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Abstract

We study the F�oppl�von K�arm�an theory for isotropically compressed thin plates in a
geometrically linear setting� which is commonly used to model weak buckling of thin �lms	
We consider generic smooth domains with clamped boundary conditions� and obtain rigorous
upper and lower bounds on the minimum energy linear in the plate thickness �	 This energy is
much lower than previous estimates based on certain dimensional reductions of the problem�
which had lead to energies of order � 
 � �scalar approximation� or ���� �two�component
approximation�	

� Introduction

The F�oppl�von K�arm�an �FvK� equations of thin�plate elasticity 
��� �� �� ��� describe stretch�
ing and bending of a thin� homogeneous� linearly elastic plate of uniform thickness in terms
of a three�component� two�dimensional displacement �eld	 The equations are nonlinear and
involve high�order derivatives� hence many simpli�ed forms have been proposed in the liter�
ature� which have proved appropriate for the study of di�erent phenomena	 These include
crumpling of paper� structural failure of steel plates� and telephone�cord delamination in thin
�lms �see e	g	 
�� ��� ��� and references therein�	 In the case of small applied compressive
strain� assuming that the plate deviates only slightly from a �at surface� one can expand the
strain term to leading order in the in�plane �ux� uy� and one out�of�plane �w� components of
the displacement �eld� and replace the bending term with a simple singular perturbation in
the out�of�plane component	 For isotropic materials and isotropic compression one obtains�
after some rescalings�
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where � is the rescaled plate thickness� and for simplicity the Poisson ratio � has been set to
zero �this entails no loss of generality of the results of this paper� see the Appendix�	 Clamped
boundary conditions result in u � w � rw � � on ��	 The functional ��	�� is quadratic �and
convex� in the two in�plane components u of the displacement �eld� but the strain energy
is not convex in the out�of�plane component w	 Gioia and Ortiz 
��� ��� observed that good
agreement with many experimental observations is obtained by considering a simpli�ed theory�
in which the in�plane displacements are neglected	 By setting u � �� the problem is reduced
to the search for a scalar� two�dimensional �eld describing vertical displacement from the
reference plane	 The resulting functional� which for isotropic compression has the formZ

�
� 
 ��� jrwj��� 
 ��jr�wj d�r � ��	��

had previously appeared in a di�erent context 
��� and has been extensively studied in the
mathematical literature partly due to its similarity with the Modica�Mortola functionals in the
theory of Gamma�convergence	 Deriving the Gamma�limit of ��	�� is still an open problem�
even if considerable progress has been recently achieved 
�� �� ��� ��	 The energy of the
minimizers scales as j�j
 c�	 A natural approximate solution for small �� which is generally
conjectured to be the correct limit� is the distance function from the boundary	 The analogue
of ��	�� for the case of nonisotropic compression has also been studied 
��	

In parallel with the mathematical progress on the restricted functional ��	��� Jin and
Sternberg have relaxed the constraint of zero in�plane displacements 
���	 Within a larger �but
still restricted� class of functions they have been able to prove that the optimal energy vanishes
as ���� for � � �� adapting � for the upper bound � a self�similar branching construction
used by Kohn and M�uller 
��� ��� to describe twin re�nement in a model of martensitic
microstructure	 In a di�erent linear stability framework� Audoly 
�� also emphasized the
importance of the in�plane components	

In this work� we consider the full linearized FvK energy under compressive isotropic strain
��	��� and prove that the actual minimum energy scales linearly in �	 Hence we show that
the Jin�Sternberg prediction of vanishing energy for � � � is correct� but the scaling in the
full problem ��	�� is di�erent from the one in the restricted functional	 Some of our candidate
minimizers are reminiscent of the distance function� but � at the present level of understanding
� this does not appear to be a necessary feature in order to have small energy	 In particular�
our only structural �nding is that� as � goes to zero� a �nite fraction of the total energy
concentrates in a thin strip �of width �� along the boundary	

The arguments for the lower and upper bounds are distinct� and are presented in Section �
and � respectively	 In both cases� for the sake of clarity we found it useful to perform �rst the
proof for a simple rectangular geometry� and then show the generalization to a smooth curved
boundary	 For the lower bound Lipschitz regularity of the boundary su�ces� while the upper
bound is established for a piecewise C� boundary	 The latter condition can be relaxed� but we
don�t pursue this here in order to minimize technicalities	 Our approach can be extended to
other� nonlinear plate theories and to the full three�dimensional problem	 This will be treated
in a forthcoming publication	

While writing the present paper� we have become aware of related but independent work
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of Jin and Sternberg 
���� which reaches the same conclusions for the case of a square domain
with clamped boundary conditions on two sides and periodic ones on the other two	

� Lower bound

Let � � �u�w� denote the displacement �eld	 In this Section we prove the lower bound on

I
���
FvK
����� which gives the following

Theorem � �Lower bound� Let � be an open� bounded subset of R�� with Lipschitz bound�

ary� Then� there is a positive constant c� such that for su�ciently small � one has

I
���
FvK
u�w��� � c�� ��	��

for any displacement �eld � � �u�w� which satis�es the boundary conditions u � w � rw � �
on ���

For the sake of clarity we �rst consider the case of a piecewise straight boundary� and then
show how the argument is generalized to the case of Lipschitz boundaries	 In both cases�
we actually prove that any region of size � � � adjacent to the boundary contains an energy
density of order �	 In view of the upper bound presented in Section �� this implies that for
� � � a �nite fraction of the total energy concentrates on the boundary	

Before starting the proof� we mention some general properties of the functional IFvK de�ned
in Eq	 ��	��� which can be more explicitly written as
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We shall call strain energy �Istrain� the �rst three terms� which depend only on r�� and
bending energy �Ibending� the singular perturbation proportional to jr�wj�	 The standard
elasticity scaling gives

I
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FvK
���� �

�
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I
����
FvK 
����� ��� ��	��

where ��x���� � ���x���	 In closing� we notice that IFvK is invariant under changes of
coordinates� as is evident from the vectorial representation in Eq	 ��	�� �this is not to be
confused with invariance under composition of � with a rotation� which does not hold for this
geometrically linear model�	

If the boundary has a �at part� then for small enough � we can choose coordinates such
that the rectangle R � ��� ��� ��� L� is contained in � and f�g � ��� L� � ��	 The rectangle
R contains bL��c disjoint squares� ��� ��� ��k � ���� k��� for k � �� � � � � bL��c	 We intend to
prove that each of them has energy density at least of order �� which implies the thesis	 More
precisely� we have

Lemma � Let Q� � ��� ���� There is a positive constant c� such that if u � w � rw � � for

x � �� then

I
���
FvK
u�w�Q� � � c��� � ��	��

�



Proof	 The statement is invariant under rescaling in �� hence we can assume � � �	 We reason

by contradiction� and assume that there is a sequence �uj � wj� such that I
���
FvK
u

j � wj � Q��� �	
Then r�wj � � in L� and since wj � rwj � � on one side of the square� this implies wj � �
in W ���	 Thus jrwj j� � � in L��Q�� and thereforeZ

Q�

���ujx�x � �
��
 �

��ujx�y 
 ujy�x
��
 ���ujy�y � �

��� � � ��	��

For � � 
�� �� consider

�j��s� t� � ��ujx 
 �ujy��s� �s
 t�� �� 
 ���s � ��	��

Then

�s�
j
��s� t� �

�
��ujx�x � �� 
 ���ujx�y 
 ujy�x� 
 ����ujy�y � ��

�
�s� �s
 t�� � in L��Q����

��	��
by ��	��	 Since �j���� t� � � the Poincar�e inequality implies that for s � ���

Z ���

���

����ujx 
 �ujy��s� y�� �� 
 ���s
�� dy � Z ���

�

����j��s� t���� dt� � ��	��

for all � � 
�� ��	 This easily leads to a contradiction �take e	g	 � � �� � � � and � � �����
hence proves the thesis	 �

Proof of Theorem � Consider a Lipschitz domain �	 Then by de�nition �� is locally
the graph of a Lipschitz function h and � lies locally to one side of ��	 Exploiting again
rotational invariance it su�ces to show that there is a constant c�� only depending on the
Lipschitz constant L of h� such that

I
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FvK
u�w�

�Q� � � c��� ��	��

for all domains
�Q� � f�x� y� � x � h�y� 
 �s� �s � ��� ��� y � ��� ��g ��	���

where for simplicity h��� � �	 We may again assume � � � since scaling leaves the Lipschitz
constant of h invariant	 Arguing again by contradiction� we assume that there are sequences
uj� wj and hj such that

I
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FvK
u

j � wj � �Qj
��� � ��	���

with Liphj � L	 Taking a subsequence and relabeling we can further assume that hj � h�

uniformly	 Note that the change of variables

�s � x� hj�y� � �t � y ��	���

is a volume preserving map of �Qj
� onto Q�	 Let f

j��s� �t� � �rwj���s
 hj��t�� �t�	 Then ��sf
j � �

in L��Q��� and thus ����rwj
����
L�� �Qj

�
�
�
����f j����

L��Q��
� � ��	���
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Figure ���� Domain 	Q� used in the proof of Theorem �� and representation
of a point P in the new coordinates� P 
 �h�t� 
 s� �s 
 t�� The left side
is the external boundary� A similar picture applies to Lemma �� where� by
taking h�t� 
 �� one obtains a square�

by Poincar�e inequality	 Thus ��	�� holds with Q� replaced by �Qj
�	

For � � � � min����L� �� the maps

�j
��s� t� � �s
 hj�t�� �s
 t� ��	���

�see Figure �	�� are bilipschitz �Lipschitz with Lipschitz inverse� with Lipschitz constants
bounded independently of j	 Moreover there exists a nonempty open set U with

U � �j
�

�
Q���

� � �Qj
� ��	���

for all j and � as above	 Let

�j��s� t� � ��ujx 
 �ujy�
�
j
��s� t��� �� 
 ���s � ��	���

Then� as before ��	�� yields
�s�

j
� � � in L��Q���� � ��	���

Taking �rst � � � and then � 	� � we deduce that

ujx � u�x � ujy � u�y in L��U� � ��	���

where
��u�x 
 �u�y � 
 ��� �s� t� � �� 
 ���s ��	���
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Since ��� is again bilipschitz both u�x �take � � �� and u�y �take � 	� �� are Lipschitz	
Di�erentiating ��	��� with respect to s we obtain

�
�
�

�T

ru�
�
�
�

�
� �� 
 ��� a	e	 in U � ��	���

for all � with � � � � min����L� ��	 Thus

�ru��T 
ru� � Id a	e	 in U � ��	���

On the other hand di�erentiating ��	��� with respect to t and taking � � � and � 	� � we
obtain

ru�
�
�h���

�

�
� � � ��	���

Multiplication by ��h���� �� from the left yields a contradiction with ��	���	 This �nishes the
proof of Theorem �	 �

� Upper bound

This Section is devoted to the construction of a displacement �eld � with energy bounded
by c�� where c denotes a generic constant which depends only on the domain	 The main
idea behind our construction is that the distance function is able to relax compression only
in one direction �which� locally� is the one orthogonal to the boundary�� whereas compression
in the direction parallel to the boundary is relaxed by small�scale in�plane oscillations	 Such
oscillations� which are the analogue in the present context of the twinned microstructures in
solid�to�solid phase transitions 
��� ���� will be called folds �by �fold we mean one period in
the simplest periodic construction� and in its smoothly deformed versions! this corresponds
to a pair of twins in the usual martensitic language�	 The folding scale must be of order
� close to the boundary� but will be much larger in the interior	 The change in oscillatory
pro�le with changing distance from the boundary� which corresponds to the disappearance of
some folds� leads to a much lower energy if also the third component is nonzero� providing the
main di�erence with the ���� scaling obtained by Jin and Sternberg 
��� in their constrained
problem �see Eqs	 �	����	���	 The main result of this Section is the following

Theorem � �Upper bound� Let � be an open� bounded subset of R� with piecewise C�

boundary� Then� there is a positive constant "c� such that for small enough � there is a

displacement �eld � � �u�w� with u � w � rw � � on �� and

I
���
FvK
���� � "c�� � ��	��

For simplicity we focus �rst on a rectangle� with boundary conditions enforced only on the
y�axis �Section �	��� and afterwards �Section �	�� we show how this construction generalizes
to an arbitrary smooth domain �	
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��� Construction for a rectangle

In this Section we construct a deformation �eld � on the rectangle R � 
�� Lx�� 
�� Ly� which
obeys the boundary condition u � w � rw � � on f�g � 
�� Ly � and has energy bounded by
c�	 In a �rst approximation� one can seek the optimal displacement �eld which is invariant
under translations in y� which is easily seen to be � � ��x� � ��� �� x� �this corresponds to
the solution of the simpli�ed functional ��	�� in this geometry�	 To construct the y�dependent
oscillations it is natural to consider the deviation from this solution� hence we de�ne the
modi�ed functional

J 
z� v� w��� � IFvK
z � w� v� w 
 x��� ��	��

�

Z
�
�w�

�x 
 �z�x�
� 
 ��w�xw�y 
 z�y 
 v�x�

� 
 �w�
�y 
 �v�y � ��� 
 ��jr�wj� �

We �rst relax the third term of ��	�� by constructing a natural oscillatory pro�le as a function
of y� and then discuss how it changes with changing x	 We shall indicate by # � �z� v� w�
the modi�ed displacement �eld which enters J � to distinguish it from the corresponding � �
�z � w� v� w 
 x�	 We remark that J recovers invariance under translations �but not under
rotations�	 Hence when considering rectangles contained in R we can translate them to have
a corner in the origin	

For de�niteness� we focus on a rectangle A � 
�� l� � 
�� h�� which can be thought of as a
small piece of our domain R	 If no dependence on x is present� we can set z � � so that the
�rst two strain terms are identically zero	 The third one can be made to vanish by choosing
w and v which satisfy the di�erential equation

w�
�y 
 �v�y � � � ��	��

One possible choice is

�wh�y� �
h

	
p
�
sin

�	y

h
��	��

�vh�y� � � h

�	
sin

�	y

h
� ��	��

Note that there is considerable freedom in this choice� any other smooth solution with the
suitable scaling and boundary conditions would only cause changes in the constants appearing
below	 For later reference� we note that �v� �w and their derivatives are bounded�

sup
y�	��h


����nh�my �wh�y�
��� � ch��n�m � for n � � � m � � � ��	��

and the same bounds hold for �vh	 These bounds will be needed up to third derivatives �here
and below� c denotes a generic positive constant which can depend only on the domain�	

The energetic cost of ��	���	�� is purely from bending� and equals �	���l�h	 We further
note that the boundary values on the horizontal sides of A do not depend on h� i	e	

�wh
�y��� � �wh

�y�h� �
p
� � �wh��� � �wh�h� � �vh��� � �vh�h� � � � ��	��
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This shows that di�erent pieces with di�erent h can be easily put together across an
horizontal boundary� whereas some additional construction is needed to match di�erent h�s
along vertical boundaries	 The boundary conditions ��	�� can hence be used to divide our
global construction into independent pieces along directions parallel to the coordinate axes	
From the form of the functional it is clear that we can safely join di�erent pieces of our test
function provided that z� v� w and rw are continuous across internal boundaries	 We now
formalize these boundary conditions� both for horizontal and vertical segments	

De�nition � We say that a displacement �eld # � �z� v� w� satis�es standard boundary con�

ditions along a horizontal segment 
x�� x�
 l��fy�g if on that segment it obeys z � v � w � �
and w�y �

p
��

De�nition � We say that a displacement �eld # � �z� v� w� satis�es standard boundary con�

ditions along a vertical segment fx�g� 
y�� y�
h� if along that segment w�x�� y� � �wh�y�y���
v�x�� y� � �vh�y � y��� with z � w�x � ��

We now consider a region where the oscillation period h changes as a function of x	 It is
more convenient to use a domain symmetric with respect to the x axis	 Since �w and �v are
periodic in y they do not need to be changed �or translated�� and all the results above are also
valid in a symmetric region A� � 
�� l� � 
�h��� h���� with the only di�erence that the sign of
the boundary values changes	 Indeed� we get

�wh
�y��h��� � �

p
� � �wh��h��� � �vh��h��� � � � ��	��

Let a�x� be the oscillation period� which will be of order h and change on a distance of order
l � h� and consider the region 
�� l� � 
�a�x���� a�x����	 De�ne w and v as in ��	���	��� with
h replaced by the local a�x��

w�x� y� � �wa�x��y� � v�x� y� � �va�x��y� � ��	��

and consider the energy ��	��	 The third strain term is still zero� but the x derivatives are no
longer zero	 Since w�y is of order �� whereas v�x and w�x are of order h�l� the �rst strain term
is O�h�l��� the second one O�h�l��	 Hence for h
 l the latter is the most dangerous� and we
choose to cancel it by a suitable choice of z	 This can be done in such a way that the scaling
of the �rst term is unchanged	 Indeed� the second strain term vanishes provided that

�z�y � w�xw�y 
 v�x �
da�x�

dx

�
� �wa�y�

�y

� �wa�y�

�a


��va�y�

�a

�
� ��	���

Solving for z we get

z�x� y� �
da�x�

dx

h
�za�x��y� 
 
�x�

i
��	���

where 
�x� is a still undetermined function of x� and

�zh�y� �
y�

�h



h

�	�

�
cos

�	y

h
� �

�



y

�	
sin

�	y

h
��	���
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is a solution of

���z
h�y�

�y
�

� �wh�y�

�y

� �wh�y�

�h


��vh�y�

�h
��	���

which obeys the same estimates as �wh and �vh in Eq	 ��	��	 This implies jzj � ja�jh� jz�xj �
ja��jh 
 ja�jh�l� and jz�yj � ja�j� provided that j
j � h and j
�xj � h�l	 Note that ��	��� has
been derived without assuming an explicit form for a�x�� and only the explicit form ��	��� for
�zh depends on the choice made in ��	���	�� for �wh and �vh	

The displacement �eld so constructed reduces to #� � ��� �va�x�� �wa�x�� on the two vertical
boundaries �i	e	 for x � � and for x � l�� provided that da�dx vanishes both for x � �
and for x � l	 Along the oblique boundaries 
�� l� � f�a�x�g instead we have v � w � ��
and w�y � �p�� but z is nonzero	 Indeed� �zh��� � �� but �zh��h��� � h��	 Thus in the
construction below we shall need to exploit our freedom to choose 
�x� to ensure continuity
of z	

At this point� it would be tempting to simply let a�x� tend to zero at the points where a fold
has to disappear �branching points�	 However� this would lead to in�nite energy concentrating
at the point where a vanishes� because the bending term would be of order

��
Z
jr�wjdxdy � ��

Z
�

a�x�
dx � ��	���

which diverges if a��� � a���� � �	 This problem can be avoided by stopping a at some
minimum value �called � below� not smaller than �� and then joining with smooth interpolation
in a �nal thin layer	 In particular� we set

a�x� �
h

�

h
�� �

	x
l


i

 ��

	x
l



� ��	���

where � � 
�� �� � 
�� �� is a smooth function such that ���� � �� ���� � �� ����� � ����� � ��
with bounded derivatives� � � �� � � and j���j � �� which further satis�es ��t� 
 ���� t� � �
and ��t� � t�	 For example� ��x� � �x� for x � 
�� ����� ��x� � �� ���� x�� for x � 
���� ��	
The �dangerous bending term ��	��� can then be estimated using� for � 
 ��Z �

�

dt

�
 ��t�
�
Z
�

�

dt

�
 t�
�

	

�����
� ��	���

and the strain energy will be of order � only in the small region of height � where the sign of
w�y has to change	

We come therefore to the following

Lemma � Given a rectangle B � ��� l�� ��h��� h��� with h � l there is a displacement �eld
# � �z� v� w� which satis�es the standard horizontal boundary conditions on the top and bottom

sides of B �Def� ��� and the vertical ones �Def� �� on the three segments f�g � ��h��� ���
f�g � ��� h���� and flg � ��h��� h���� with energy bounded by

J 
#� B� � c

�
h�

l�


����l

h���

 ����h���

�
� ��	���

�



0

l
 0

-h/2

0

h/2

0

Figure ���� Subdivision of the domain B used in the construction of Lemma
� �left panel� and representation of the constructed w in �a and �b �right
panel��

Proof	 We �rst decompose the domain into the part of length l� where the inner twin smoothly
decreases its width from h�� to �� and the one where it disappears by interpolation� of length
m � l � l� �see Figure �	��	 The values of m and � will be chosen below� now we merely
assume the ordering � � m � h � l which allows us to simplify many terms	

For x � 
�� l�� the width of the inner twin is given by

a�x� �
h

�

�
�� �

�
x

l�

��

 ��

�
x

l�

�
� ��	���

which smoothly decreases from h�� to �	 The domain B is then naturally divided into three
parts� �a is the region jyj � a�x��� occupied by the �small twin� ��b is the region �h�� �
y � �a�x��� occupied by the �rst half of the �large fold� and ���b is the one occupied by the
other half �see Figure �	��	 In ��b� we set

w � �wh�a�x�

�
y 


h

�

�
� v � �vh�a�x�

�
y 


h

�

�
� z � a��x��zh�a�x�

�
y 


h

�

�
��	���

and the same in ���b � with the arguments replaced by y � h�� 
e	g	 w � �wh�a�y � h���� etc	�	
Using Eq	 ��	�� and �zh��� � � it is easy to see that on the external boundary this choice of
w� v� z satis�es De�nition �	 Along the internal boundaries 
�� l���f�a�x���g we get instead
w � v � �� w�y � �p� 
from ��	���� and z � a��x��h � a�x���� 
from �zh��h��� � h���	

In �a we set

w � �wa�x� �y� � v � �va�x� �y� � z � a��x�
h
�za�x� �y� 
 
�x�

i
��	���

�	



where 
 is still to be determined	 On the internal boundaries we get z � a��x��
 
 a����
hence 
�x� � �h� �a�x���� leads to a continuous z	 For w and v Eq	 ��	�� holds again	 This
shows that the # so constructed has enough smoothness and matches all required boundary
conditions	

We now come to the energy estimate	 The only nonzero strain term is the �rst one� which
is bounded using jw�xj � ja�xjj �wa

�aj � ch�l and jz�xj � ja�xj�j�za�aj
 ja�xxjj�za

j � ch��l�� leading
to

Jstrain
#��a � �b� � c
h�

l�
��	���

�where �b � ��b � ���b �	 We now compute the bending term	 We need to estimate

w�xx � a�xx �w
a
�a 
 a��x �w

a
�aa � w�xy � a�x �w

a
�ay � w�yy � �wa

�yy � ��	���

Given the bounds on a and on �wh� we get jr�wj � c�a�x� in �a� and jr�wj � c�h in �b	
Performing the y integration �rst we get

Jbending
#��a � �b� � ��
Z
�a��b

��r�w
��� � ��

Z l�

�

c

h



c

a�x�
� ��lp

�h
��	���

where in the last step we have used the de�nition of a�x� and Eq	 ��	���	 This concludes the
construction in the region 
�� l��� 
�� h�	

In 
l�� l� we de�ne # as a smooth interpolation between the values at x � l� and and x � l�

#�x� y� � #�l�� y�
h
�� �

	 x
m


i

 #�l� y��

	 x
m



� ��	���

This has small energy because two boundary values di�er signi�cantly only in the small set
�c � 
l�� l� � 
����� ����� which has relative size j�cj�j�c � �dj � ��h	 In the large set
�d � 
l�� l��f� � �jyj � hg instead the boundary conditions are similar �the relative di�erence
j#�l�� � #�l�j��j#�l��j 
 j#�l�j� is of order ��h�	 It is also clear that� since � � m� the y�
derivatives are the most dangerous� hence we focus on them in the estimates	

In �d the di�erence from the zero�strain boundary condition� ��x� y� � #�x� y� � #�l� y��
is small	 For example� for y � �����

jw�y�l�� y�� w�y�l� y�j �
���� �wh��

�y

�
y 


h

�

�
� �wh

�y

�
y 


h

�

����� � c
�

h
��	���

because �wh has bounded second derivatives� and the same for the other components	 By direct
integration we get j��l�� ��j � c�	 From ��	��� we then estimate the full gradient of � in �d�
obtaining jr�j � ����m
��h�	 This in turn gives Jstrain
#��d� �

R
�r���
�r��� � ��h�m

�some terms have disappeared because � � m � h�	
In �c instead we just use the uniform bound on the gradient jr#j � c� which gives for the

strain energy Jstrain
#��c� � cj�cj � cm�	
The bending term is again computed separately in the two subregions	 In �d the same

argument as in ��	��� allows to control jr�wj � ��m� �this result depends on the ordering
m � h and on control on the third derivative of �wh�	

��



In �c the dominant contribution is instead the w�yy derivative of order ��� �because of the
boundary condition at x � l��� and this leads to a total jr�wj � ���� �using the ordering
� � m�	 The total bending energy is then

Jbending
#��c ��d� � c����h

m�


cm��

�
� ��	���

Collecting the various terms we get

J 
#� B� � c

�
h�

l�



��l

��h����


��h

m


m��

�

�
��	���

where the two irrelevant terms m� and ���hm�� have been dropped	 We �nally �x � � �
and m � ��h���� and get the �nal result of Lemma �	 �

We now show how the basic building block constructed in Lemma � delivers a test function
with energy scaling linearly in � in a simple geometry	

Lemma � Given R � ��� Lx����� Ly�� for small enough � there is a � with u � w � rw � �
for x � �� and with energy bounded by c�� Further� this result can be achieved with a � which

for x 
 c���� does not depend on x� and which obeys j� � ��� �� x�j � c����� jr�j � c�
jr��j � c���

Proof	 The main part of our construction is based on a geometric subdivision of the domain	
For large x� one can take the pro�les of ��	���	�� with h of order ���� and z � �� reaching
an energy of the correct order of magnitude �the strain part vanishes� and jr�wj � c������	
For small x� we need to re�ne� down to scale �	 Since from Lemma � we know how to double
the period of oscillation� it is natural to �x the widths at the various stages to hi � ��i� for
� � i � N � where N is de�ned by �N � �����	 The error arising from taking an integer
approximation to the solution of this equation is negligible for small enough �� and will not be
explicitly considered in the following	 Clearly it is always possible to construct � in a larger
domain 
�� Lx�� 
�� ��N � which contains an integer number of twins� and then restrict	

We seek a sequence of spacings li which constitute the widths of the regions where branch�
ing takes place	 We apply Lemma � on all rectangles of size li�hi� and then from the pro�les
#i in the rectangles we obtain �� � �z�w� v� w
 x�	 Finally� for x � 
�� �� we modify �� using
a smooth interpolation between �� and the boundary condition�

��x� y� � ���x� y��
	x
�



� ��	���

Since j��j � c� for x � �� we have r� of order � and r�w of order ���� hence the energy in
the strip where � 	� � is controlled by the area� i	e	 Ly�	 The total energy is then bounded by

IFvK
�� R� � c�Ly

�
� 


NX
i��

�
h�i
l�i



����li

h
���
i


 ����h
����
i

��
� ��	���

��



The �rst term corresponds to both the boundary layer and the x�independent oscillations at
large�x� while the series comes from the region of branching �Lemma ��	 Since the third term
in the series directly sums to �� we focus on the remaining two	

A natural criterion to choose the spacings li is to minimize the energy bound� which
amounts to choose for each i the li which minimizes

h�i
l�i



����

h
���
i

li � ��	���

which is li � hi�hi���
��
	 With this choice� both series converge as ��i�
� and the energy

estimate is proven	 With this construction the branching process covers a region
P

i li � �����	
It is also interesting� even if not needed for the following discussion� to try to constrain

the branching process to a smaller region close to the boundary	 In order to do this� one
should optimize not only the energy contribution per branching step in ��	���� but also the
consumption in horizontal distance� hence minimize

h�i
l�i



����

h
���
i

li 
 �li ��	���

for li� where � is a suitable penalization parameter which will be �xed later	 This gives

li � hi

�
�

���hi���� 
 �

����

��	���

which has a crossover from li � hi �at large i� to li � hi�hi���
��
 �at small i�� �the second

scaling clearly coincides with the one obtained above�	 In practice� it is simpler to take

li �



����i�
 � � i � k
��i��k�
 i 
 k

��	���

where the constant has been chosen to ensure continuity at k� and the variable k replaces ��
which is now given by � � ���k��	 The resulting energy contribution from the series is

NX
i��

h�i
l�i



����

h
���
i

li � �
kX

i��

��i�

��i�

�
NX
i�k

�i�
�

�
k
��

�

�
i� �

�
k � �

	
� 
 �N�

�

�
k 
 �

�

�
k� �

�



��	���

which is bounded by c� provided that �N�� � k � N 	 The total length�

X
i

li �

kX
i��

����i�
 


NX
i�k

��i��k�
 � ���k�
��N 
 �k� � ��	���

is clearly optimized by choosing the smallest value� k � �N��� which gives
P

i li � ���N�� �
���� � �����	 This concludes the proof of Lemma �	 �

��



��� Construction for a generic domain

The construction in a generic domain is considerably simpli�ed if the domain is �rst trian�
gulated on a scale smaller than the minimum radius of curvature of the boundary	 Such a
triangulation depends only on the domain� and not on �� hence it only a�ects the constant in
��	��� not the scaling	 It is clear that any domain with C� boundary can be subdivided into
a �nite number of pieces� each of which has two straight sides and a curved �C� regular� one�
with radius of curvature bounded from below by a given multiple of the side length	 The three
angles can be further assumed to be less than 	��	 Then� if one can construct a function with
energy c� in such pieces� with the usual u � w � rw � � boundary conditions� by putting
them together one gets the result for the full domain	 Hence we can focus on curvilinear
triangles� which satisfy the following

De�nition � A simply connected� bounded set $ � R� is said to be if type A if its boundary

is the union of three curves of class C�� which join at angles less than 	��� and whose radius

of curvature is always larger than �	 times the diameter of $�

As done above� it is natural to start the construction with the distance function� which is
singular along three smooth curves in the interior �see Figure �	��	 It is simple to see that
they divide $ into three parts� ��� �� and ��� which obey the following

De�nition � A simply connected� bounded set � � R� is said to be if type B if its boundary

is the union of three curves of class C�� which join three points X� Y and P � such that the

angles at X and Y are less than 	��� and all radii of curvature are larger than �	 times the

diameter of �� The XY side is called external side�

Figure ���� Each curvilinear triangle � �of type A� is subdivided into three
pieces �i of type B along the singular set of the distance function to the
boundary� which bisects the angles�

Let us concentrate on one of the three pieces� say ��	 Since our construction is based on
oscillations superimposed to the distance function� it is natural to use as variables the arc

��



length along the external side and the distance function itself	 The construction of Section �	�
will need to be modi�ed in order to take into account the curvature of the boundary� and care
will also be needed to properly enforce all boundary conditions and ensure smooth matching
of di�erent pieces	

Having presented the general scheme� we start to discuss the details of the construction in
a curvilinear triangle � of type B	 Let t denote arc length along the external side of �� and s
the distance function from that side	 The change of coordinates is

��s� t� � ��t� 
 sn�t� ��	���

where n � ������ is the inner normal� and �ax� ay�
� � ��ay� ax� �this de�nes the direction of

increasing t�	 The two new basis vectors are

es � n�t� � et � n��t� � ���t� ! ��	���

they both depend on t but not on s� and have derivatives proportional to the local curvature
��t��

n� � ��n� � �n��� � �n � ��	���

We shall denote the basis vectors with �es� et� when using �s� t� as coordinates� and with
�n� n�� when using �x� y�	 In the new coordinates� the domain � takes the form

�� � f� � t � T � � � s � f�t�g ��	���

where f�t� is C� in 
�� T�� and in 
T�� T �� jf ��t�j � c�� and jf�t�j � diam� � ���� sup j��t�j�

the point �s� t� � �f�T��� T�� corresponds to the corner P �	 We are now ready to express the
functional in the new coordinates	

Lemma � Let � be a domain of type B as in De�nition 
� and let �s� t� be distance to the

external side and arc length� as in ������� Then� IFvK
�� �� � �I
�� ���� which is the sum of

�Istrain
�� ��� �

Z
��

�
�w�
�s 
 ��us�s � �

��

 � 
� �w�s �w�t 
 �ut�s 
 ��us�t 
 ���ut�

�



�
�� �w�

�t 
 ���ut�t � ����us � �
�� dsdt

��s� t�
� ��	���

and of

�Ibending
�� ��� � c��
Z
��
jr� �wj� 
 jr �wj� � ��	���

where

��s� t� �
�

�� s��t�
� ��	���

��t� is the curvature of the external side of �� �� is the image of � under the change of variables

������� and us � u � es and ut � u � et are components taken with respect to s and t�

��



Proof	 To express the gradients of u and w in the new coordinates we start from the gradient
of the transformation�

��x� y�

��s� t�
� r� � n� es 
 ��� s��n� � et � ��	���

and its inverse�
��s� t�

��x� y�
� �r���� � es � n
 �et � n� � ��	���

where ��s� t� was de�ned in ��	���	 We are now ready to compute the gradients of u�x� y� and
w�x� y� in terms of �u�s� t� and �w�s� t�� which are

rw � �w�ses 
 � �w�tet ��	���

and
ru � �s�u� n
 ��t�u� n� � ��	���

More explicitly� since �u � �uses 
 �utet� and considering the dependence of es and et on t� we
get

ru �

�
�us�s ���us�t 
 ��ut�
�ut�s ���ut�t � ��us�

�
� ��	���

The last term we need is the second gradient of w�

r�w �

�
�ws�s � �w�ts 
 ��� �w�t

� �w�st 
 ��s �w�t �� �w�tt 
 ���t �w�t � �� �w�s

�
� ��	���

By a simple substitution we write IFvK in the new variables� and the thesis follows	 �

The construction of a deformation with small energy �J is analogous to the one performed
in Section �	�	 In parallel to Eq	 ��	��� we start by subtracting the distance function� and
obtain

�Jstrain
�z� �v� �w� ��� � �Istrain
�z � �w� �v� �w 
 s� ��� ��	���

�

Z
��

�
�w�
�s 
 ��z�s

��

 � 
� �w�s �w�t 
 �v�s 
 ��z�t 
 ���v��



�
�� �w�

�t 
 ���v�t � ����z 
 ��� �w � �
�� dsdt

�
� ��	���

The bending term is bounded by �Jbending � c��
R jr� �wj� 
 �jr �wj 
 ���	 The second term is

negligible in our construction with bounded gradients� and will be dropped from now on	 As
above� we shall denote by �# the rescaled displacement �eld ��z� �v� �w�	

To fully accomodate for the presence of the � factors in �Jstrain would require changing the
basis functions �wh depending on position	 However� if j#j is small a simple rescaling will do	
Indeed� we have

��



Lemma � Let # be a displacement �eld satisfying j#j � c��
��� and jr#j � c�� in a domain

�� of type ����
�� Then�
�J 
�#� ��� � c �J 
#� ��� 
 �� ��	���

where �# � ��z� �v� �w� � ����z� ���v� ���w�� J was de�ned in ������ and the constant c depends
on c�� c� and ���

Proof	 First observe that ��� � � � ���� and jr�j� jr��j are bounded �because the
external side of � is C��	 Then� the jacobian ��� in ��	��� can be dropped� and the rescaled
functions satisfy r �w � ���rw
O������� and analogous estimates hold for �z and �v	 We now
consider the three strain terms of Eq	 ��	���	 The �rst one is bounded using

�w�
�s 
 ��z�s � ����w�

�s 
 �z�s� 
O������ ��	���

which then gives Z
��
� �w�

�s 
 ��z�s�
� � �sup����

Z
��
�w�

�s 
 �z�s�
� 
 c�j��j � ��	���

The second one�

� �w�s �w�t 
 �v�s 
 ��z�t 
 ���v � ��� �w�sw�t 
 v�s 
 z�t� 
O������ ��	���

and the third one are treated similarly	 Finally� consider the bending term	 Since derivatives
of � are bounded� we get jr� �w � �r�wj � c� and the Lemma is proved	 �

So far� we have reduced the problem of constructing � on a general domain to that of
constructing # on a standard domain �� of the form ��	���� with J 
#� ��� � c�	 The curvature
terms in the functional have disappeared in view of Lemma �� and only the right boundary
s � f�t� of �� is still not straight	 In analogy with Lemma � we now �Lemma �� construct # in
�� with small J 
#� ��� and j#j � c� on ���	 Then �Lemma �� we generate the corresponding �#
with the same boundary condition and small �J 
�#� ��� �using Lemma ��� and smoothly match
three such constructions to obtain � de�ned on a set of type A	

Lemma � Let �� be a domain of type ����
�� Then there exists a �eld # de�ned on �� such

that

J 
#� ��� � c� � ��	���

with

j#j � c���� � jr#j � c � jr�wj � c��� ��	���

on ��� with j#j � c� on ����

Proof	 The construction is analogous to the one used in Lemma � for the rectangle	 Let N be
the integer that most closely solves �N � ������ and divide the domain in horizontal stripes of
height �N� � ����	 On these boundaries� we impose the usual horizontal boundary conditions
�De�nition ��	 Each stripe is now �lled with pieces of two types�

��



Figure ���� A slice of the transformed domain 	�� �lled with pieces of type
F �dashed rectangles� or B �empty rectangles��

� branching pieces� which at step i have height hi � �i� and width li � ���i�
�� which are
called Bi and in which # is given by Lemma �� and

� �at pieces� which at step i have the same height hi � �i� and variable width �for i � N
it will be less than li�� which are called Fi and in which # � ��� �vhi�s� s��� �w

hi�s� s���
according to Eqs	 ��	���	��	

The construction in each stripe is done in three pieces� in the central region there is a unique
fold of height hN � ����� in the left and right parts branching takes place� down to scale
h� � � �see Figure �	��	 The left part of the construction �close to the straight boundary
fs � �g� is identical to the one of Lemma �� and only uses Bi pieces	 The right part is best
understood starting from the curved boundary fs � f�t�g� and using all Bi pieces in order�
putting each of them as close as possible to the mentioned boundary	 The remaining empty
spaces� which at step i �for i � N� have width controlled by hi sup jf ��t�j� are �lled with Fi
pieces	 The two branching regions are �nally joined by a �possibly long� FN piece	 If there is
not enough space to complete both constructions� they are stopped at the largest possible "i�
and the joined with a F"i piece� whose width is bounded by l�i�� 
hence its energy is bounded
by the energy of B�"i
 ���	

The estimate of the energy goes as follows	 The branching pieces are exactly those that
would be used in a rectangle with the same height and width� with possibly some excluded�
hence their energy is of order �	 The �at pieces have an energy proportional to ��l�h 
this
was computed after Eq	 ��	���� and since for each of them l�h is bounded by the slope of
the boundary each of them has energy bounded by ��� and their number is bounded by
c
P

i �
i � c�N � c�����	 This yields an energy contribution of at most c� �except for the FN

��



pieces�	 Finally each FN piece contributes at most c���� and there can be at most c�����

such pieces	 �

We �nally come to the full construction for any set $ of type A	

Lemma 	 Let $ be a set of type A �see De�nition ��� There is a constant c�� such that for

small enough �� there is a displacement �eld � � �u�w� such that u � w � rw � � on �$�

and I
���
FvK
��$� � c����

Proof	 The displacement �eld is constructed by interpolating between the one constructed in
Lemma � for each of the three type�B pieces which compose $ and a smooth �eld satisfying the
boundary conditions	 The smooth �eld is obtained by joining the distance function smoothly
to zero �and zero gradient� along the boundary� and convoluting with a smooth kernel to
eliminate the singularity along the internal boundaries	 Let � be a smooth molli�er with
support in the ball of radius ��� and let ���x� � �����x���	 De�ne

Wd�r� � dist�r� �$��

�
dist�r� �$�

�
� �

�
� ��	���

and
wd � �� �Wd � ��	���

where � is as de�ned before Eq	 ��	���	 It is easy to verify that jrwdj � c� jr�wdj � c���
jwd � dist�r� �$�j � c�� and wd � rwd � � on �$	 Hence �d � ��� �� wd� has bounded
energy density� and obeys the prescribed boundary conditions	 We divide set $ of type A into
three sets of type B along the singular lines of dist�r� �$�� and impose as boundary conditions
� � �d and r� � r�d along those lines	

Let �k be one of the three pieces of type B� and let �k� be its external boundary� and �k� �
�k� the other two smooth pieces of ��k	 In �k� let �# be the displacement �eld constructed
�on its image ��k� in Lemma �� rescaled as in Lemma �� and mapped back into the �x� y�
coordinate system	 Let �� � �z�w� v� w
dist�r� �k� �� be the corresponding ���eld� and de�ne
the interpolation function

�k�r� �
�Y

i��

�

�
dist�r� �ki �

�

�
� ��	���

which is smooth� zero on ��k and one in the interior	 Now let

��r� � ���r��k�r� 
 �d�r� 
�� �k�r�� � ��	���

It is clear that this �eld di�ers from �� only in a region of measure c�� where it has bounded
energy density� i	e	 � still has energy bounded by c�	 Further� � agrees with �d up to the
�rst gradient along ��k� hence it satis�es the given boundary conditions and joins smoothly
along internal boundaries	 This concludes the proof	 �

��



Proof of Theorem � Theorem � is an immediate consequence of Lemma �� by triangu�
lation of the domain � into sets of type A	 �
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A Materials with nonzero Poisson�s ratio

The general form of the linearized FvK functional under isotropic compression is 
��� ���

I
�����
FvK 
u�w��� �

Z
�
��� ��j�j� 
 ��Tr ��� 
 ��

�
��� ��jr�wj� 
 ��%w��

�
� �A	��

where � � 
��� ���� is the Poisson ratio 
���� the rescaled deformation � is de�ned by

� � ru
 �ru�T 
rw �rw � Id � �A	��

and we use jM j� � TrMTM for the matrix norm	 For � � �� �A	�� reduces to ��	��	
We now show that for the purpose of proving upper and lower bounds we can restrict to

� � � without loss of generality	 Indeed� since �TrM�� � �jM j� for all � � � matrices M � it
follows that

��� j�j�jM j� � ��� ��jM j� 
 ��TrM�� � �� 
 j�j�jM j� �A	��

which implies that I
�����
FvK is bounded from above and from below by a multiple of I

�����
FvK for all

values of Poisson�s ratio � in ���� ����	
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