemma 3.1 Let L : R — R U {oo} be a continuous function. Let
U1, ...,V be such points in R" that Y cv; = F for some ¢; > 0 with
Siq¢ =1 and L(v;) < oo for each i € {1,...,q}.

Then, there exists a sequence of piece-wise affine functions u, € W1°(Q)
such that uk‘aﬂ =lp, Duy € UL, B(v;, 1/k) a.e., and

meas {z € Q: Dug(z) € B(v;,1/k)}
meas €

— ¢, 1€{1,...,q}
(in this case we have also J(uy) — S ¢;L(v;) meas ).

If F € intco{vy,...,v,} then there exists a piece-wise affine function
u € lp + Wy™(Q) with the property Du € {v, ..., ve} a.e.
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Lemma 3.2 is a perturbation argument which will allow us to approximate
those Sobolev functions which are a.e. differentiable in the classical sense by
more regular ones.

Lemma 3.2 Let ug € W (B(xo,¢€)) be a.e. differentiable in the classical
sense in a subset of B(xg,¢€) of full measure (here we implicitly assume that
ug s defined everywhere, i.e. ug is a fized representative of its Sobolev class
of equivalence) and let xy be a point of this set.

Let vy, ..., v, be extreme points of a compact convez set such that Du(xg) €
int co{vy,...,v,}. Define the function

ws(+) 1= uo(zo) + (Dug(xo), - — o) + 1121?22(1)2 — Du(zp),- — xo) —s. (3.1)

There exists a sequence of sets §; C B(xg,€), i € N, and a sequence

s; — 0 such that for every i € N we have xq € €);, meas 0§2; = 0,

B(xg,0s;) C Q; C B(xg, s;/6) with some 6 > 0, (3.2)

and if u; = ws, n ; and u; = ug in B(xg,€) \ Q; then u; € WH(B(zg,¢€))
provided © € N 1s sufficiently large.

In the following lemma we show that each probability measure with finite
action on a continuous integrand L : R — R U {oo} can be approximated
in energy by convex combinations of Dirac masses.

Lemma 3.3 Let L : R" — R U {00} be a continuous function with
superlinear growth, i.e. L(v) > 6(v), where 8(v)/|v| — oo as |v] — oco. Let
also v be a probability measure supported in R"™ such that (L;v) < oo and let
A be the center of mass of v.

Then there exists a sequence of convexr combinations of Dirac masses
v == 3;clo; centered at A and such that v; —* v, (L;v;) — (L;v), and
dist(supp Vj,éupp v) =0 as j — oc.

We will utilize the following version of the Vitaly covering theorem.

A family G of closed subsets of R" is said to be a Vitaly cover of a
bounded set A if for each # € A there exists a positive number r(z) > 0,
a sequence of balls B(z, ¢;) with ¢, — 0, and a sequence Cj € G such that
xz € C, Cx C B(x,¢), and (meas Cy/ meas B(x,¢€)) > r(x) for all k € N.
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The version of the Vitaly covering theorem from [Sa,p.109] says that each
Vitaly cover of A contains at most countable subfamily of disjoint sets Cj
such that meas (A \ UCy) = 0.

Proof of Lemma 3.1
Without loss of generality we can assume that F' = 0.

Let by,...,b, be extreme points of a compact subset in R" with 0 €
int co{bs,...,b,}. Consider the function

we(+) ;= max (v,-)—3s, s> 0. 3.3

(") ve{bl,...,bq}< ) (3:3)

It is clear that ws(+) is a Lipschitz function such that Dwg € {b,...,b,} a.e.
and wy(-) = 0 in OPs, where Py are polyhedrons with the property P, = sP;.

We can decompose €2 into domains €); := x; +s; P, © € N, and a set N of
null measure, i.e. Q := Ujen(z;+5;P1)UN. We define u(z) := wy, (v —x;) for
z € x;+ 5P, i € N, u=0otherwise. Then u € W, "°(Q), Du € {by, ..., by}
a.e. in ). This proves the second part of the lemma.

We first prove the first part of the lemma in case ¢ = 2, i.e. when
F = C1U1 + CoUs.

Let £ € N. We can take by = vy, by = vy and assume that b; € B(vy, 1/k),
i € {3,...,1}, are such points that 0 € int co{by, ..., b}, where by, ..., b, are
extreme points of a compact convex set. By (3.3) we can find a piece-wise
affine function u, € W, () such that Duy € {by,...,b}. It is clear that
Duy, € B(v1,1/k) U B(vq,1/k) a.e. and

meas {x € Q : Dug(x) € B(v;, 1/k)}
meas €

— ¢, i=1,2.

This proves the lemma in case ¢ = 2.

We assume that the lemma is valid for ¢ > 2. We will show that it
also holds for ¢ + 1. We define ¢ := (¢; + ¢2), 0 := (c1v1 + cov3)/¢. Then
we can apply the induction assumption to the case of convex combination

f;} c;v; + ¢v to find a sequence of piece-wise affine functions u, € WOI’OO(Q)
such that Duy, € U, B(v;, 1/k) U B(#,1/k) a.e. and

meas {z € Q: Dug(z) € B(v;,1/k)}
meas €

— ¢, 1€{3,...,q+ 1},
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meas{z € Q: Duy(z) € B(v,1/k)}
meas )

Let 7 € N. We can apply the same construction as in the case ¢ = 2
to perturb every function u := uy, where k € N is sufficiently large, in each
open subset of Q := {z € Q : Du(z) € B(#,1/k)} where Du is constant in
such a way that the perturbation ¢; has the property D¢; € UL B(v;,1/5)
a.e. in the set. This is possible since B(9,1/k) C intco{b,...,b} for all
sufficiently large k. Note that

— C.

meas {z € Q: D¢; € B(vi, 1/5)}

— ¢, 1€ {1,2}, as j — 0.
meas )

Therefore we can select a subsequence uy (not relabeled) and a sequence of
their perturbations ¢y with j(k) — oo as k — oo such that it meets all the
requirements of the theorem. Then the claim of the theorem holds for ¢ + 1.
Then it holds in the general case.

The proof is complete. QED

Proof of Lemma 3.2
Without loss of generality we can assume that ug is the standard repre-
sentative of its Sobolev class, i.e. we have

I )uo(x)dx
— 1 Zo,€
to (o) 50 meas B(xo, ¢€)

for all zp € Q where the limit exists (this holds a.e. in €2). In fact it is not
difficult to see that the standard representative is a.e. differentiable in the
classical sense if there exists another representative with this property.
Let ©Q be the set of those points of Q where the function uy has the
classical derivative. Then meas (Q\ Q) = 0. Let zy € Q.
Consider the function
fs(-) = max(v; — Dug(zp),-) — s

1<i<q
Note that Df; € {v; — Dug(zo) : i =1,...,q} a.e. and fi|,p, = 0, where

P, ={x: {25%1(% — Dug(xg), z) < s}

15



is a compact set with Lipschitz boundary and nonempty interior. Moreover
Ps = S.Pl.

Note that for each s > 0 we have

fs() - fs(o) = maxve{vl ..... 'uq}<U - DU(III()), > Z 6| : |> J > 07

f(0) = —s, f(z)=sfor x € Py.

Then for all sufficiently small s > 0 we have
fs(' — l’o) < Uo() — Uo(l'o) — <DUO(I0), - — I0> in o + Ps/z,

fs(- = x0) > uo(+) — uo(z0) — (Dug(wo), - — 20)

in a neighborhood of zy + 0P, since the right-hand side of the inequalities
is o] - —o|).
We define €2, as the set of all those © € xy + s where

fs(- — o) < up(x) — up(wo) — (Dug(xo), - — o). (3.4)

The set Q; CC (zo+ Pas) consists of an open set and a set of null measure
. In fact if y € Q4 and Du(y) exists in the classical sense, then (3.4) holds
in a neighborhood of y. Therefore we can assume that the set {2, is open.
To prove existence of a sequence s; — 0 such that meas (9€2,,) = 0 note that
meas {Qs, \ Q5,} = 0 if & < 6;. Therefore § — meas Qs is an increasing
function with jumps at the points ¢ where meas (0€25) > 0. Since each
monotone function has at most countably many jumps we deduce existence
of a sequence s; — 0 for which meas (0€2,,) =0, i € N.

Recall that a function u € L'(Q) belongs to the class W!'() if and only
if it has a representative @ (i.e. @ = w a.e. in ) such that @ is absolutely
continuous on almost all lines parallel to the coordinate axes and the partial
derivatives belong to the class L'(Q), see e.g. [EG, §4.9]. The standard
representative of a Sobolev function always has this property. We will use
this characterization to show that the function w; := min{ws,, ue} lies in the
class Whi(zg + Pas,). In fact if for (yi,...,yj-1,Yj41,---:Yn) € R"' the
function

y — uo(y) == uo(Y1, - Yj=1,Y> Yj+1, Y> Yn)

16



is absolutely continuous and if

meas {y : (yb e Yi-1Y Y541, - >yn) S (Q \ Q) U (aQsl U lel)} = 07

then we can use openness of 2, to show that the function

ﬂl() = ui(yb e Y15 Y1, yn)
is also absolutely continuous and

]| 2 < 2e {2%’2 |vi| + [|to|] 11

This proves that u; € Wh!(xg + Py,). Then u; € WH(B(xg, €)) if u; := ug
in B(xg,€) \ (0 + Pas,) and if 7 € N is sufficiently large.

The lemma is proved.

QED

Proof of Lemma 3.3

Let v be a probability measure with finite action on L. Let A be the
center of mass of v. Without loss of generality we can assume that A = 0.

We will construct convex combinations of Dirac masses v; = chévg,

j € N, centered at 0 with the properties

(Lyvjy — (Lyv), v; = v, max dist(v/, supp ) — 0, as j — co. (3.5)

There exists a point A’ € R" and € > 0 such that |L| < M; in B(A', 2¢)
and v(B(A',¢€)) = ¢ > 0. For each integer j > M consider the set

Ui={veR": L(v) <j}

We can decompose Uj into sets U, i = 1,...,1(j), U]Zf', i =1,...,0'(j),
with diameters minorizing 1/ in such a way that the oscillation of L in
each element of the decomposition does not exceed 1/j, and U;-" C B(4'¢),
' =1,...,l'(j), Ui CU; \ B(Ae), i =1,...,1(j).

Let ¢j; := v(U}), ¢j 0 == v(U) and ¢; := v(R™\ U;). Note that

U ! 4
G+ D+ ci=1, Y ¢y =co.
i=1

i'=1 i'=1

17



Let Ab € Ul i = 1,...,0(j), AY € U/, ¢ = 1,...,I'(j). Consider the
probability measure

Cj.i Cii
uj:—lec A1+Z T 1o oo

Let z; be the center of mass of p;. It easy to check that superlinear
growth of L at infinity implies the convergence z; — 0, j — oo. Then the

measure e iy
e 77 Y
7/] —21_ .5(A1—Z +Z (SAz.
il C] J “co

is centered at 0. Moreover, by construction we have
v;i = v, (L;v;) — (L), max dist (v, supp v) — 0, as j — oo,
(2

This way we establish existence of the measures v; with the properties
(3.5). The proof is complete. QED

4 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We start with an auxiliary result which
has certain interest by itself.

Theorem 4.1 Let L satisfy the requirement (H1) and assume that L(x,u,v) >
0(v), where the function 0 : R™ — R has superlinear growth.

Assume that the function ug € WHY(Q) is a.e. differentiable in the clas-
sical sense (here we consider a fized representative of the Sobolev class) and
assume that (Vg)zeq is a Young measure with the centers of mass at Dug(x)

a.e. and with the finite action on L, i.e. [o(L(x,uo(x), );vy)dx < co. Then
there is a sequence uy € WHH(Q) such that Duy, generates the Young measure
(VJ:)J:GQ and

up — ug in WH(Q), uk‘

= U
o0 O‘BQ’

L(-,ug(+), Dug(-)) = (L(-, ug(:),v); v(y) in L' (4.1)
In particular J(ug) — [o(L(z,uo(x),"); vy)de.
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Proof of Theorem 4.1
For each £ € N there exists a compact subset {2, of the set int {2 such
that meas (2 \ ) < 1/k and the functions

D’U,o : Qk; — Rn,

L: Q% xRxR"— RU{o0},
v:Q — (My(R"),p),
x — (L(z,uo(2),); Va), T € Qp,

are continuous (the metric p was defined in §2). Q denotes those subset of
the union of the sets of Lebesgue points of €2, £ € N, where the requirement
on boundedness of L holds, i.e. for each z € Q the integrand is bounded in
a neighborhood of each point (x, u,v) where it takes finite value.

The probability measure obtained by exchanging the center of mass of v
by A will be denoted v ¢ A, e.g. dpo A =104.

By Lemma 3.3 given € > 0 and = € ) we can find a measure 7, which is
a finite convex combination of Dirac masses, such that it has the same center
of mass as v, and

p(Va, ) < €/2, [(L(x, uo(2),-); va) = (L2, u0(@), ) Pa)| < €/2. (4.2)

Let xy € Q and assume that v1,...,V, are extreme points of a compact
convex set with Dug(zg) € int co{vy,...,v,}. By Lemma 3.2 for each n €]0, €]
we can find s; > 0 and Q; C €2, 7 € N, such that s;, — 0 as ¢« — oo and if w;_,
1 € N, are the functions associated with the vectors

v := Dug(xo) + 1(vi — Dug(x0)), - - ., v} := Dug(z0) + n(vg — Dug(w)),

then u; € W (Q) with u; = w,, on €; (consequently Du; € {vf,...,v}} a.e.
in €;) and w; = uy otherwise, and

B(w,9s;) C Q; C B(xg,s;/9) with 6 =d(n) >0, i € N. (4.3)
Note that in this case

lim sup(ess sup, cg, {1, (¢) — uo(20)| + | Dy, (2) ~ Dug(ao)]}) < 1.

1—00
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If » > 0 is sufficiently small then (4.2), (4.3) and the assumptions on L imply
the following inequalites for all sufficiently large i € N

p(Vgy Ugy © Dws,(x)) < € ae. in Q; (cf. Lemma 2.4), (4.4)

/Q' [(L(x, ws, (), ); Vgy © Dws, (x)) — (L(x0, ug(x0), *); Uap)|dr < €/2 meas ;.
Note that the last inequality, (4.2), and the assumptions on € imply

/Q. [(L(z, ws,(x),-); DgyoDwg, (x)) — (L(z, ug(x), *); Vo) |[dx < emeas Q; (4.5)

if + € N is sufficiently large.

Since Q contains almost all points of Q and wuy is a.e. classically differen-
tiable we can apply the Vitaly covering theorem and Lemma 3.2 to decompose
Q) into at most countable collection of the sets () with meas (9€;) = 0 and
a set of null measure. Let x; be the points zy associated with the sets €2,
k € N, and let w,, be the functions associated with x; and €, for which both
(4.4) and (4.5) hold. Defining u, as wy, in €, k € N, we obtain a Sobolev
function which is piece-wise affine in each 2, and coincides with ug on 0€.

Define a Young measure (V5)zeq as Uy, © Du(z) for x € Q, k € N. By

Lemma 3.1 we can find a sequence of functions u§ € u. + Wy™(Q), j € N,
which are piece-wise affine in each set €2 and which satisfy Ul = U In o,

L u(-), Du§(+)) = (L ue(+), ) v)) in LY (), (4.6)

(5Du§(x))weﬂk —* (V;)xeﬂka .] — 00, k € N> (47)

where the latter means that the sequence Du? generates the measure (v5),cq,
in Qk
By (4.5), (4.6) and since € > 0 can be taken arbitrary small we can find

a sequence u;-j e Wh(Q) with ¢, — 0 as j — oo having the properties
ui — up in WH(Q), uy o0

= ug, and

/Q{L(x, uy (x), Duj (x)) — (L(x, ug(x), -); vz) yda — 0.

Applying Lemma 2.4 together with (4.4), (4.7) we can select the sequence
uj with one more property

(6Du;j(a:))9’7EQ =" (Vg)zeq, J = ©.
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This proves Theorem 4.1. QED

To prove Theorem 1.2 we will need one more auxiliary lemma which is
an extension of a lemma in [ET,Ch.9] to the case of integrands with possibly
infinite values.

Lemma 4.2 Let Q) be a bounded open subset of R™ with Lipschitz bound-
ary and let L : Q@ x R x R™ — R be a Carathéodory integrand which sat-
isfy both (H1) and the inequality L > 6 with a continuous convez function
0 : R" — R having superlinear growth.

Then the integrand L, which s obtained by convexification of L with
respect to v, i.e.

q q q
L(z,u,v) =inf{>_ ¢;L(x,u,v;) : g € N,¢; >0, ¢; =1, ¢v; = v},
i=1

i=1 i=1

is a Caratheodory integrand which satisfies (H1) and the inequality L¢ > 6.

Moreover for a.e. © € € and all u € R, v € R" there exist ¢; > 0,
v; # v, 1€ {l,...,n+2}, such that >;¢; =1, ¥, c;v; = v, and L(x,u,v) =
SicL(x,u,v;).

Proof

The facts that L¢ > 0 and L° satisfies (H1) are obvious. To prove the
lemma it is enough to show that if ' is a compact subset of 2 such that the
restriction of L to Q' x R x R™ is continuous, then the restriction of L¢ to
the same set is continuous.

Note that if F': R" — RU{oo} is a continuous function with superlinear
growth then by the Carathéodory theorem, cf. [ET], we have

n—+2 n—+2 n+2

Ff(vy) = inf{z ¢ F(v;) ¢ >0, Z ci=1, Z CiU; = U}
i—1 i—1 i—1

Moreover there exist 2,09, i € {1,...,n+ 2} at which the infimum on the
k

right-hand side is attained. To show this we take a minimizing sequence ¢},
oF i€ {1,...,n+2}. We can find a subsequence (not relabeled) such that

for each i € {1,...,n+2} we have v¥ — o), ¥ — & or v¥ — o0, ¥ — & =0,
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Note that if vf — oo or F(v) = oo then ¢ = 0. Assuming that ¢} F'(v)) = 0
in those two cases we infer that

n+2 n—+2
; G F(v)) < h%r_l}&lf; FF(vf).

These arguments also show that L¢: Q' x R x R" - R U {oo} is a lower
semicontinuous function. Moreover, because of continuity of the restriction
of L, we infer upper semicontinuity of L¢ at points where its value is finite.
In case L¢(z,u,v) = oo and (x;,u;,v;) — (z,u,v) we have L¢(x;, u;,v;) —
00, © — 00, since otherwise we can use the above arguments to show that
L¢(x,u,v) < oo, which is a contradiction. Therefore L¢ : ' x R x R" —
R U {00} is both lower and upper semicontinuous. Then it is continuous.

This way we establish that L¢ is a Carathéodory integrand. QED

Proof of Theorem 1.1

Note first that by Lemma 4.2 the integrand L€ is Carathéodory and sat-
isfies both the requirements (H1) and (H2). It is clear also that the subset
of Q where L(z,uq(x), Dug(z)) = L¢(2,ug(z), Dug(z)) is measurable. Let
be its complement.

We will show that there exist measurable functions ¢; : Q — [0,1], v; :
Q>R ic {1,...,n+ 2}, such that

Uz() % DUO(-), 1€ {1, o, nt 2}, 72 Cz() =1, HZJFICZ()%() _ Duo(-),
ECZ()L(,UO(),UZ()) = Lc(-,UO('),DUO(-)) a.e. in Q (48)

Then the family of probability measures (v;),cq, where v(z) = Y47 ¢;(2) 0y, )
in Q and v(2) = Opug) in Q \ Q, has measurable actions on elements of
Co(R™). By Theorem 2.3 (v,)4eq is a Young measure.

Applying Theorem 4.1 to this case we can assert existence of a sequence
up € WH(Q) with the properties
up — ug in WHH(Q), U/c‘ L(-, up(-), Dug(+)) = (L, uo(-), v)i vgy) in LY,

where in view of (4.8) the identity (L(z,uo(z),"); vs) = L(z, ug(z), Dug(x))
holds for a.e. = € €.

:U/O‘

a0 o0’
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This proves the theorem.

 To establish (4.8) we will construct a sequence of compact subsets €2; of
Q such that €; N Q;, = 0 if j; # jo, meas (2 \ UZ,9;) = 0, and for each
j € N the functions

L:Q; x RxR"— RU {o0},

U0§Qj—>R, DUOQJ—>R”

are continuous.

It is enough to establish (4.8) in case Q = ;. We will construct by
induction a sequence ) of pairwisely disjoint compact subsets of Q such
that (4.8) holds in each set €, and meas {Q\ UpQ;} = 0.

Assume that the sets Qj, j € {1,...,k — 1}, and the functions v; :
Uf;llflj — R, ¢ : Uf;llflj — [0, 1] are already defined. To define Q. consider
the set €} consisting of those x € Q) where we can find ¢; > 0 and v; € R,
i€ {l,...,n+ 2}, such that

n+2 n+2
1/k <|L(z,uo(z),v;)| < k,1/k < |v;| < F, Z ¢ =1, Z ¢;iv; = Dug(z),
i=1 i=1
n—+2
> ¢iL(z, uo(x), v;) = L(x, up(x), Dug(x)). (4.9)
i=1

This way we define a multivalued mapping
€ —{er, ..o, Caya, V1, Vg2 1 (4.9) holds}

The set Q) is closed (in Q) and the multivalued mapping is upper semicon-
tinuous in €, since validity of (4.9) for z,,, € Q) with ", 0™, i =1,...,n+2,
and the convergences ¢ — ¢;, v — v;, T, — x imply validity of (4.9) for
z with ¢, v, i = 1,...,n+ 2. Hence V : Q, — 2B"™"™ i 4 measurable
multifunction, which is defined in a closed subset €} of Q. By Theorem 2.6
we can find a measurable selection x — (c1,...,¢py9,01,. .., Upyo) of this

function. Then we have

n+2

> ei(@)L(z, uo(x), vi(x)) = Lz, uo(z), Dug(x))

=1
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everywhere in ;.. We define Q) as a compact subset of the set o\ Uf;llﬁi
such that meas € > meas (€, \ USZ1Q;) — 1/k.

We have meas (Q \ U2, Q) = 0 since, by Lemma 4.2, for each z €
there exists ¢; > 0, v; # Dug(z), i € {1,...,n+ 2}, with the properties

n—+2 n—+2 n+2

; ¢ =1, ; ¢;iv; = Dug(z), ; c;iL(z,ug(x), v;) = Lz, up(z), Dug(x)).

This completes proof of the first part of the theorem.
To prove the second part we note first that J(ug) = J¢(ug) if and only if

L(z,uo(z), Dug(x)) = L(x, up(z), Dug(x)) a.e.,

where the latter holds if and only if for a.e. z € Q the function L(x, uy(z), )
is convex at the point Dug(z), cf. [S6, §3]

Assume now that for a.e. x € Q the function L(z,ug(x),-) is strictly
convex at Dug(x) and uy, — ug in WP (Q), J(uy) — J(ug). We show that
Duy, — Dug in L' by contradiction. If the latter does not hold then we can
assume that Duy generates a nontrivial Young measure (v;)zcq, i.e. v, is
not a Dirac mass for a set of x of positive measure, see Theorem 2.2. By
Theorem 2.7

J(uo) = Jim J () > / (L@, uo(x),-); va)dz, (4.10)

where for a.e. x € €2 the center of mass of v, is Dug(x). By strict convexity
at Dug(z) we have

<L($,UO(Z‘), '); V$> > L(xauo(*r)v DUO(*I)) a.e.,

moreover the inequality is strict at the points where the measure v, is non-
trivial, i.e. v, is not a Dirac mass, see [S6, §3]. This observation and (4.10)
imply the inequality liminfy_,o.J(ug) > J(ug), which is a contradiction. The
contradiction shows that vy = dpy,() a.e. in €. Then Theorem 2.2 implies
the convergence Duy — Dug in L'. Since J(ug) — J(ug) we also have by
Theorem 2.7 that

L(-,up(+), Dug(+)) — L(-,ug(+), Dug(-)) in L'.
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We prove the last assertion of the theorem again by contradiction, i.e.
we assume that it is no longer true that L(z,ug(z),-) is strictly convex at
Duy(z) for a.a. x € Q. Then we can apply the above arguments to construct
a nontrivial Young measure in the form of convex combinations of at most
n + 2 Dirac masses, i.e. vy = Y177 ¢;0,,() a.e., with the centers of mass at
Duy(-) and with the property > ¢;L(-, uo(-),v;) = L(-, uo(+), Dug(+)) a.e. in
Q (see (4.9)).

By Theorem 4.1 there is a sequence uy — uy in W(Q) generating the

Young measure (v;),eq such that uk‘an = uo‘m and

T(uy) — /Q(L(x,uo(x), ;s va)de = J(uo).

By Theorem 2.2 the sequence Duy does not converge in measure.
This proves the last assertion of the theorem. QED

5 Proof of Theorem 1.4

To prove Theorem 1.4 we will need two auxiliary lemmata.

Recall that a function u € W?(Q) is called monotone if for a.a. z €
and each € > 0 such that Q(z,e) C Q (recall that Q(z,€) is the open cube
with the side length € and the center at x) we have that for a.a. € €]0, €|

ess inf wu <ess inf w, ess sup u <ess sup u. (5.1)
AQ(z,¢) Q(xo,e’) Q(x,€") 0Q(x,e")

Note that this definition has sense for Sobolev functions since for a.a. € €]0, €]
the trace u‘ is defined.
0Q(z ¢!

T,€

Lemma 5.1 Assume that the minimization problem

J(u) = /S)L(Du(x))dx — min, u € WH(Q), u‘ag = f,

where L : R™ — R is a convex integrand such that L > «|- P +~ with a > 0
and p > n—1 1in case n > 3 and L has superlinear growth at infinity in
case n = 2, has at least one admissible function. Then there is a monotone
solution ug.
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Another important observation is

Lemma 5.2 Assume that w € WYP(Q) with p >n—1 if n > 3 and with
p=11ifn=2. Ifuis a monotone function then it is a.e. differentiable in
the classical sense.

Proof

See ([Ri, Ch.VI, §4]). There the result is stated under additional as-
sumption of continuity of the function u. However the same arguments can
be applied in the general case.

Proof of Lemma 5.1
Superlinear growth of L at infinity allows us to find a minimizing sequence
ug which converges weakly in WH(Q) to uy. Convexity of L implies lower
semicontinuity of the integral functional with respect to this convergence.
Therefore
J(ug) < liminf J(uy),
k—o00

i.e. ug is a solution of the minimization problem.
We have L > 6, where 6 is a strictly convex function with superlinear
growth at infinity. By the above arguments for each p > 0 the problem

Ju(u) == /Q{L(Du) + pf(Du)}dr — min, u‘m =f

has a solution u,,.
First we prove that each function w,, ¢t > 0, is monotone. We take z, € 2

and Q(xg,€) C 2. For a.a. d €]0,¢[ the trace u“‘aQ( N is well defined and
Zo,
is a continuous function. Fix such a §. Let

M; :=ess sup u,, ms:= ess inf, Uy
0Q(z0,¢') 0Q(zo,€')

We define us(z) = u,(z) if x € Q(z0,6) and w,(x) € [my; M, us(z) = M;
if © € Q(x0,0) and w, > Ms, us(x) = m; if © € Q(x0,9) and u,(x) < ms.
Then us € W'(Q(x,9)) and

-

u‘s‘ 8Q(x0.0)

0Q(x0,0)
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The later property also implies that u; € WHP(Q) if we assume us = u, in

Q \ Q(xOJ 5)
Let L, := L+ pf and let g € OL,(0). Then we have

/ (9, Dus(z) — Duy(z))de =0

Q

since both the functions us and u, coincide at the boundary of 2. Then
0> J(uu) — J(us) = /Q{LM(DU’M) — L,(Dus) — (g, Duy — Dug) Ydz. (5.2)

Define
Qs :={z € Q(z0,9) : us # u,}.

The expression under the integral in the right-hand side of (5.2) vanishes
in the set 2\ Q5. Then the integral over €2 in the right-hand side of (5.2)
is equal to the integral over Q5. If meas €25 > 0 then J(u,) > J(us) since
Dus = 0 in €5, Du, # 0 in a subset of 5 with positive measure, and
L,(v) —L,(0)—(g,v) > 0 for v # 0. This contradiction with (5.2) proves
that u, is a monotone function.

We also have

() = inf{J(u) :w € WHQ),u| = f}, p—0. (5.3)

We can find a subsequence u; — 0, k — oo, such that u,, — uin WP(Q).
Then
J(u) < lilggglf T ()

and, in view of (5.3), @ is a solution of the original problem.

Since each function u,,, k € N, is monotone we can infer that % is also a
monotone function. We prove this only in case n > 3, however the remaining
case can be treated analogously.

Let z be fixed and let Q(zg,€) C §2. Then for a.a. € €]0, €[ we have

ligglf||Duk||Lp(8Q(a:o,E’)) < 00.

Then for each such ¢ and an appropriate subsequence uy (not relabeled) we
have

|[ur — o[ L~ (9Q(z0.e)) — O
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Since (5.1) holds for each uy and uy — ugy in LP we infer that (5.1) holds also
for the limit function uy. QED

Proof of Theorem 1.4

By Lemma 4.2 the integrand L¢ is a convex continuous function with
values in R U {oo}. Moreover L¢ > af - [P+ v with @ > 0 and p > n — 1 if
n > 3 and L > 6, where # : R" — R is a convex function with superlinear
growth, if n = 2.

By Lemma 5.1 we can find a monotone solution ug of the relaxed prob-
lem. By Lemma 5.2 this solution is a.e. differentiable in the classical sense.
Applying Lemma 4.2 and Theorem 4.1 we can find a sequence uy — ug in
WhH1(Q) such that uk‘aﬂ = fand J(ug) — J(u).

The proof of the remaining part of the first assertion of the theorem
follows lines of the proof of the analogous assertions of Theorem 1.1. This
proves the first part of the theorem.

To complete the proof we have to show that the condition (C) is both
necessary and sufficient for solvability of all boundary value minimization
problems with nonempty set of admissible functions. We first show that this
condition characterizes solvability of problems with linear boundary data v,
i.e. when f =1,, and L¢(vp) < oc.

Without loss of generality we can assume that L¢(vy) = 0 and L¢ > 0
everywhere. In fact we can replace the integrand L by the integrand L(-) —
L(vg) — (g, — vo) with g € OL(uvp) since the functional

u—>/ﬂ<g,Du(m)>dx

assumes the same value at all functions u € W1 (Q) with u‘m = f.

If L(vy) = L(vp) then the function [,, is a solution of (1.1). Assume that
L(vg) > L%(vg). Define V := {v € R": L(v) = 0}. We have V # () since
L > 0 and, by Lemma 4.2, we can find ¢; > 0, v, € R, i € {1,...,n+ 2},

such that
n+2 n—+2

Y ei=1, > ¢L(v;) = L(v) = 0.
i—1 i—1

If vy € int coV then by Lemma 3.1 we can find a function v € W(Q) with
Uy = ly, and Du € extrV a.e. Then u is a solution. The converse also
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holds, i.e. solvability of the problem implies vy € intcoV. To show this
we can again apply Lemma 3.1 to find a sequence u, € WH(Q) such that

uk‘ = ly,, J(ur) — 0. Therefore if a solution wug exists then Duy € V

o9
a.e. The requirements Dug € V a.e., uo‘aﬂ = l,, imply that vy € intcoV .
Otherwise we can apply the Hanh-Banach theorem to find a vector y € R”
(y # 0) such that

o _ (Dug,y) > (vo,y) a.e. in Q.

dy
Then, since ug = l,,, on 02, we obtain that uy = [,, a.e. in 2. Then Dug = vy
a.e. in 2, which is a contradiction with the assumption vy ¢ V.

This way we establish that the condition (C) is both necessary and suf-
ficient to resolve all minimization problems with affine boundary data. It
remains to show that (C) implies solvability of all nonlinear boundary data
problems.

Assume f is such that the problem

J(u) = min, u € WHHQ), u| = f

has an admissible function. Then it also has a monotone solution ug, cf.
Lemma 5.1. By Lemma 5.2 ug is a.e. classically differentiable. Then we
can apply Lemma 3.2 at each point g, where Dug(x¢) exists in the classical
sense, to find a sequence of open sets (2; ,,,, which meets the requirements of
the Vitaly covering theorem at the point xy (see §3), and the perturbations
Wi 5, Of up in €2 5, © € N, such that

Duwiy, € {L =L} ace. in Qig,, / L(Dug(x))dz = / LE(Dw; gy ().

i,20 Qi 2
(5.4)
Applying the Vitaly covering theorem we can decompose () into the sets
Qi.i), © € N, and a set of null measure in such a way that for each set
Qi 2), © € N, there is a perturbation w; 4(;) such that (5.4) holds. Therefore

if u = Wi,(3) in Qi,w(i)7 (S N7 then @ € W171(9)7 a‘ag = Uo‘my J(a) = J(UO)a
and Du € {L = L*} a.e. Then @ is a solution of the original problem. QED

Acknowledgements I thank Jan Kristensen for helpful remarks.
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