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Abstract

In this paper we deal with the existence and relaxation issues in variational
problems from the mathematical theory of elasticity� We consider minimiza�
tion of the energy functional in those classes of deformations which make the
problem essentially scalar�

It turns out that in these cases the relaxation theorem holds for integrands
that are bounded from below by a power function with power exceeding the
dimension of the space of independent variables� The bound from below can
be relaxed in the homogeneous case� The same bounds were used previously
to rule out cavitation and other essential discontinuites in admissible defor�
mations� In the homogeneous case we can also indicate a condition which is
both necessary and su�cient for solvability of all boundary value minimiza�
tion problems of the Dirichlet type�

Key words Existence and relaxation� Mathematical Theory of Elastic�
ity� weak convergence� Young measures

�This research was partially supported by the grant N ����������� of the Russian

Foundation for Basic Research
yon leave from Sobolev Institute of Mathematics� Novosibirsk �	����� Russia

�



� Introduction

In this paper we deal with the existence and relaxation issues in variational
problems of mathematical theory of elasticity� First general existence the�
orems were proved by J�M� Ball in �B��� for later work see e�g� �MQY��
�GMS�� The results of those papers assert that the minimization problem

J�u� 	
Z
L�Du�dx� min� u

���
��

	 f �����

has a solution in a Sobolev class of mappings u 
 � � Rn � Rn if the
integrand L is polyconvex and has su�ciently fast growth at in�nity� Here
polyconvexity means that

L�Du� 	 
L�Du� adjDu� detDu�� �����

where 
L is a convex function of its variables and adjA is the adjugate matrix
of A�

The integral functional is sequentially weakly lower semicontinuous �s�w�l�s��
in W ��p���Rn� if

L�Du� � maxfjDujp� jadjDujrg� �����

where e�g� p � n � �� r � p��p� ��� In this case each minimizing sequence
converges weakly to a solution of the minimization problem� A remarkable
fact is that the theorem even covers energy densities L which meets the basic
requirement coming from elasticity� which is

L�Du��� as detDu� �� and L�Du� 	 � if detDu � �� �����

The proof relies on two observations
 weak continuity of the functionals
Du� adjDu and Du� detDu with respect to the sequential weak conver�
gence in Sobolev spaces associated with the exponents in ������ cf� �B��� and
lower semicontinuity of integral functionals � �

R
� F ���x��dx with convex

integrands F with respect to weak convergence of sequences in L��
Until this time no other existence or relaxation results meeting the re�

quirement ����� were available in spite of extensive work devoted to some
model cases where L has power growth at in�nity or satis�es some estimates
from above and below with power functions having su�ciently close expo�
nents� see e�g� �BFM�� �FM� and papers mentioned therein� Even the case
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of energies generated by isotropic materials is not completely studied� Recall
that in the latter case L depends only on the main invariants of the matrix
DutDu� The polyconvexity requirement holds for a number of such materials
�see �B��� �C��� however does not cover all of them� For recent discussions
see e�g� �B��� �B��� �MSSp��

In the model case

A�jDuj
p �B� � L�Du� � A�jDuj

p �B�� A� � A� � �� p � � �����

a condition� which characterizes s�w�l�s� property� is well known� In ����
C� Morrey showed that an integral functional with a continuous integrand L
is lower semicontinuous with respect to weak� convergence of sequences in
W ��� if and only if the integrand L is quasiconvex� i�e�

Z
�
L�A �D��x��dx � L�A�meas �

for each function � � W ���
� � �Mo�� The fact that this requirement still

characterizes s�w�l�s� in W ��p for integrands satisfying ����� was established
in �AF� in case of dependence of L upon x and u also� For a simple proof in
the homogeneous case see �Ma�� see also �Me��

In case of general integrands L with p�growth the quasiconvexi�cation

Lqc�x� u� A� 
	
�

meas �
inf��W ���

�

Z
�
L�x� u� A�D��y��dy

presents an integral functional for which the relaxation property holds� i�e�
given u � W ��p we can �nd a sequence uk � u in W ��p such that J�uk� �
Jqc�u�� Note that Jqc � J everywhere and that Jqc is a functional which is
lower semicontinuous with respect to the weak convergence in W ��p since Lqc

is a quasiconvex function� see �AF�� �D��� �S��� Therefore in this case we
have the relaxation result in full generality� i�e� the functional Jqc presents
the lower semicontinuous extension �in the weak topology of W ��p� of the
original functional J �

Recall that quasiconvexity implies rank�one convexity� where L 
 Rm �
Rn � R is called rank�one convex if for every matrices A�B � Rm�n with
rank�A�B� 	 � the function t� L�A� �B � A�t� is convex� cf� e�g� �B���
�BM�� Moreover the converse is false if m � �� cf� �Sv��� The case m 	 � is
an open problem� In the case m 	 � quasiconvexity reduces to convexity�
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Note that quasiconvexity by itself is not enough to assert s�w�l�s� of gen�
eral integral functionals� In fact� an example in �BM� x�� shows that even
the simplest quasiconvex integrand jdetDuj is no longer weak lower semicon�
tinuous with respect to the weak convergence in W ��p if p � n �the latter
holds if p � n�� Using this example one can construct an integrand satisfy�
ing the requirements ������ ������ and the requirement L�Du� � �jDujp � 	
with � � �� p � �� which is not sequentially weak lower semicontinuous �see
e�g� �JS��� However the fact that quasiconvexity or similar property fails to
characterize s�w�l�s� in the latter case can still be explained by slow growth of
integrands at in�nity� In fact derivation of the total energy in the form �����
holds under assumptions of the continuum body model� cf� �C� Ch���� At the
same time failure of assumptions ����� may result in occurrence of cavitation
and other essential discontinuites �i�e� in this case the total energy can have
a di�erent form�� The latter phenomena was discovered by Ball in �B�� and
was studied in many subsequent papers� see e�g� �JS�� �MSp�� �MSSp� and
papers mentioned therein� In particular �Sve�rak �Sv�� and later M�uller� Qi� �
B�S�Yan �MQY� showed that the assumptions ����� or their weakened form
p � n� �� r � n��n� �� prevent cavitation� Therefore one still may expect
that the lower semicontinuity and the relaxation results hold for integrands
satisfying ������ i�e� in the case when admissible deformations do not allow
essential discontinuites�

In this paper we are able to give complete analysis in cases when the
minimization problems are essentially scalar� We study minimization in the
classes of deformations which include the following ones


�� generalized anti�plane shear deformations

u 
 �x�� � � � � xn�� �x�� � � � � xn��� h�x�� � � � � xn��� hxn � � a�e��

A subclass consisting of deformations with hxn 	 � a�e� is known as
a class of anti�plane shear deformations� In this case detDu 	 � a�e�
The slightly more general case which we consider here requires that we
deal with integrands L 
 � � R � f�g� see ������

�� u � u� � Vc a�e�� where given c � Rn the set Vc is de�ned as

Vc 
	 fg � W ��p���Rn� 
 g 	 c	 g�g�
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In fact� we can extend the second class to the class of functions u �
W ��p���Rn� with u � u� � Vcl a�e� in �l� where the sets �l� l � N� are
Lipschitz� open and disjoint and meas f� n �l�lg 	 ��

In all cases the problem ����� can be rewritten as a scalar problem� There�
fore we will assume further that the Carath�eodory integrand

L 
 ��R�Rn � R � f�g

satis�es the following basic assumptions

�H�� for a�e� x � � the integrand L is bounded in a neighborhood of each
point �x� u� v� � R�n�� where its value is �nite

�H�� L�x� u� v� � �jvjp � 	� p � �� � � ��

To state the �rst result recall that a function F 
 Rn � R�f�g is called
convex at a point v� if X

ciF �vi� � F �v�� �����

for every vi � Rn� ci � �� i � f�� � � � � qg� such that
P
ci 	 ��

P
civi 	 v�� We

say that F is strictly convex at v� if the inequality ����� is strict under the
additional assumption vi 
	 v�� i 	 �� � � � � q�

Recall that a function F is convex at a point v� if and only if its subgradient


F �v�� 
	 ff � Rn 
 F �v�� F �v��� hf� v � v�i � �� �v � Rng

is nonempty� cf� �S��� �Y�� x����

Theorem ��� Let L satisfy the requirements �H��� �H�� with p � n�
Then the function L��� which is obtained by convexi�cation of L with respect
to v� is a Carath�eodory integrand which satis�es �H��� �H���

Moreover� for each u� � W ������ with Jc�u�� � �� where Jc is the
integral functional associated with the integrand L��� there exists a sequence
uk � W ������ such that uk

���
��

	 u�
���
��
� uk � u� in W ������� and

J�uk�� Jc�u�� as k ���

The equality J�u�� 	 Jc�u�� holds if and only if for a�e� x � � the func�
tion L�x� u��x�� �� is convex at the point Du��x�� In this case the convergences
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uk � u� in W ���� J�uk� � J�u�� imply the convergence Duk �Du� � � in
L� �and also the convergence L��� uk���� Duk���� � L��� u����� Du����� in L��
if and only if for a�e� x � � the function L�x� u��x�� �� is strictly convex at
the point Du��x��

Remark ��� The assumption �H�� does not guarantee a possibility to
approximate u� by piece�wise functions uk with J�uk� � J�u��� In fact� for
each pair of convex functions ��� �� with superlinear growth and such that
limjvj�� ���v�����v� 	� one can construct an integrand L 
 Rn�R�Rn �
R such that �� � L � �� and for some Sobolev function u� there is no
approximation in energy by Lipschitz functions uk with uk � u� in L�� see
�S��� Therefore the standard approach through approximation in energy
functions with �nite energy by smooth or piece�wise a�ne ones �see e�g�
�ET�� �MS�� �Bu�� can not be applied in this case�

Remark ��� The theorem implies that Jc is the lower semicontinuous
envelope of J since the functionals having Carath�eodory integrands with con�
vex dependence on Du are automatically sequentially lower semicontinuous
in the weak topology of W ���� see e�g� �Ba�� �D��� and �S��� Therefore the
relaxed problem has a solution�

In case of homogeneous problems we can prove the relaxation result for
L satisfying the requirement �H�� with p � n� �� The latter inequality is a
part of the set of conditions preventing occurrence of cavitation� see e�g� �Sv
��� �MQY�� Moreover in this case we can indicate a condition characterizing
solvability of all minimization problems of the type ������

Theorem ��� Let L 
 Rn � R � f�g be a continuous function such
that L��� � �j � jp � 	� where � � �� p � n � � if n � � and L has at least
superlinear growth at in�nity if n 	 �� Then	

�� for each boundary datum f with Jc�f� �� the problem

Jc�u�� min� u
���
��

	 f� u � W ������

has a solution� Moreover for each such solution u� there exists a sequence
uk � u� � W ���

� ��� with J�uk� � Jc�u��� uk � u� in W ������� We have
J�u�� 	 Jc�u�� if and only if L is convex at Du��x� for a�e� x � �� In
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this case the convergences uk � u� in L�� J�uk� � J�u�� imply the conver�
gence Duk � Du� in L� �and automatically the convergence L�Duk���� �
L�Du����� in L�� if and only if for a�e� x � � the function L is strictly
convex at the point Du��x��

�� Moreover for each admissible f the original problem

J�u�� min� u
���
��

	 f� u � W ������

has a solution if and only if the following condition holds for each v � Rn

with Lc�v� ��

�C� either 
L�v� 
	 
 or there exist v�� � � � � vq such that v � int cofv�� � � � � vqg
and �q

i��
L�vi� 
	 


Remark ��� Note that arguments similar to the ones we use in the
proofs of Theorem ��� and Theorem ��� can be applied to show that the
relaxation property holds on deformations of the types � and � for the rank�
one convexi�cation

Lrc 
	 supfH 
 H � L� H is rank�one convex in Dug

of L provided L has su�ciently fast growth at in�nity� Therefore in those
particular cases when Lrc gives a lower semicontinuous functional we ob�
tain the relaxation result in full generality �at the deformations of the type
discussed above��

We will include a detailed proof of this assertion in a forthcoming paper�

Remark ��� Note that the condition �C� from Theorem ��� character�
izes solvability of all boundary value minimization problems under a number
of di�erent assumptions� In �S�� we showed that superlinear growth of L
at in�nity is enough to assert that it characterizes solvability in the class of
boundary data satisfying so�called bounded slope condition� see �Gi�� More�
over an observation of Sverak �Sv�� allows us to conclude that a similar result
holds if L meets the requirement of p�growth ������ see �S�� for more detailed
information�

Note also that we will prove that given v the condition �C� characterizes
solvability of the minimization problem with linear boundary data f 
	 lv�
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This fact was established in �Ce�� �F� for continuous integrands with super�
linear growth at in�nity and our arguments follow the lines of the proof from
those papers�

All the results still hold if continuity of L is replaced by lower semicontinu�
ity� To show this one can re�ne the arguments given here using constructions
from �S��� However� this is not the purpose of the paper and we leave the
details to the interested reader�

Note that previously minimization of isotropic energies in the class of
anti�plane shear deformations was studied in case of dependence of L only
on the �rst invariant of the matrix DutDu� which is jDuj�� cf� �BP�� �GT��
�R�� �SH�� In this case the requirement L 	 L�jDuj� does not contradict the
assumptions ����� under which standard relaxation theorems hold and� con�
sequently� the attainment question can be reduced to �nding a solution of the
relaxed problem along which values of the original and the relaxed integrands
coincide� Our results show that the same scheme still can be applied in the
case of general anti�plane shear problems� including the nonhomogeneous
case�

Throughout the paper we use standard notation� For a subset U of Rn

the sets intU � coU � and extrU are respectively the interior of U � the convex
hull of U � and the set of extreme points of U �a point a belongs to extrU if it
can not be represented as a convex combination of other points of U�� The
set B�a� �� denotes the open ball of radius � which is centered at the point
a � Rn� Q�a� �� is the open cube with side length � and the center a� The
function la is an a�ne function with the gradient equal to a everywhere�

We assume that � � Rn is a bounded Lipschitz domain unless otherwise
indicated� A function u 
 � � Rm is piece�wise a
ne if u � W ������Rm�
and there is a decomposition of � into a negligible set and an at most count�
able collection of the closures of Lipschitz domains on each of which the
restriction of u is a�ne�

The weak and strong convergences will be denoted� and�� respectively�

The paper is organized as follows� In x� we recall some basic facts from
Young measure theory� which presents some technical tools necessary in this
paper� We view Young measures as measurable functions� see �S��� �S��� since
it allows us to use some additional tools that are not easily available from the
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standard viewpoint of Young measures as elements of the duals of appropriate
Banach spaces� These properties are especially convenient for studies of the
behavior of integral functionals on weakly convergent sequences� In x� we
prove some auxiliary results� In x� we prove Theorem ��� as a consequence
of a more general Theorem ���� In x� we prove Theorem ����

� Basic facts from Young measure theory

Recall the de�nition of Young measures�

De	nition ��� A family �
x�x�� of probability measures 
x � C��R
l��

is called a Young measure if there exists a sequence of measurable functions
zk 
 � � Rl such that for each � � C��R

l�

��zk� �
�  � in L����� where  ��x� 	 h�� 
xi

�here and later on h�� 
i denotes the action of the measure 
 on ���

Recall that each su�ciently regular sequence of measurable functions con�
tains a subsequence generating a Young measure� This result shows that
Young measures presents reasonable extension of standard functions�

Theorem ��� �
Y��� 
Y��� 
T��� 
B��� Each sequence of measurable
functions �k 
 � � Rl contains a subsequence generating a Young measure
�
x�x�� provided it is bounded in Lr���� r � �� Moreover this subsequence
converges in measure if and only if 
x is a Dirac mass for a�a� x � ��

A starting point of our approach is the characterization of Young measures
as measurable functions given by Theorem ����

Recall that the weak� convergence of elements of the set Mc�R
l�� which

is the set of all Radon measures supported in Rl with the total variation
bounded by c� is equivalent to convergence in the metric

���� 
� 	
�X
i��

�

�ijj�ijjC

���h�i��i � h�i� 
i
����

�



where f�ig is a dense sequence of elements of the space

C��R
l� 	 f� � C�Rl� 
 lim

v��
j��v�j 	 �g�

The metric � characterizes Young measures�

Theorem ��� 
S��
Let �
x�x�� be a family of probability measures� Then the following asser�

tions are equivalent	
�� �
x�x�� is a Young measure�
�� the function 
 
 � � �M�� �� is measurable �
�� the maps x� h�� 
xi are measurable for all � � C��R

l��

The idea of our approach is to use the characterization �� of Young mea�
sures as measurable functions� Although these functions have more complex
nature than the standard measurable functions with values in Rn� they still
have quite a broad spectrum of properties� In fact these properties allow us
to prove all standard results of Young measure theory� cf� �S��� �S���

The three basic properties of these functions are the following�

�� Note that the convergence h�� 
k���i �
� h�� 
���i in L� means conver�

gence of the integrals
R
��h�� 


k
xidx to the integral

R
��h�� 
xidx for all measur�

able subsets 
� of �� On the other hand the functional

� � ���meas 
��
Z
��
h�� 
xidx

is given by the action of a Radon measure which we denote Av�
x�x���� i�e�

h��Av�
x�x���i 
	
�

meas 
�

Z
��
h�� 
xidx� �� � C��R

l��

To compare actions of two families of measures �
�x�x��� and �
�x�x��� we
have to compare the distance between the measures Av�
�x�x��� and Av�
�x�x���
in ��metric� The following proposition presents such estimates� see �S��� �S��
for proofs� Here we consider families of those Radon measures� which are
elements ofMc�R

l�� In this case the average Av is also an element ofMc�R
l��
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Lemma ��� Let 
�� 
� 
 � � �Mc� �� be measurable functions�
�� If ��Av�
�x�x����Av�


�
x�x���� � � with 
� � � such that meas �� n 
�� �

�meas �� then ��Av�
�x�x���Av�

�
x�x��� � ��c� ����

�� If ��
�x� 

�
x� � � for a�a� x � 
� � � with meas �� n 
�� � �meas ��

then ��Av�
�x�x���Av�

�
x�x��� � ��c� ����

In particular given a measurable function 
 
 � � �M�� �� we have

��Av�
y�y�B�x���� 
x�� � as �� �� a�e� in ��

The other two properties of Young measures come from the general theory
of measurable functions with values in a compact metric space�

�� The second property of such functions is the Lusin property�

Theorem ��� Let � � Rn be a measurable set� and let �K� d� be a com�
pact metric space� The function � 
 � � �K� d� is measurable in the usual
Lebesque sense �i�e� preimages of closed sets are measurable sets� if and only
if it has the Lusin property	 for each � � � there exists a compact subset ��

of � such that meas �� n ��� � � and the function �
���
��

is continuous�

The proof of this theorem is almost identical to the proof in the case
�K� d� equals Rn with the Eucledian metric�

�� The third property is a version of the theorem on measurable selections
proved �rst in �K�RN� �for more sophisticated versions of such theorems
see �CV��� This property shows how to construct a Young measure �
x�x��
knowing that for a�a� x � � all possible choices of measures 
x are given by
the sets V �x��

Let � be a bounded measurable subset of Rn and let �K� d� be a compact
metric space� A mapping V 
 � � �K is a closed measurable multi�valued
mapping if� for a�a� x � �� the set V �x� � K is closed and if for each closed
subset C of K the set fx � � 
 V �x� � C 
	 
g is measurable�

Theorem ��� If V 
 � � �K is a closed measurable multivalued mapping
then there exists a measurable selection� i�e� a measurable map 
 
 � � �K� d�
such that 
�x� � V �x� for a�a� x � ��

��



We need also a result on relation of the values of an integral functional
along a sequence and the value it assumes on a Young measure generated by
the sequence�

Theorem ��� Let � be a bounded measurable subset ofRn and let L�x� v� 

� �Rl � R � f�g be a Carath�eodory integrand which is bounded from be�
low� Suppose that a sequence of measurable functions �i generates a Young
measure �
x�x���

Then
lim inf
i��

Z
�
L�x� �i�x��dx �

Z
�
hL�x� ��� 
xidx�

Moreover� limi��

R
�

R
Rl L�x� �i�x��dx �

R
�

R
RlhL�x� v�� 
xidx if and only if

the functions L��� �i����� i � N� are equi�integrable� In this case L��� �i���� �
hL��� v�� 
���i in L��

Proof
This can be found in �Ba�� �Kr�� �S�� in the case when L satis�es the

requirements of the theorem and has �nite values�
In the general case the result follows by approximation the integrand L

by the integrands Lk 
	 minfL� kg� QED

� Some auxiliary results

In this section we prove three auxiliary lemmas�

Lemma ��� Let L 
 Rn � R � f�g be a continuous function� Let
v�� � � � � vq be such points in Rn that

Pq
i�� civi 	 F for some ci � � withPq

i�� ci 	 � and L�vi� �� for each i � f�� � � � � qg�
Then� there exists a sequence of piece�wise a
ne functions uk � W ������

such that uk
���
��

	 lF � Duk � �q
i��B�vi� ��k� a�e�� and

meas fx � � 
 Duk�x� � B�vi� ��k�g

meas �
� ci� i � f�� � � � � qg

�in this case we have also J�uk� �
Pq

i�� ciL�vi�meas ���
If F � int cofv�� � � � � vqg then there exists a piece�wise a
ne function

u � lF �W ���
� ��� with the property Du � fv�� � � � � vqg a�e�

��



Lemma ��� is a perturbation argument which will allow us to approximate
those Sobolev functions which are a�e� di�erentiable in the classical sense by
more regular ones�

Lemma ��� Let u� � W ����B�x�� ��� be a�e� di�erentiable in the classical
sense in a subset of B�x�� �� of full measure �here we implicitly assume that
u� is de�ned everywhere� i�e� u� is a �xed representative of its Sobolev class
of equivalence� and let x� be a point of this set�

Let v�� � � � � vq be extreme points of a compact convex set such that Du�x�� �
int cofv�� � � � � vqg� De�ne the function

ws��� 
	 u��x�� � hDu��x��� � � x�i� max
��i�q

hvi �Du�x��� � � x�i � s� �����

There exists a sequence of sets �i � B�x�� ��� i � N� and a sequence
si � � such that for every i � N we have x� � �i� meas 
�i 	 ��

B�x�� �si� � �i � B�x�� si��� with some � � �� �����

and if ui 	 wsi in �i and ui 	 u� in B�x�� �� n �i then ui � W ����B�x�� ���
provided i � N is su
ciently large�

In the following lemma we show that each probability measure with �nite
action on a continuous integrand L 
 Rn � R � f�g can be approximated
in energy by convex combinations of Dirac masses�

Lemma ��� Let L 
 Rn � R � f�g be a continuous function with
superlinear growth� i�e� L�v� � ��v�� where ��v��jvj � � as jvj � �� Let
also 
 be a probability measure supported in Rn such that hL� 
i �� and let
A be the center of mass of 
�

Then there exists a sequence of convex combinations of Dirac masses

j 
	

P
i c

j
i�vji

centered at A and such that 
j �
� 
� hL� 
ji � hL� 
i� and

dist�supp 
j� supp 
� � � as j ���

We will utilize the following version of the Vitaly covering theorem�
A family G of closed subsets of Rn is said to be a Vitaly cover of a

bounded set A if for each x � A there exists a positive number r�x� � ��
a sequence of balls B�x� �k� with �k � �� and a sequence Ck � G such that
x � Ck� Ck � B�x� �k�� and �meas Ck�meas B�x� �k�� � r�x� for all k � N�

��



The version of the Vitaly covering theorem from �Sa�p����� says that each
Vitaly cover of A contains at most countable subfamily of disjoint sets Ck

such that meas �A n �kCk� 	 ��

Proof of Lemma ���
Without loss of generality we can assume that F 	 ��
Let b�� � � � � bq be extreme points of a compact subset in Rn with � �

int cofb�� � � � � bqg� Consider the function

ws��� 
	 max
v�fb������bqg

hv� �i � s� s � �� �����

It is clear that ws��� is a Lipschitz function such that Dws � fb�� � � � � bqg a�e�
and ws��� 	 � in 
Ps� where Ps are polyhedrons with the property Ps 	 sP��

We can decompose � into domains �i 
	 xi� siP�� i � N� and a set N of
null measure� i�e� � 
	 �i�N�xi�siP���N � We de�ne u�x� 
	 wsi�x�xi� for
x � xi� siP�� i � N� u 	 � otherwise� Then u � W ���

� ���� Du � fb�� � � � � bqg
a�e� in �� This proves the second part of the lemma�

We �rst prove the �rst part of the lemma in case q 	 �� i�e� when
F 	 c�v� � c�v��

Let k � N� We can take b� 	 v�� b� 	 v� and assume that bi � B�v�� ��k��
i � f�� � � � � lg� are such points that � � int cofb�� � � � � blg� where b�� � � � � bl are
extreme points of a compact convex set� By ����� we can �nd a piece�wise
a�ne function uk � W ���

� ��� such that Duk � fb�� � � � � blg� It is clear that
Duk � B�v�� ��k� �B�v�� ��k� a�e� and

meas fx � � 
 Duk�x� � B�vi� ��k�g

meas �
� ci� i 	 �� ��

This proves the lemma in case q 	 ��
We assume that the lemma is valid for q � �� We will show that it

also holds for q � �� We de�ne 
c� 
	 �c� � c��� 
v 
	 �c�v� � c�v���
c� Then
we can apply the induction assumption to the case of convex combinationPq��

i�	 civi�
c
v to �nd a sequence of piece�wise a�ne functions uk � W ���
� ���

such that Duk � �q��
i�	B�vi� ��k� � B�
v� ��k� a�e� and

meas fx � � 
 Duk�x� � B�vi� ��k�g

meas �
� ci� i � f�� � � � � q � �g�

��



meas fx � � 
 Duk�x� � B�
v� ��k�g

meas �
� 
c�

Let j � N� We can apply the same construction as in the case q 	 �
to perturb every function u 
	 uk� where k � N is su�ciently large� in each
open subset of 
� 
	 fx � � 
 Du�x� � B�
v� ��k�g where Du is constant in
such a way that the perturbation �j has the property D�j � ��

i��B�vi� ��j�
a�e� in the set� This is possible since B�
v� ��k� � int cofb�� � � � � blg for all
su�ciently large k� Note that

meas fx � 
� 
 D�j � B�vi� ��j�g

meas 
�
� ci� i � f�� �g� as j ���

Therefore we can select a subsequence uk �not relabeled� and a sequence of
their perturbations �j�k� with j�k� �� as k �� such that it meets all the
requirements of the theorem� Then the claim of the theorem holds for q ���
Then it holds in the general case�

The proof is complete� QED

Proof of Lemma ���
Without loss of generality we can assume that u� is the standard repre�

sentative of its Sobolev class� i�e� we have

u��x�� 	 lim
���

R
B�x� ���

u��x�dx

meas B�x�� ��

for all x� � � where the limit exists �this holds a�e� in ��� In fact it is not
di�cult to see that the standard representative is a�e� di�erentiable in the
classical sense if there exists another representative with this property�

Let 
� be the set of those points of � where the function u� has the
classical derivative� Then meas �� n 
�� 	 �� Let x� � 
��

Consider the function

fs��� 	 max
��i�q

hvi �Du��x��� �i � s

Note that Dfs � fvi �Du��x�� 
 i 	 �� � � � � qg a�e� and fsj�Ps
	 �� where

Ps 	 fx 
 max
��i�q

hvi �Du��x��� xi � sg

��



is a compact set with Lipschitz boundary and nonempty interior� Moreover
Ps 	 sP��

Note that for each s � � we have

fs���� fs��� 	 maxv�fv� �����vqghv �Du�x��� �i � �j � j� � � ��

f��� 	 �s� f�x� 	 s for x � P�s�

Then for all su�ciently small s � � we have

fs�� � x�� � u����� u��x��� hDu��x��� � � x�i in x� � Ps���

fs�� � x�� � u����� u��x��� hDu��x��� � � x�i

in a neighborhood of x� � 
P�s since the right�hand side of the inequalities
is o�j � �x�j��

We de�ne �s as the set of all those x � x� � P�s where

fs�� � x�� � u��x�� u��x��� hDu��x��� � � x�i� �����

The set �s �� �x��P�s� consists of an open set and a set of null measure
��
s� In fact if y � �s and Du�y� exists in the classical sense� then ����� holds

in a neighborhood of y� Therefore we can assume that the set �s is open�
To prove existence of a sequence si � � such that meas �
�si� 	 � note that
meas f ��� n ���g 	 � if �� � ��� Therefore � � meas �� is an increasing
function with jumps at the points � where meas �
��� � �� Since each
monotone function has at most countably many jumps we deduce existence
of a sequence si � � for which meas �
�si� 	 �� i � N�

Recall that a function u � L���� belongs to the class W ������ if and only
if it has a representative 
u �i�e� 
u 	 u a�e� in �� such that 
u is absolutely
continuous on almost all lines parallel to the coordinate axes and the partial
derivatives belong to the class L����� see e�g� �EG� x����� The standard
representative of a Sobolev function always has this property� We will use
this characterization to show that the function ui 
	 minfwsi� u�g lies in the
class W ����x� � P�si�� In fact if for �y�� � � � � yj��� yj��� � � � � yn� � Rn�� the
function

y �  u��y� 
	 u��y�� � � � � yj��� y� yj��� y� yn�

��



is absolutely continuous and if

meas fy 
 �y�� � � � � yj��� y� yj��� � � � � yn� � �� n 
�� � �
�si � ��
si
�g 	 ��

then we can use openness of �s to show that the function

 ui��� 
	 ui�y�� � � � � yj��� �� yj��� � � � � yn�

is also absolutely continuous and

jj !uijjL� � �� max
��i�q

jvij� jj ! u�jjL��

This proves that ui � W ����x� � P�si�� Then ui � W ����B�x�� ��� if ui 
	 u�
in B�x�� �� n �x� � P�si� and if i � N is su�ciently large�

The lemma is proved�
QED

Proof of Lemma ���
Let 
 be a probability measure with �nite action on L� Let A be the

center of mass of 
� Without loss of generality we can assume that A 	 ��
We will construct convex combinations of Dirac masses 
j 	

P
cji�vji

�

j � N� centered at � with the properties

hL� 
ji � hL� 
i� 
j
�
� 
� max

i
dist�vji � supp 
� � �� as j ��� �����

There exists a point A� � Rn and � � � such that jLj � M� in B�A�� ���
and 
�B�A�� ��� 	 c� � �� For each integer j �M� consider the set

Uj 	 fv � Rn 
 L�v� � jg�

We can decompose Uj into sets U i
j � i 	 �� � � � � l�j�� U i�

j � i
� 	 �� � � � � l��j��

with diameters minorizing ��j in such a way that the oscillation of L in
each element of the decomposition does not exceed ��j� and U i�

j � B�A�� ���
i� 	 �� � � � � l��j�� U i

j � Uj nB�A�� ��� i 	 �� � � � � l�j��

Let cj�i 
	 
�U i
j�� cj�i� 
	 
�U i�

j � and cj 
	 
�Rn n Uj�� Note that

cj �
l�X

i���

cj�i� �
lX

i��

cj�i 	 ��
l�X

i���

cj�i� 	 c��

��



Let Ai
j � U i

j � i 	 �� � � � � l�j�� Ai�

j � U i�

j � i
� 	 �� � � � � l��j�� Consider the

probability measure

�j 
	
X
i�

cj�i�

�� cj
�Ai�

j
�
X
i

cj�i
�� cj

�Ai
j
�

Let zj be the center of mass of �j� It easy to check that superlinear
growth of L at in�nity implies the convergence zj � �� j � �� Then the
measure


j 
	
X
i�

cj�i�

�� cj
�
�Ai�

j
�zj

��cj
c�

�
�
X
i

cj�i
�� cj

�Ai
j
�

is centered at �� Moreover� by construction we have


j
�
� 
� hL� 
ji � hL� 
i� max

i
dist�vji � supp 
� � �� as j ���

This way we establish existence of the measures 
j with the properties
������ The proof is complete� QED

� Proof of Theorem ���

In this section we prove Theorem ���� We start with an auxiliary result which
has certain interest by itself�

Theorem ��� Let L satisfy the requirement �H�� and assume that L�x� u� v� �
��v�� where the function � 
 Rn � R has superlinear growth�

Assume that the function u� � W ������ is a�e� di�erentiable in the clas�
sical sense �here we consider a �xed representative of the Sobolev class� and
assume that �
x�x�� is a Young measure with the centers of mass at Du��x�
a�e� and with the �nite action on L� i�e�

R
�hL�x� u��x�� ��� 
xidx ��� Then

there is a sequence uk � W ������ such that Duk generates the Young measure
�
x�x�� and

uk � u� in W ������� uk
���
��

	 u�
���
��
�

L��� uk���� Duk���� � hL��� u����� v�� 
���i in L�� �����

In particular J�uk� �
R
�hL�x� u��x�� ��� 
xidx�

��



Proof of Theorem ���
For each k � N there exists a compact subset �k of the set int � such

that meas �� n �k� � ��k and the functions

Du� 
 �k � Rn�

L 
 �k �R�Rn � R � f�g�


 
 �k � �M��R
n�� ���

x� hL�x� u��x�� ��� 
xi� x � �k�

are continuous �the metric � was de�ned in x��� 
� denotes those subset of
the union of the sets of Lebesgue points of �k� k � N� where the requirement
on boundedness of L holds� i�e� for each x � 
� the integrand is bounded in
a neighborhood of each point �x� u� v� where it takes �nite value�

The probability measure obtained by exchanging the center of mass of 

by A will be denoted 
 �A� e�g� �B �A 	 �A�

By Lemma ��� given � � � and x � 
� we can �nd a measure 

x� which is
a �nite convex combination of Dirac masses� such that it has the same center
of mass as 
x and

��
x� 

x� � ���� jhL�x� u��x�� ��� 
xi � hL�x� u��x�� ��� 

xij � ���� �����

Let x� � 
� and assume that v�� � � � � vq are extreme points of a compact
convex set withDu��x�� � int cofv�� � � � � vqg� By Lemma ��� for each � ���� ��
we can �nd si � � and �i � �� i � N� such that si � � as i�� and if wsi�
i � N� are the functions associated with the vectors

vi� 
	 Du��x�� � ��v� �Du��x���� � � � � v
i
q 
	 Du��x�� � ��vq �Du��x����

then ui � W ������ with ui 	 wsi on �i �consequently Dui � fvi�� � � � � v
i
qg a�e�

in �i� and ui 	 u� otherwise� and

B�x�� �si� � �i � B�x�� si��� with � 	 ���� � �� i � N� �����

Note that in this case

lim sup
i��

�ess supx��i
fjwsi�x�� u��x��j� jDwsi�x��Du��x��jg� � ��

��



If � � � is su�ciently small then ������ ����� and the assumptions on L imply
the following inequalites for all su�ciently large i � N

��
x� 

x� �Dwsi�x�� � � a�e� in �i �cf� Lemma ����� �����
Z
�i

jhL�x� wsi�x�� ��� 

x� �Dwsi�x�i � hL�x�� u��x��� ��� 

x�ijdx � ���meas �i�

Note that the last inequality� ������ and the assumptions on 
� imply
Z
�i

jhL�x� wsi�x�� ��� 

x��Dwsi�x�i�hL�x� u��x�� ��� 
x�ijdx � �meas �i �����

if i � N is su�ciently large�
Since 
� contains almost all points of � and u� is a�e� classically di�eren�

tiable we can apply the Vitaly covering theorem and Lemma ��� to decompose
� into at most countable collection of the sets  �k with meas �
�k� 	 � and
a set of null measure� Let xk be the points x� associated with the sets �k�
k � N� and let wsk be the functions associated with xk and �k for which both
����� and ����� hold� De�ning u� as wsk in �k� k � N� we obtain a Sobolev
function which is piece�wise a�ne in each �k and coincides with u� on 
�k�

De�ne a Young measure �
�x�x�� as 

xk �Du��x� for x � �k� k � N� By
Lemma ��� we can �nd a sequence of functions u�j � u� �W ���

� ���� j � N�
which are piece�wise a�ne in each set �k and which satisfy u�j 	 u� in 
�k�

L��� u�j���� Du
�
j���� � hL��� u����� v�� 


�
���i in L���k�� �����

��Du�
j
�x��x��k

�� �
�x�x��k
� j ��� k � N� �����

where the latter means that the sequence Du�j generates the measure �
�x�x��k

in �k�
By ������ ����� and since � � � can be taken arbitrary small we can �nd

a sequence u
�j
j � W ������ with �j � � as j � � having the properties

u
�j
j � u� in W ������� u

�j
j

���
��

	 u�� and

Z
�
fL�x� u

�j
j �x�� Du

�j
j �x��� hL�x� u��x�� ��� 
xigdx� ��

Applying Lemma ��� together with ������ ����� we can select the sequence
u
�j
j with one more property

��
Du

�j
j �x�

�x�� �� �
x�x��� j ���

��



This proves Theorem ���� QED

To prove Theorem ��� we will need one more auxiliary lemma which is
an extension of a lemma in �ET�Ch��� to the case of integrands with possibly
in�nite values�

Lemma ��� Let � be a bounded open subset of Rn with Lipschitz bound�
ary and let L 
 � � R � Rn � R be a Carath�eodory integrand which sat�
isfy both �H�� and the inequality L � � with a continuous convex function
� 
 Rn � R having superlinear growth�

Then the integrand Lc� which is obtained by convexi�cation of L with
respect to v� i�e�

L�x� u� v� 	 inff
qX

i��

ciL�x� u� vi� 
 q � N� ci � ��
qX

i��

ci 	 ��
qX

i��

civi 	 vg�

is a Caratheodory integrand which satis�es �H�� and the inequality Lc � ��
Moreover for a�e� x � � and all u � R� v � Rn there exist ci � ��

vi 
	 v� i � f�� � � � � n� �g� such that
P

i ci 	 ��
P

i civi 	 v� and L�x� u� v� 	P
i ciL�x� u� vi��

Proof
The facts that Lc � � and Lc satis�es �H�� are obvious� To prove the

lemma it is enough to show that if �� is a compact subset of � such that the
restriction of L to �� �R �Rn is continuous� then the restriction of Lc to
the same set is continuous�

Note that if F 
 Rn � R�f�g is a continuous function with superlinear
growth then by the Carath�eodory theorem� cf� �ET�� we have

F c�v�� 	 inff
n��X
i��

ciF �vi� 
 ci � ��
n��X
i��

ci 	 ��
n��X
i��

civi 	 v�g�

Moreover there exist c�i � v
�
i � i � f�� � � � � n � �g at which the in�mum on the

right�hand side is attained� To show this we take a minimizing sequence cki �
vki � i � f�� � � � � n � �g� We can �nd a subsequence �not relabeled� such that
for each i � f�� � � � � n��g we have vki � v�i � c

k
i � c�i or v

k
i ��� cki � c�i 	 ��

��



Note that if vki �� or F �v�i � 	� then c�i 	 �� Assuming that c�iF �v�i � 	 �
in those two cases we infer that

n��X
i��

c�iF �v�i � � lim inf
n��

n��X
i��

cki F �vki ��

These arguments also show that Lc 
 ���R�Rn � R� f�g is a lower
semicontinuous function� Moreover� because of continuity of the restriction
of L� we infer upper semicontinuity of Lc at points where its value is �nite�
In case Lc�x� u� v� 	 � and �xi� ui� vi� � �x� u� v� we have Lc�xi� ui� vi� �
�� i � �� since otherwise we can use the above arguments to show that
Lc�x� u� v� � �� which is a contradiction� Therefore Lc 
 �� � R � Rn �
R � f�g is both lower and upper semicontinuous� Then it is continuous�

This way we establish that Lc is a Carath�eodory integrand� QED

Proof of Theorem ���
Note �rst that by Lemma ��� the integrand Lc is Carath�eodory and sat�

is�es both the requirements �H�� and �H��� It is clear also that the subset
of � where L�x� u��x�� Du��x�� 	 Lc�x� u��x�� Du��x�� is measurable� Let 
�
be its complement�

We will show that there exist measurable functions ci 
 
� � ��� ��� vi 


� � Rn� i � f�� � � � � n� �g� such that

vi��� 
	 Du����� i � f�� � � � � n� �g�
n��X
i��

ci��� 	 ��
n��X
i��

ci���vi��� 	 Du�����

n��X
i��

ci���L��� u����� vi���� 	 Lc��� u����� Du����� a�e� in 
�� �����

Then the family of probability measures �
x�x��� where 
�x� 	
Pn��

i�� ci�x��vi�x�
in 
� and 
�x� 	 �Du��x� in � n 
�� has measurable actions on elements of
C��R

n�� By Theorem ��� �
x�x�� is a Young measure�
Applying Theorem ��� to this case we can assert existence of a sequence

uk � W ������ with the properties

uk � u� in W ������� uk
���
��

	 u�
���
��
� L��� uk���� Duk���� � hL��� u����� v�� 
���i in L��

where in view of ����� the identity hL�x� u��x�� ��� 
xi 	 Lc�x� u��x�� Du��x��
holds for a�e� x � ��

��



This proves the theorem�

To establish ����� we will construct a sequence of compact subsets �j of

� such that �j� � �j� 	 
 if j� 
	 j�� meas �� n ��j���j� 	 �� and for each
j � N the functions

L 
 �j �R�Rn � R � f�g�

u� 
 �j � R� Du� 
 �j � Rn

are continuous�
It is enough to establish ����� in case 
� 	 �j� We will construct by

induction a sequence 
�k of pairwisely disjoint compact subsets of 
� such
that ����� holds in each set 
�k and meas f
� n �k


�kg 	 ��
Assume that the sets 
�j� j � f�� � � � � k � �g� and the functions vi 


�k��
j��


�j � Rn� ci 
 �
k��
j��


�j � ��� �� are already de�ned� To de�ne 
�k consider

the set ��
k consisting of those x � 
� where we can �nd ci � � and vi � Rn�

i � f�� � � � � n� �g� such that

��k � jL�x� u��x�� vi�j � k� ��k � jvij � k�
n��X
i��

ci 	 ��
n��X
i��

civi 	 Du��x��

n��X
i��

ciL�x� u��x�� vi� 	 Lc�x� u��x�� Du��x��� �����

This way we de�ne a multivalued mapping

x � ��
k � fc�� � � � � cn��� v�� � � � � vn�� 
 ����� holdsg�

The set ��
k is closed �in 
�� and the multivalued mapping is upper semicon�

tinuous in ��
k since validity of ����� for xm � ��

k with c
m
i � v

m
i � i 	 �� � � � � n���

and the convergences cmi � ci� v
m
i � vi� xm � x imply validity of ����� for

x with ci� vi� i 	 �� � � � � n � �� Hence V 
 ��
k � �R

�n����n���
is a measurable

multifunction� which is de�ned in a closed subset ��
k of 
�� By Theorem ���

we can �nd a measurable selection x � �c�� � � � � cn��� v�� � � � � vn��� of this
function� Then we have

n��X
i��

ci�x�L�x� u��x�� vi�x�� 	 Lc�x� u��x�� Du��x��

��



everywhere in ��
k� We de�ne 
�k as a compact subset of the set ��

k n �
k��
i��


�i

such that meas 
�k � meas ���
k n �

k��
i��


�i�� ��k�
We have meas �
� n ��k�� 
�k� 	 � since� by Lemma ���� for each x � 
�

there exists ci � �� vi 
	 Du��x�� i � f�� � � � � n� �g� with the properties

n��X
i��

ci 	 ��
n��X
i��

civi 	 Du��x��
n��X
i��

ciL�x� u��x�� vi� 	 Lc�x� u��x�� Du��x���

This completes proof of the �rst part of the theorem�

To prove the second part we note �rst that J�u�� 	 Jc�u�� if and only if

L�x� u��x�� Du��x�� 	 Lc�x� u��x�� Du��x�� a�e��

where the latter holds if and only if for a�e� x � � the function L�x� u��x�� ��
is convex at the point Du��x�� cf� �S�� x��

Assume now that for a�e� x � � the function L�x� u��x�� �� is strictly
convex at Du��x� and uk � u� in W ��p���� J�uk� � J�u��� We show that
Duk � Du� in L� by contradiction� If the latter does not hold then we can
assume that Duk generates a nontrivial Young measure �
x�x��� i�e� 
x is
not a Dirac mass for a set of x of positive measure� see Theorem ���� By
Theorem ���

J�u�� 	 lim
k��

J�uk� �
Z
hL�x� u��x�� ��� 
xidx� ������

where for a�e� x � � the center of mass of 
x is Du��x�� By strict convexity
at Du��x� we have

hL�x� u��x�� ��� 
xi � L�x� u��x�� Du��x�� a�e��

moreover the inequality is strict at the points where the measure 
x is non�
trivial� i�e� 
x is not a Dirac mass� see �S�� x��� This observation and ������
imply the inequality liminfk��J�uk� � J�u��� which is a contradiction� The
contradiction shows that 
��� 	 �Du���� a�e� in �� Then Theorem ��� implies
the convergence Duk � Du� in L�� Since J�uk� � J�u�� we also have by
Theorem ��� that

L��� uk���� Duk����� L��� u����� Du����� in L��

��



We prove the last assertion of the theorem again by contradiction� i�e�
we assume that it is no longer true that L�x� u��x�� �� is strictly convex at
Du��x� for a�a� x � �� Then we can apply the above arguments to construct
a nontrivial Young measure in the form of convex combinations of at most
n � � Dirac masses� i�e� 
��� 	

Pn��
i�� ci�vi��� a�e�� with the centers of mass at

Du���� and with the property
P
ciL��� u����� vi� 	 L��� u����� Du����� a�e� in

� �see �������
By Theorem ��� there is a sequence uk � u� in W ��p��� generating the

Young measure �
x�x�� such that uk
���
��

	 u�
���
��

and

J�uk� �
Z
�
hL�x� u��x�� ��� 
xidx 	 J�u���

By Theorem ��� the sequence Duk does not converge in measure�
This proves the last assertion of the theorem� QED

� Proof of Theorem ���

To prove Theorem ��� we will need two auxiliary lemmata�
Recall that a function u � W ��p��� is called monotone if for a�a� x � �

and each � � � such that Q�x� �� � � �recall that Q�x� �� is the open cube
with the side length � and the center at x� we have that for a�a� �� ���� ��

ess inf
�Q�x����

u � ess inf
Q�x�����

u� ess sup
Q�x����

u � ess sup
�Q�x����

u� �����

Note that this de�nition has sense for Sobolev functions since for a�a� �� ���� ��

the trace u
���
�Q�x����

is de�ned�

Lemma ��� Assume that the minimization problem

J�u� 	
Z
�
L�Du�x��dx� min� u � W ������� u

���
��

	 f�

where L 
 Rn � R is a convex integrand such that L � �j � jp� 	 with � � �
and p � n � � in case n � � and L has superlinear growth at in�nity in
case n 	 �� has at least one admissible function� Then there is a monotone
solution u��

��



Another important observation is

Lemma ��� Assume that u � W ��p��� with p � n� � if n � � and with
p 	 � if n 	 �� If u is a monotone function then it is a�e� di�erentiable in
the classical sense�

Proof
See 

Ri� Ch�VI� x���� There the result is stated under additional as�

sumption of continuity of the function u� However the same arguments can
be applied in the general case�

Proof of Lemma ���
Superlinear growth of L at in�nity allows us to �nd a minimizing sequence

uk which converges weakly in W ������ to u�� Convexity of L implies lower
semicontinuity of the integral functional with respect to this convergence�
Therefore

J�u�� � lim inf
k��

J�uk��

i�e� u� is a solution of the minimization problem�
We have L � �� where � is a strictly convex function with superlinear

growth at in�nity� By the above arguments for each � � � the problem

J��u� 
	
Z
�
fL�Du� � ���Du�gdx� min� u

���
��

	 f

has a solution u��
First we prove that each function u�� � � �� is monotone� We take x� � �

and Q�x�� �� � �� For a�a� � ���� �� the trace u�
���
�Q�x����

is well de�ned and

is a continuous function� Fix such a �� Let

M� 
	 ess sup
�Q�x�����

u�� m� 
	 ess inf
�Q�x�����

u��

We de�ne u��x� 	 u��x� if x � Q�x�� �� and u��x� � �m��M��� u��x� 	 M�

if x � Q�x�� �� and u� � M�� u��x� 	 m� if x � Q�x�� �� and u��x� � m��
Then u� � W ��p�Q�x�� ��� and

u�
���
�Q�x����

	 u�
���
�Q�x����

�

��



The later property also implies that u� � W ��p��� if we assume u� 	 u� in
� nQ�x�� ���

Let L� 
	 L � �� and let g � 
L����� Then we have

Z
�
hg�Du��x��Du��x�idx 	 �

since both the functions u� and u� coincide at the boundary of �� Then

� � J�u��� J�u�� 	
Z
�
fL��Du��� L��Du��� hg�Du� �Du�igdx� �����

De�ne
�� 
	 fx � Q�x�� �� 
 u� 
	 u�g�

The expression under the integral in the right�hand side of ����� vanishes
in the set � n ��� Then the integral over � in the right�hand side of �����
is equal to the integral over ��� If meas �� � � then J�u�� � J�u�� since
Du� 	 � in ��� Du� 
	 � in a subset of �� with positive measure� and
L��v� � L���� � hg� vi � � for v 
	 �� This contradiction with ����� proves
that u� is a monotone function�

We also have

J��u��� inffJ�u� 
 u � W ������� u
���
��

	 fg� �� �� �����

We can �nd a subsequence �k � �� k ��� such that u�k �  u in W ��p����
Then

J� u� � lim inf
k��

J�k�u�k�

and� in view of ������  u is a solution of the original problem�
Since each function u�k � k � N� is monotone we can infer that  u is also a

monotone function� We prove this only in case n � �� however the remaining
case can be treated analogously�

Let x� be �xed and let Q�x�� �� � �� Then for a�a� �� ���� �� we have

lim inf
k��

jjDukjjLp��Q�x������ ���

Then for each such �� and an appropriate subsequence uk �not relabeled� we
have

jjuk � u�jjL���Q�x������ � ��

��



Since ����� holds for each uk and uk � u� in L
p we infer that ����� holds also

for the limit function u�� QED

Proof of Theorem ���
By Lemma ��� the integrand Lc is a convex continuous function with

values in R � f�g� Moreover Lc � �j � jp � 	 with � � � and p � n � � if
n � � and Lc � �� where � 
 Rn � R is a convex function with superlinear
growth� if n 	 ��

By Lemma ��� we can �nd a monotone solution u� of the relaxed prob�
lem� By Lemma ��� this solution is a�e� di�erentiable in the classical sense�
Applying Lemma ��� and Theorem ��� we can �nd a sequence uk � u� in
W ������ such that uk

���
��

	 f and J�uk�� Jc�u���

The proof of the remaining part of the �rst assertion of the theorem
follows lines of the proof of the analogous assertions of Theorem ���� This
proves the �rst part of the theorem�

To complete the proof we have to show that the condition �C� is both
necessary and su�cient for solvability of all boundary value minimization
problems with nonempty set of admissible functions� We �rst show that this
condition characterizes solvability of problems with linear boundary data v��
i�e� when f 	 lv� and Lc�v�� ���

Without loss of generality we can assume that Lc�v�� 	 � and Lc � �
everywhere� In fact we can replace the integrand L by the integrand L����
L�v��� hg� � � v�i with g � 
Lc�v�� since the functional

u�
Z
�
hg�Du�x�idx

assumes the same value at all functions u � W ������ with u
���
��

	 f �

If Lc�v�� 	 L�v�� then the function lv� is a solution of ������ Assume that
L�v�� � Lc�v��� De�ne V 
	 fv � Rn 
 L�v� 	 �g� We have V 
	 
 since
L � � and� by Lemma ���� we can �nd ci � �� vi � Rn� i � f�� � � � � n � �g�
such that

n��X
i��

ci 	 ��
n��X
i��

ciL�vi� 	 Lc�v�� 	 ��

If v� � int coV then by Lemma ��� we can �nd a function u � W ������ with

u
���
��

	 lv� and Du � extrV a�e� Then u is a solution� The converse also

��



holds� i�e� solvability of the problem implies v� � int coV � To show this
we can again apply Lemma ��� to �nd a sequence uk � W ������ such that

uk
���
��

	 lv� � J�uk� � �� Therefore if a solution u� exists then Du� � V

a�e� The requirements Du� � V a�e�� u�
���
��

	 lv� imply that v� � int coV �

Otherwise we can apply the Hanh�Banach theorem to �nd a vector y � Rn

�y 
	 �� such that


u�

y

	 hDu�� yi � hv�� yi a�e� in ��

Then� since u� 	 lv� on 
�� we obtain that u� 	 lv� a�e� in �� Then Du� 	 v�
a�e� in �� which is a contradiction with the assumption v� 
� V �

This way we establish that the condition �C� is both necessary and suf�
�cient to resolve all minimization problems with a�ne boundary data� It
remains to show that �C� implies solvability of all nonlinear boundary data
problems�

Assume f is such that the problem

Jc�u�� min� u � W ������� u
���
��

	 f

has an admissible function� Then it also has a monotone solution u�� cf�
Lemma ���� By Lemma ��� u� is a�e� classically di�erentiable� Then we
can apply Lemma ��� at each point x�� where Du��x�� exists in the classical
sense� to �nd a sequence of open sets �i�x� � which meets the requirements of
the Vitaly covering theorem at the point x� �see x��� and the perturbations
wi�x� of u� in �i�x�� i � N� such that

Dwi�x� � fL 	 Lcg a�e� in �i�x� �
Z
�i�x�

Lc�Du��x��dx 	
Z
�i�x�

Lc�Dwi�x��x��dx�

�����
Applying the Vitaly covering theorem we can decompose � into the sets
�i�x�i�� i � N� and a set of null measure in such a way that for each set
�i�x�i�� i � N� there is a perturbation wi�x�i� such that ����� holds� Therefore

if  u 	 wi�x�i� in �i�x�i�� i � N� then  u � W �������  u
���
��

	 u�
���
��
� J� u� 	 J�u���

and D u � fL 	 Lcg a�e� Then  u is a solution of the original problem� QED
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