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Abstract� We consider the dependence of the entropic solution of a hyperbolic system of
conservation laws �

ut � f�u�x � �
u��� �� � u�

on the �ux function f � We prove that the solution in Lipschitz continuous w�r�t� the C� norm
of the derivative of the perturbation of f � We apply this result to prove the convergence of the
solution of the relativistic Euler equation to the classical limit�
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�� Introduction

Under suitable assumptions on the function f � � �� R
n �with � � R

n�� the system

ut � �f�u�	x 
 ������

generates a Standard Riemann Semigroup �SRS� S � �������D �� D� see ��	� Aim of this paper
is to investigate the dependence of S upon the 
ow function f �

Several papers in the current literature are concerned with the existence of an SRS� see for
example ��	 and the references in ��	� On the contrary� in the present paper the existence of an
SRS is assumed as a starting point and the focus is on the correspondence f �� S� In fact� the
results in this paper imply that the SRS S is a Lipschitzean function of the 
ow f � with respect
to the C� norm of Df � An immediate consequence is the following� Assume that f depends
on the parameters �p�� � � � � pm� that may vary in a compact subset of Rm � Given a continuous
functional J de�ned on the solution u at time t to the Cauchy problem for ������ the present
result ensures the continuity of the map �p�� � � � � pm� �� J�u�t�� hence� by Weierstrass Theorem�
the optimization problem admits a solution�

For the sake of completeness� we only recall here that the existence of the SRS for the n �
n system ����� was �rst proved in ��	� The main assumptions there are that Df is strictly
hyperbolic with every characteristic �eld either linearly degenerate or genuinely nonlinear and
that the initial data has su�ciently small total variation� More recently� the existence of the
SRS was extended also to the non genuinely nonlinear setting in the �� � case� see ��	�

Below we shall restrict our attention to standard solutions to Riemann problems and� hence�
to general Cauchy problems for Conservation Laws� Here� by standard solutions we refer to
those introduced by Lax ���	 and then generalized by Liu ���	� Various extensions of the present
work to other types of solvers are straightforward�

The present paper is organized as follows� In the next section we state the main results�
The following Sections � and � are devoted to two applications� the classical � relativistic limit

Date� July �th	 
����
���� Mathematics Subject Classi�cation� 
�L��	 ��N���
Key words and phrases� Hyperbolic systems	 conservation laws	 well posedness�
We thank Alberto Bressan for useful discussions�
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of Euler equations and scalar conservation laws with L� initial data� The proofs are given in
Section ��

�� Notation and Main Results

Consider the following hyperbolic system of conservation laws in one space dimension

ut � �f�u�	x 
 ������

where f � � �� R
n is in Hyp���� i�e� f is a su�ciently smooth function that generate a SRS

Sf � ������ � Df �� Df � Recall that by SRS generated by f �see ��	� we mean a map
Sf � �������Df �� Df with the following properties�

�i� Sf is a semigroup� Sf� 
 Id and Sft � S
f
s 
 Sft�s�

�ii� Sf is Lipschitz continuous� there exists a positive Lf such that for all positive t� s and for

all u�w � Df � kSft u� SfswkL� � Lf 	 �jt� sj� ku� wkL���

�iii� if u is piecewise constant� then for t small� Sft u coincides with the glueing of standard
solutions to Riemann problems�

For all u � Df � it is well known �see ��	� that the map t �� Sft u is a weak entropic solution to
������

Given f � Hyp���� let R�Df � be the set of all piecewise constant functions in Df having
a single jump at the origin� In other words� R�Df � is the set of initial data to the Riemann
problems �����

ut � f�u�x 
 �

u��� x� 


�
u� if x � �

u� if x � �

�����

Below� by solution to ����� we always refer to the standard Lax �see ���	� self�similar entropic
solutions�

Let f� g � Hyp��� with

Dg � Df�����

and de�ne the �distance� between f and g as �cfr� ��	�

�d�f� g� 
 sup
u�R�Dg�

�

ju� � u�j
	
��Sf�u� Sg�u

��
L�

�����

The distance �d�f� g� is well de�ned due to ������ The main result of the present paper is the
following theorem�

Theorem ���� Let f � Hyp���� Then� for all g � Hyp��� with Dg � Df and for all u � Dg

��Sft u� Sgt u
��
L�
� Lf 	 �d�f� g� 	

Z t

�
Tot�Var� �Sgt u� dt ������

Recall that Lf is the Lipschitz constant of the semigroup Sf � see �ii� above� The proof of
Theorem ��� is deferred to Section ��

Remark that �d generalizes the analogous quantity �dlin de�ned in ��	 with reference to the
linear case� Let M n�n

d denote the set of n � n diagonalizable matrices with real eigenvalues�

Note that M n�n
d � Hyp�Rn�� Fix a v � R

n � v 

 �� Denote by At � v the solution evaluated at
time t of the linear system �

ut � Aux 
 �
u��� x� 
 v 	 ��������x�
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�here� �I is the characteristic function of the interval I�� Theorem ��� in ��	 shows that

�dlin�A�B�
�

 sup

v 	 jvj
�

��A� � v �B� � v
��
L�
������

is a distance on M
n�n
d such that for all A�B � M

n�n

kB �Ak � �dlin�A�B� ������

k 	 k being the usual operator norm� Moreover�
�
M

n�n
d � �dlin

�
is a complete metric space� Clearly�

if f and g are linear� then �dlin�f� g� 
 �d�f� g��

Furthermore� �d is related to �dlin computed on the derivatives of the 
ow functions� as shown
by the following Proposition�

Proposition ���� Let f� g � Hyp��� with Dg � Df � Then

�d�f� g� � sup
u��

�dlin�Df�u��Dg�u�� ������

Thus� �d�f� g� seems stronger than the C� distance between Df and Dg� in the sense of ������
Nonetheless� Corollary ��� below shows that once the 
ow functions and the domains Df � Dg are

�xed� i�e� the total variation of the solutions Sft u� Sgt u are uniformly bounded� we can estimate
the r�h�s� in ����� by means of kDf �DgkC� �

Theorem ��� shows that the key point in the stability of the SRS w�r�t� the 
ow function lies
in the dependence of only the solution to Riemann problems upon the 
ow function� From the
more abstract point of view of quasidi�erential equations in metric spaces �see ��� ��	� this is
equivalent to relate the distance between semigroups to the distance between the vector �elds
generated by the semigroups�

As in ��	 �see also ���	�� in a metric space �E� d� de�ne an equivalence relation on all the
Lipschitz curves � � ��� �	 �� E exiting a �xed point u as

� � �� i� lim
� ����

d ������ ������

�

 �������

The quotient space Tu so obtained is naturally equipped with the metric

�d�v�� v��
�

 lim sup

����

d ������� ������

�
�������

where �i is a representative of the equivalence class vi� By ������ �d does not depend on the
particular representatives chosen� A map v � E ��

S
u�E Tu is a vector �eld� provided v�u� � Tu

for all u�
Let S � E � �������� E be a Lipschitzean semigroup� i�e� S satis�es

S� 
 IE

Ss � St 
 Ss�t
and


L � � such that
� t� s � � and �u�w � D

d �Stu� Ssw� � L 	 �jt� sj� d�u�w�� �

Then� S naturally de�nes a vector �eld vS on E by

vS�u� is the equivalence class of the orbit � �� S�u �������

Theorem ��� has a natural abstract counterpart� namely

Proposition ���� Let S� S� be two Lipschitz semigroups on E generating the vector �elds v
and v�� respectively� Denote with L the Lipschitz constant of� say� S� Then

d
	
Stu� S

�
tu


� L 	

Z t

�

�d
	
v�S�tu�� v��S�tu�



dt �������
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The above proposition is an immediate corollary of the following widely used �see ��� �� �� �� �	
and the references in ��	� error estimate�

Lemma ���� Given a Lipschitz semigroup S � E � �������� E with Lipschitz constant L� for
every Lipschitz continuous map w � ��� T 	 �� E one has

d �w�T �� Stw���� � L 	

Z T

�
lim inf
h����

d �w�t � h�� Shw�t��

h
dt �������

The proof of Theorem ��� consists of the following steps�

��� Find an explicit de�nition of the vector �eld vS generated by the SRS S�
��� Compute the r�h�s� in �������
��� Apply Lemma ����

Note that this procedure requires the mere existence of the SRS� In several cases �see for in�
stance ��� �� �	� the existence of the SRS is achieved through the construction of a sequence Sn of
uniformly Lipschitzean approximate semigroups de�ned on piecewise constant functions� In all
these cases� the vector �eld vn generated by Sn on the set of piecewise constant functions simply
consists in the gluing of solutions to Riemann problems� Thus� under the further assumption
that such an approximating sequence Sn exists� the step ��� above could be avoided�

The quantity �d in ����� is thus the natural tool to estimate the dependence of the SRS upon
the 
ow function �note also that no constant is involved in ������� However� in view of possible
applications of Theorem ���� we provide an estimate of the r�h�s� in ����� in terms of handier
quantities�

Corollary ���� Let f � Hyp��� and assume that

Df �
�
u � L��R�K� � Tot�Var��u� �M

�
for suitable positive M and compact K � R

n � Then� there exists a positive constant C such that
for all g � Hyp��� with Dg � Df and for all u � Dg��Sft u� Sgt u

��
L�
� C 	

��Df �Dg
��
C����

	 t �������

The above is the counterpart of the well known estimate for solutions of bounded variation in
the scalar case given in ��	� Note that� di�erently from the linear case� the �distance� �d�f� g� is
equivalent to kDf �DgkC� because the total variation of both solutions Sfu and Sgu is �xed
by the domain Df � thus the case of example of Remark ��� in ��	 is not valid here�

For scalar equations and assuming that the 
ow functions f and g are strictly convex� we are
able to extend the estimate in ��	 to L� initial data�

Theorem ���� Assume that the scalar �ow functions f and g are uniformly strictly convex in a
compact interval K� i�e� f ���u�� g���u� � � � � for all u � K� Let u �resp� w� denote the solution
to �

ut � �f�u�	x 
 �
u��� x� 
 uo�x��

resp�

�
wt � �g�w�	x 
 �
w��� x� 
 uo�x�

with the same initial data uo � L��R�K�� Denote by �	 an upper bound for the characteristic

speeds� i�e� �	 � maxu�K fjf
��u�j� jg��u�jg� ThenZ b

a



u�t� x�� w�t� x�


 dx � � 	 diam�K� 	 t 	

b� a � ��	t

�t
	max
u�K



f ��u�� g��u�


 �������
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�� Proof of the main results

This section is devoted to the proofs of Theorem ���� Proposition ��� and Corollary ���� The
�rst step consists in the explicit computation of the vector �eld v�u� generated by a SRS in
the sense of ������� This procedure follows ��	� Remark that� given an f � Hyp���� such
construction is accomplished for all u � Df �

Fix f � Hyp��� and u � Df � Du stands for the total variation of the weak derivative of u�

Let �	 be a constant strictly greater than all the characteristic speeds induced by f on Df � Let

 � R be given� We denote by � the self similar solution of the Riemann problem�����

�t � f���x 
 �

���� x� 


�
u�
�� if x � �

u�
�� if x � �

and let U �
� be the function

U �
���� x�

�



�
���� x� 
� if jx� 
j � �	�

u�x� if jx� 
j � �	�
�����

Moreover� de�ne U �
� as the solution to the linear hyperbolic problem with constant coe�cients�

�� � Df�
��x 
 �
���� x� 
 u�x��

�����

Given � � � by an ��covering of the real line we mean a family

F
�


�
I�� � � � � IN � I

�
�� � � � � I

�
M

�
�����

of open intervals which cover R such that�

�� the intervals I� are mutually disjoint and no point x � R lies inside more than two distinct
intervals I ���

�� for every 
 there exists 
� � I� such that Du�I� n f
�g� � ��N �
�� for every �� Du�I ��� � ��

Now� let �n be a sequence strictly decreasing to �� If Fn 
 fI�� � � � � IN�n�� I
�
�� � � � � I

�
M�n�g is an

�n�covering of R� then also Fn�� 
 fI���� � � � � IN�n���� I
�
���� � � � � I

�
M�n���g is an �n�covering� where

Ij��
�

 Ij �	���� �� and � � ��� �n	� for �n su�ciently small and such that the sequence �n strictly

decreases to �� De�ne now

u�n�x�
�



�
U �
��

��� x� if x � I���

U �
��

��� x� if x � I ����� x ��
S
� I���� x ��

S
���� I

�
����

We �nally obtain the vector �eld vSf letting vSf �u� be the equivalence class �w�r�t� ������ of the
curve � �� u�� where

u�
�

 su�nn � ��� s�u

�n��
n�� if � 
 s�n � ��� s��n��� s � ��� �	 ������

In ��	 it is shown that the trajectories of SRS Sf generated by the hyperbolic system of
conservation laws ut � f�u�x 
 � are the solution of the quasilinear equation �u 
 vSf �u�� where
the vector �eld vSf �u� is generated by the curve ������

Let f � g be as in Theorem ���� and denote with u�� w� the two curves generating the vector
�elds vSf and vSg induced by the SRSs Sf and Sg� In view of ������� we now pass to compute the
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distance ������ between vSf �u� and vSg�u�� A simple computation shows that by Proposition ���

d�u�n � w�n�

�n



�

�n
	
��w�n � u�n

��
L�

�����

�
X
�

Du�
�� 	 �dlin�f� g� �
X
�

Tot�Var��u� I ��� 	 �d �Df�
��� Dg�
���

� Tot�Var��u� 	 �d�f� g� �

As a consequence� if s is as in �����

d�u�� w��

�



��s 	 �u�nn � w�n
n � � ��� s� 	 �u

�n��
n�� � w

�n��
n�� �

��
L�

�
�����

�
s 	 �n � ��� s� 	 �n��

�
	 Tot�Var��u� 	 �d�f� g�


 Tot�Var��u� 	 �d�f� g�

hence

�d �vSf �u�� vSg �u�� 
 lim sup
n���

d�u�� w��

�
� Tot�Var��u� 	 �d�f� g� ������

By Proposition ���� applying ����� to Sgt u� the proof of Theorem ��� is completed�
In the next part of this section we give a proof of Corollary ���� We only need to prove that

there exists a constant C such that �d�f� g� � C 	 kDf �DgkC� � this means that for all Riemann
problems ����� we have��Sf� u� Sg�u

��
L�
� C 	

��Df �Dg
��
C� 	



u� � u�


������

We recall that Sgt u is a self similar solution� obtained by piecing together centered rarefaction
waves and jump discontinuities� By the L�loc dependence of Sf � formula ����� is proved if we can
verify it for Riemann problems generating a single wave in the solution Sgt u� We then have to
consider two cases�

If Sgt u is a centered rarefaction wave� then by the Lipschitz continuity of the solution for t � ��

the functions Sgt�hu and Sfh � S
g
t u solves in the broad sense the quasilinear versions of �������

Sfh � S
g
t u
�
h

�Df
�
Sfh � S

g
t u
�
x


 � and
�
Sgt�hu

�
h

� Dg
�
Sgt�hu

�
x


 �������

Applying Lemma ���� we obtain

��Sf�u� Sg�u
��
L�
� Lf 	

Z �

�
lim inf
h��

��Sfh � Sgt u� Sgt�hu
��
L�

h
dt������


 Lf 	

Z �

�

��Df�Sgt u�x �Dg
�
Sgt u

�
x

��
L�

������

� C 	
��Df �Dg

��
C� 	 ju

� � u�j�

since in this case the L� limits as h � � of �Sfh � S
g
t u��h and �Sgt�hu��h exist by ����� and are

equal to �Df �Dg��Sgt u	x�
Now we consider the case in which the jump u�� u� is solved by a shock travelling with speed

�� where � is given by the Rankine�Hugoniot condition

g�u��� g�u�� 
 � 	
	
u� � u�



�������
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To prove ������ we approximate the solution Sgt u with the Lipschitz continuous function �u�t�
de�ned as

�u�t� x� 
 u� 	 �������

	
x� �t



�
	
u� � u�



	min

�
x� �t

�
� �

�
	 �������

	
x� �t



�

Roughly speaking� �u is obtained from Sgt u by substituting the jump u�� u� at x � �t with a
linear function� Using the Lipschitzeanity of Sg we can write��Sfh � Sgt u� Sgt�hu

��
L�
�
��Sfh � Sgt u� Sfh �u�t�

��
L�

�
��Sfh �u�t�� �u�t � h�

��
L�

������

�
���u�t � h�� Sgt�hu

��
L�

�
�

�
	 �� � Lf � 	



u� � u�


�

���u�t � h�� Sfh �u�t�
��
L�
�

The last term above can be evaluated again by means of Lemma ����

���u�t � h�� Sfh �u�t�
��
L�
� Lf 	

Z t�h

t

lim inf
����

���u�� � 
�� Sf� �u���
��
L�



d�������


 h 	 Lf 	

Z �

�




� ���I�Dg
�
u�� � �u�� � u�� �

y

�

���u�� � �u�� � u�� �

y�

�


 dy
� h 	 Lf 	 sup

x�K

��Df�x��Dg�x�
�� 	 

u�� � u��



 �
where we use �x� � �� � �� � � �	 and the relation

� 	 �u�� � u�� � 
 f�u�� �� f�u�� � 


Z �

�
Df

	
��� s�u�� � su��



ds 	 �u�� � u�� � �

In fact� since u��� is Lipschitz continuous� we can use Lebesgue s dominated convergence theorem
as in the previous case� Letting � tend to �� we obtain �nally

�

h

��Sfh � Sgt u� Sgt�h
��
L�
� Lf 	 sup

x�K
kDf�x��Dg�x�k 	



u�� � u��


�������

This concludes the proof of Corollary ���� in fact an application of Lemma ��� gives immedi�
ately ������

To end this section� we prove Proposition ���� Fix uo � � and v � R
n with jvj 
 �� Assume

that for all positive and su�ciently small h the function uh 
 uo � h 	 ������� 	 v is in Dg� Let

�fh�u� 

�

h
	
	
f�u�� f�uo�



� �gh�u� 


�

h
	
	
g�u� � g�uo�



and note that using a simple rescaling� we can write����S �fh

�

�
�

h
�uh � uo�

�
� S�gh

�

�
�

h
�uh � uo�

�����
L�



�

h
	
��Sf�uh � Sg�uh

��
L�

�recall that ���h� 	 �uh � uo� 
 ������� 	 v is independent from h�� Hence� passing to the limit
h� � ��Df�uo�

� � v �Dg�uo�
� � v

��
L�


 lim
h��

�

h
	
��Sf�uh � Sg�uh

��
L�

������

�dlin �Df�uo��Dg�uo�� 
 sup
v

lim
h��

�

h
	
��Sf�uh � Sg�uh

��
L�

and the proof is completed�
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�� The Classical Limit of the Relativistic Euler Equations

In this section we apply Corollary ��� to the classical limit of the relativistic Euler equations�
generalizing what was obtained in ���	�

The relativistic p�system� �see ���� ��	� is���������
�
� �

�
� �

�

c�
p

�
�v�c��

�� �v�c��

�
t

�

��
� �

�

c�
p

�
v

�� �v�c��

�
x


 ���
� �

�

c�
p

�
v

�� �v�c��

�
t

�

��
� �

�

c�
p

�
v�

�� �v�c��
� p

�
x


 �

�����

Above� � is the mass�energy density of the 
uid� v the classical coordinate velocity� p the pressure
and c the light speed� We show below that as c � ��� the problem ����� approaches to its
classical counterpart �

��	t � ��v	x 
 �

��v	t �
�
�v� � p

�

 �

�����

in the sense that the SRS Sc generated by ����� converges to the SRS S generated by ����� on a
domain containing all physically reasonable data� In particular� the total variation of the data
need not be small�

In ����� a standard choice �see ���	 and the references therein� for the pressure law is

p 
 �� 	 � ������

� being the sound speed�
Fix a positive lower bound for the density �min and for the light speed co� Without any loss

in generality� we may assume � � co�
Let VM 
 f��� �v� � BV �R� ��min ����� R� � Tot�Var���� � Tot�Var���v� �Mg� In ���	 it is

proved that for any M � �� ����� generates a SRS Sc�M de�ned on a domain Dc�M containing
VM and consisting of functions of total variation bounded by� say� M� �provided M is su�ciently
large�� Similarly� ����� generates a SRS SM on a domain DM containing VM� and contained�
say� in VM� �

Thus� for all su�ciently large c and M � there exist domains Dc�M � DM such that

VM � Dc�M � VM� � DM � VM������

and� moreover� the problems ����� and ����� generate the SRSs

Sc�M � Dc�M � ������ �� Dc�M and SM � DM � ������ �� DM �

We are now ready to state and prove the following application of Corollary ����

Theorem ���� Fix a positive �min and su	ciently large M � co� Let Dc�M and DM satisfy to
����� for c � co� Then there exists a constant C such that for all c � c� and for all u � DM�c

��Sc�Mt u� SMt u
��
L�
� C 	

�

c�
	 t������

In particular� by ������ the bound ����� holds for all initial data u with Tot�Var��u� � M �

Proof� Note that ����� and ����� in conservation form become� respectively����
�t � qx 
 �

qt �

�
�c��� q� 	

q�

�
� p

�
x


 �
and

���
�t � qx 
 �

qt �

�
q�

�
� p

�
x


 �
�����
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where

�c��� q� 
 � �
�

c�
	

�
��

v���� q�

c�

�
	

p

� �
v���� q�

c�
	
p

c�

�

Call fc and� respectively� f the 
uxes in the two systems ������ Then� the estimate kDfc �
DfkC� � C 	 ���c�� follows from straightforward computations and completes the proof�

We remark that the particular pressure law ����� is necessary only to ensure the existence of
the SRS Sc�M in the large� The above procedure remains true under much milder assumptions
on the equation of state� Note moreover that the rate of convergence O���c�� is exactly the one
expected by the convergence of relativistic to classical mechanics�

It is of interest to mention that ����� proves also the uniform Lipschitz continuity of all
semigroups Sc�M for all su�ciently large c�

Remark ���� As is well known� linearizing ����� around � 
 �o� v 
 � at constant entropy leads
to the wave equation� Corollary ��� ensures that the solutions to ����� converge to the linearized
equation in L� over �nite time intervals�

�� Stability of a scalar equation w�r�t� flux

In this section we prove Theorem ���� We consider two scalar equation�

ut � f�u�x 
 �������

vt � g�u�x 
 �������

with the same initial condition� u��� x� 
 v��� x� 
 u�� We assume that f � g are strictly convex
C� functions� precisely there exists a constant � such that

min
u�K

fjf ���u�j� jg���u�jg � � ������

where K is a compact interval of R such that u��x� � K for all x � R� We recall that by
maximum principle also the entropic solutions of ������ ����� will satis�es the same bound�

We recall that� by ���	� given a point �t� x� we can consider the set of characteristics 
�t� x�
passing through �t� x�� If we denote with 
��t� x� and 
��t� x� the minimal and maximal back�
ward characteristics� then either 
��t� x� 
 
��t� x� and the solution u is continuous in �t� x�� or
we have an admissible shock and the jump is exactly given by the �constant� values of u on the
characteristics 
�� 
�� By condition ����� we have that if at time t two characteristics 
��t� and

��t� meet� then we have

d

dt
�
� � 
�� � ���u� � u�� ������

Suppose that 
���� � 
����� and consider now an initial datum �u� de�ned as

eu��x� 


���������
u��x� x � 
����

u�� 
���� � x � !

u�� ! � x � 
����

u��x� x � 
����

�����

where ! � R is chosen such that

!
�



�

u�� � u��

Z ��

��
u��x�dx �

u�� 

� � u�� 


�

u�� � u��
������
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Using the conservation of mass it is easy to conclude that the solution in unchanged at time
t� In fact consider the triangle T whose vertices are ��� 
������ ��� 
����� and �t� x�� Since the
equation ����� can be written as

div

�
u

f�u�

�

 � �

and u is constant along the lines 
�t�� we haveZZ
T

�ut � f�u�x�dtdx 
�

Z ��

��
u��x�dx �

Z t

�
�f�u��� f ��u��u��dt �

Z t

�
�f ��u��u� � f�u���dt


�

Z ��

��
u��x�dx � �f ��u��u� � f ��u��u� � f�u��� f�u���t 
 ��

Using the relation

x 
 
� � f ��u��t 
 ! �
f�u��� f�u��

u� � u�
t 
 
� � f ��u��t �

we obtain ������ Using ����� we can change the initial of ����� or ����� so that u�t� or v�t� are
unchanged� Since with this procedure we collect all the interactions at time �� the total variation
of �u� has the same value of Tot�Var��u�t���

To change the initial datum in such a way that both u�t� and v�t� are the same� consider now
the test system

wt �
��

�
w�
�
x


 � ������

By ����� and ����� if two characteristics meet is u�t� and v�t�� then they also meet in ������ Let
us denote with �u� the new initial condition� obtained by the above procedure using equation
������

Consider now an interval �a� b	� By the de�nition of �	 we have that the values of u�t� and v�t�

in �a� b	 depends only on �u� in �a� �	t� b � �	t	� Using the standard estimates we haveZ b

a

ju�t� x�� v�t� x�jdx � t 	max
u�K

jf ��u�� g��u�j 	 Tot�Var�
�eu�� �a� b	t� b � b	t	�������

To estimate the total variation� an easy computation gives

Tot�Var�
�eu�� �a� b	t� b � b	t	� � Tot�Var�

�
w�t�� �a � �b	t� b � �b	t	� � � 	 diam�K� 	

b� a � �b	t
�t

�

�����

Combining ����� and ����� we getZ b

a

ju�t� x�� v�t� x�jdx � max
u�K



f ��u�� g��u�


 	 � 	 diam�K� 	

b� a � �b	t
�

�������

Remark ���� When t � � the integral does not converge to �� This is clear since the initial
datum is in L�� and then the semigroup is continuous but not Lipschitz continuous in time�
since the amount of interaction at t 
 � is in�nite� Consider for example the following two
equations

ut �

�
u�

�

�
x


 �� vt �

�
�v �

v�

�

�
x


 � �

with the periodic initial condition

u��n�x� 


�
� if x �

�
k��n��� k��n�� � ��n

�
� k � Z

�� otherwise
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At time tn 
 ��n the two solution are�
un�tn� x� 
 �n�x� k��n��� if x �

	
k��n�� � ��n� k��n�� � ��n

�
vn�tn� x� 
 �n�x� k��n�� � ��n� if x �

	
k��n��� �k � ����n��

�
so that Z �

�



vn�tn� x�� un�tn� x�


 dx 
 � �

This depends on the fact that the modulus of continuity of the semigroup can be arbitrarily
large�

Note moreover that since the solutions u� v are limits of wave front tracking approximations�
the continuous dependence of the solution on the 
ux function f can be stated also if f non
convex� However in general one cannot prove any uniform continuous dependence�
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