Quantum real projective space, disc and sphere

by

Piotr M. Hajac, Rainer Matthes
and Wojciech Szymański

Preprint no.: 59 2000
Abstract. We define the C^*-algebra of quantum real projective space $\mathbb{R}P^2_q$, classify its irreducible representations and compute its K-theory. We also show that the q-disc of Klimk-Lesniewski can be obtained as a non-Galois \mathbb{Z}_2-quotient of the equator Podleś quantum sphere. On the way, we provide the Cartesian coordinates for all Podleś quantum spheres and determine an explicit form of isomorphisms between the C^*-algebras of the equilateral spheres and the C^*-algebra of the equator one.

1 Introduction

Classical spheres can be constructed by gluing two discs along their boundaries. Since an open disc is homeomorphic to \mathbb{R}^2, this fact is reflected in the following short exact sequence of C^*-algebras of continuous functions (vanishing at infinity where appropriate):

$$0 \rightarrow C_0(\mathbb{R}^2) \oplus C_0(\mathbb{R}^2) \rightarrow C(S^2) \rightarrow C(S^1) \rightarrow 0.$$ (1.1)

On the other hand, one can obtain a disc D^2 as the quotient of a sphere under the \mathbb{Z}_2-action given by the reflection with respect to the equator plane. Two copies of an open disc collapse...
to one copy, and we have the short exact sequence

$$0 \longrightarrow C_0(\mathbb{R}^2) \longrightarrow C(D^2) \longrightarrow C(S^1) \longrightarrow 0. \quad (1.2)$$

Similarly, real projective space $\mathbb{R}P^2$ can be constructed from the antipodal action of \mathbb{Z}_2 on the two-sphere. As for D^2, removing S^1 from $\mathbb{R}P^2$ also leaves an open disc, and again we have the short exact sequence

$$0 \longrightarrow C_0(\mathbb{R}^2) \longrightarrow C(\mathbb{R}P^2) \longrightarrow C(S^1) \longrightarrow 0. \quad (1.3)$$

The aim of this paper is to present the noncommutative geometry of a q-deformation of the aforementioned geometric setting. (This deformation is unique under some assumptions.) It turns out that the q-deformation changes $C_0(\mathbb{R}^2)$ in the above short exact sequences into the ideal K of compact operators (see (2.32), (3.27), (4.32)). Therefore, since $C_0(\mathbb{R}^2)$ and K behave in a similar way in K-theory, it is not surprising that the K-groups of these q-deformed surfaces coincide with the respective K-groups of their classical counterparts. Since D^2 has a boundary and $\mathbb{R}P^2$ is non-orientable, we hope that the study of their q-analogues will help one to understand the concept of a boundary and orientability in the general noncommutative setting.

Deformations of $SL(2, \mathbb{C})$ were studied in depth and classified [DL90, W-SL91, WZ94]. The choice of the compact $*$-structure and the requirement of the existence of the C^*-norm lead then to the celebrated deformation of $SU(2)$, which we denote by $SU_q(2)$. (The literature on this quantum group motivating and treating it from many different points of view is vast. E.g., see [KS97] for references.) Subsequently, the study of quantum homogeneous spaces of $SU_q(2)$ leads to the classification of quantum spheres [P-P87]. (See [S-A91] for the Poisson aspects.) On the other hand, motivated by the Poisson geometry, noncommutative deformations of the unit disc were constructed in [KL92, KL93]. Gluings of quantum discs which produce quantum spheres were studied in [S-A91, MNW91, CM00]. Finally, quantum real projective space $\mathbb{R}P^2_q$ was defined in [H-PM96] within the framework of the Hopf-Galois theory to exemplify the concept of strong connections on quantum principal bundles (cf. [DGH, Example 2.13]). It was obtained as the quantum quotient space from the antipodal \mathbb{Z}_2-action on the Podleś equator sphere. This action was already discovered in [P-P87], and is the only possible \mathbb{Z}_2-action on quantum spheres compatible with the actions of $SU_q(2)$ (see above Section 6 therein).

In this paper, we continue along these lines. We begin in Section 2 by reviewing the relevant known results on quantum spheres (C^*-representations, K-theory). Then we provide the Cartesian coordinates and compute an explicit form of the C^*-isomorphisms between the C^*-algebra of the equator quantum sphere and the C^*-algebras of the equilateral Podleś spheres ($c \in (0, \infty)$). We also show that these isomorphisms commute with the $U(1)$-actions inherited from the actions of $SU_q(2)$ on quantum spheres. In Section 3, we prove that the q-disc of Klimek-Lesniewski can be obtained as a noncommutative quotient of the equator quantum sphere by an appropriate \mathbb{Z}_2-action. More precisely, first we show that the polynomial algebra of the q-disc is a fixed-point subalgebra of the polynomial algebra of the equator quantum sphere under a
non-Galois \mathbb{Z}_2-action. Then we extend this construction to the equilateral quantum spheres by employing the aforementioned C^*-isomorphisms. Since these isomorphisms are non-polynomial, we handle the equilateral spheres only on the C^*-level. We complete this section by recalling the topological K-theory of the q-disc. The paper ends with Section 4 where we define the C^*-algebra of quantum $\mathbb{R}P^2$, study its representations, and compute the K-theory. Similarly to the quantum disc case, this C^*-algebra is obtained as a \mathbb{Z}_2-action fixed-point subalgebra of the C^*-algebra of the equator quantum sphere. For both the quantum disc and $\mathbb{R}P^2$ cases, we show that the \mathbb{Z}_2-actions are compatible with the above-mentioned actions of $U(1)$.

Throughout the paper we use the jargon of Noncommutative Geometry referring to quantum spaces as objects dual to noncommutative algebras in the sense of the Gelfand-Naimark correspondence between spaces and function algebras. The unadorned tensor product means the completed (spatial) tensor product when placed between C^*-algebras, and the algebraic tensor product over \mathbb{C} otherwise. The algebras are assumed to be associative and over \mathbb{C}. They are also unital unless the contrary is obvious from the context. By P(quantum space) we denote the polynomial algebra of a quantum space, and by C(quantum space) the corresponding C^*-algebra. In this paper, the C^*-completion (C^*-closure) of a $*$-algebra always means the completion with respect to the supremum norm over all $*$-representations in bounded operators.

2 Quantum spheres

Definition 2.1 ([P-P87]) The C^*-algebra $C(S^2_{q\infty})$ of the quantum sphere $S^2_{q\infty}$, $q \in \mathbb{R}$, $0 < |q| < 1$, is defined as the C^*-closure of the $*$-algebra $P(S^2_{q\infty}) := \mathbb{C}(A, B)/I_{q\infty}$, where $I_{q\infty}$ is the (two-sided) $*$-ideal in the free $*$-algebra $\mathbb{C}(A, B)$ generated by the relations

$$A^* = A, \quad BA = q^2 AB,$$

$$B^* B = -A^2 + I, \quad BB^* = -q^4 A^2 + I. \quad (2.5)$$

The C^*-algebra $C(S^2_{qc})$ of the quantum sphere S^2_{qc}, $q \in [0, \infty)$ is defined analogously, with (2.5) replaced by

$$B_c^* B_c = A_c - A_c^2 + cI, \quad B_c B_c^* = q^2 A_c - q^4 A_c^2 + cI. \quad (2.6)$$

The irreducible $*$-representations of the quantum spheres are determined in [P-P87]. Let us denote by π^c_\pm and by π^c_θ the infinite dimensional and one-dimensional representations of $C(S^2_{qc})$ ($c \in [0, \infty]$), respectively. (In the $c = \infty$ case, in agreement with the notation for generators in the above definition, we write π_\pm and π_θ instead of π^∞_\pm and π^∞_θ, respectively.) The complete list of the irreducible $*$-representations of $C(S^2_{q\infty})$ is given by

$$\pi_\theta(A) = 0, \quad \pi_\theta(B) = e^{i\theta}, \quad \theta \in [0, 2\pi), \quad (2.7)$$

and

$$\pi_\pm(A)e_k = \pm q^{2k}e_k, \quad \pi_\pm(B)e_k = (1 - q^{4k})^{1/2}e_{k-1}, \quad \pi_\pm(B)e_0 = 0. \quad (2.8)$$
Here \(\{e_k\}_{k \in \mathbb{N}}\) is an orthonormal basis of a Hilbert space. Similarly, the irreducible \(\ast\)-representations of \(C(S^2_q)^c\), \(c \in (0, \infty)\), are defined by

\[
\pi^c_\theta(A_c) = 0, \quad \pi^c_\theta(B_c) = c^{1/2}e^{i\theta}, \quad \theta \in [0, 2\pi),
\]

and

\[
\pi^c_\pm(A_c)e_k = \lambda_\pm q^{2k}e_k, \quad \pi^c_\pm(B_c)e_k = c_\pm(k)^{1/2}e_{k-1}, \quad \pi^c_\pm(B_c)e_0 = 0,
\]

where

\[
\lambda_\pm = \frac{1}{2} \pm \left(1 + \frac{c}{4} \right)^{1/2}, \quad c_\pm(k) = \lambda_\pm q^{2k} - (\lambda_\pm q^{2k})^2 + c.
\]

The direct sums \(\pi^c_+ \oplus \pi^c_-\), \(0 < c \leq \infty\), are faithful representations. The representations \(\pi^c_\pm\) can be considered as embeddings of quantum discs onto the northern and southern hemisphere, respectively, whereas the one-dimensional representations are the classical points (forming a circle). For \(c = \infty\), the classical points are symmetric with respect to the hemispheres, i.e., they form the equator. With \(c\) decreasing, the circle of classical points shrinks to a pole. Thus, in the limit case \(c = 0\), we can think of a quantum sphere as a quantum disc whose (classical) boundary is glued to a point. For \(c = 0\), the formulas (2.9)-(2.11) still define \(\ast\)-representations. Now, however, \(\pi^0_\theta\) coincide for all \(\theta\), and \(\pi^0_\theta\) and \(\pi^0_q\) are the only irreducible representations. The representation \(\pi^0_\pm\) becomes trivial, and \(\pi^0_q\) becomes faithful. The cases \(c = 0, 0 < c < \infty\) and \(c = \infty\) are referred to as the standard, equilateral and equator quantum sphere, respectively.

To make the aforementioned geometric picture explicit, we need to find the \textit{Cartesian coordinates for quantum spheres}. More precisely, we need to define self-adjoint generators \(x, y, z\) of \(P(S^2_q)^c\), \(c \in [0, \infty]\), which satisfy \(x^2 + y^2 + z^2 = 1\). Note first that dividing (2.6) by \(c\) and rescaling the generators by \(c^{-1/2}\) would lead to the formulas whose limit with \(c \to \infty\) would be (2.5). To include also the \(c = 0\) case, let us rescale the generators by \((1 + \sqrt{c})^{-1}\), i.e.,

\[
\tilde{A}_c := \frac{A_c}{1 + \sqrt{c}}, \quad \tilde{B}_c := \frac{B_c}{1 + \sqrt{c}}.
\]

Now, from (2.6), we have

\[
\tilde{B}_c^* \tilde{B}_c = \frac{\tilde{A}_c}{1 + \sqrt{c}} - \tilde{A}_c^2 + \frac{c}{(1 + \sqrt{c})^2}I, \quad \tilde{B}_c \tilde{B}_c^* = \frac{q^2 \tilde{A}_c}{1 + \sqrt{c}} - q^4 \tilde{A}_c^2 + \frac{c}{(1 + \sqrt{c})^2}I.
\]

The relations (2.4) remain unchanged, that is, \(\tilde{A}_c^* = \tilde{A}_c\), \(\tilde{B}_c \tilde{A}_c = q^2 \tilde{A}_c \tilde{B}_c\). Contrary to \(A_c\) and \(B_c\), the generators \(\tilde{A}_c\) and \(\tilde{B}_c\) have limits with \(c \to \infty\) when thought of as elements of \(P(SU_q(2))\). Indeed, remembering the definition of \(A_c, B_c\) [P-P87, pp.196,200] in terms of the spin 1 representation

\[
D_1 := \begin{pmatrix}
\delta^2 & -(1 + q^2)\delta\gamma & -q^2\gamma^2 \\
-q^{-1}\beta\gamma & 1 - (q + q^{-1})\beta\gamma & \alpha\gamma \\
-q^{-1}\beta^2 & -(q + q^{-1})\beta\alpha & \alpha^2
\end{pmatrix}
\]

of \(SU_q(2)\) (with \(\alpha, \beta, \gamma, \delta\) being the generators of the algebra \(P(SU_q(2))\)), we can write

\[
\begin{pmatrix}
\tilde{B}_c^*, \tilde{A}_c, \tilde{B}_c
\end{pmatrix} = \begin{pmatrix}
\frac{\sqrt{c}}{1+\sqrt{c}}, \frac{1}{1+\sqrt{c}}, \frac{\sqrt{c}}{1+\sqrt{c}}
\end{pmatrix} D_1 \begin{pmatrix}
1 & 0 & 0 \\
0 & -(1 + q^2)^{-1} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0, \frac{1}{1+\sqrt{c}}, 0\end{pmatrix}.
\]
It is clear now that the tilded generators are well-defined also for \(c = \infty \). Since the relations among the tilded generators become for \(c = \infty \) the relations among \(A \) and \(B \), we can write \(\tilde{A}_\infty := A, \tilde{B}_\infty := B \). Thus, we have a uniform description of quantum spheres for all \(c \in [0, \infty] \).

(See [BM00, Section 6] for a uniform parameterization of Podleś spheres by the unit interval \([0,1]\).) Remembering the geometrical meaning of \(\tilde{A}_c, \tilde{B}_c \) (see [P-P87, pp.196,200,201]), we put

\[
x = iQ_x(\tilde{B}_c - \tilde{B}_c^*), \quad y = Q_y(\tilde{B}_c + \tilde{B}_c^*), \quad z = Q_z(\tilde{A}_c - \tilde{a}_0), \quad c \in [0, \infty]. \tag{2.16}
\]

Here \(Q_x, Q_y, Q_z \) and \(\tilde{a}_0 \) are real-valued functions of \(q \) and \(c \), so that \(x, y, z \) are evidently self-adjoint. The condition \(x^2 + y^2 + z^2 = 1 \) and the linear independence of the monomials \(A_c^k B_c^l, A_c^m B_c^n, k, l, m, n \in \mathbb{N}, n > 0 \) [P-P89, p.116] imply that \(Q_x^2 = Q_y^2 \). Let us put \(Q_h := |Q_x| = |Q_y| \). Then the sphere equation boils down to

\[
2Q_h^2(\tilde{B}_c \tilde{B}_c^* + \tilde{B}_c^* \tilde{B}_c) + Q_h^2(\tilde{A}_c - \tilde{a}_0)^2 = 1. \tag{2.17}
\]

Plugging in (2.13) to the above formula yields

\[
2Q_h^2 \left(- (1 + q^4) \tilde{A}_c^2 + \frac{1 + q^2}{1 + \sqrt{c}} \tilde{A}_c + \frac{2c}{(1 + \sqrt{c})^2} \right) + Q_h^2(\tilde{A}_c - \tilde{a}_0)^2 = 1. \tag{2.18}
\]

Employing again the linear independence of the monomials \(A_c^k \), one can compute:

\[
Q_h = -\sqrt{\frac{2(1 + q^4)}{1 + q^4}(1 + \sqrt{c})} z_\infty, \quad |Q_z| = -\sqrt{\frac{2(1 + q^4)}{1 + q^4}(1 + \sqrt{c})} z_\infty, \quad \tilde{a}_0 = -\sqrt{\frac{2(1 + q^4)}{1 + q^4}(1 + \sqrt{c})}^{-1}, \tag{2.19}
\]

where \(z_\infty := -\left(8c \frac{1 + q^4}{1 + q^4} + 1\right)^{-1/2} \). (The meaning of this number will shortly become clear.) Let us choose \(Q_x = Q_h = Q_y, Q_z = |Q_z| \). The formulas (2.16) read now:

\[
x = -i \sqrt{\frac{2(1 + q^4)}{1 + q^4}(1 + \sqrt{c})} z_\infty (\tilde{B}_c - \tilde{B}_c^*), \quad y = -\sqrt{\frac{2(1 + q^4)}{1 + q^4}(1 + \sqrt{c})} z_\infty (\tilde{B}_c + \tilde{B}_c^*), \quad z = -\frac{2c}{(1 + q^4)} z_\infty \tilde{A}_c + z_\infty. \tag{2.20}
\]

(Observe that \(z_\infty |_{c=\infty} = 0 \) and \(((1 + \sqrt{c}) z_\infty) |_{c=\infty} = -\frac{1 + q^2}{2\sqrt{2(1 + q^4)}} \).) The eigenvalues \(z_k^\pm \) of \(\pi_c^\pm(z) \) are given by

\[
\pi_c^\pm(z) e_k = \left(z_\infty - z_\infty \lambda^\pm \frac{2(1 + q^4)}{1 + q^2} q^2k\right) e_k, \quad c \in [0, \infty]. \tag{2.21}
\]

(Note that \(z_\infty \lambda^\pm |_{c=\infty} = \mp \frac{1 + q^2}{2\sqrt{2(1 + q^4)}} \).) It is evident that \(\lim_{k \to \infty} z_k^\pm = z_\infty \). Since we also have \(\pi_\theta(z) = z_\infty \), we can say that the eigenvalues of \(\pi_c^\pm(z) \) converge (from both sides) to the circle of classical points (space of one-dimensional representations) given by \(\pi_\theta \). For \(c = \infty \) we have \(z_\infty = 0 \), so that the circle is the equator, whereas for \(c = 0 \) the circle shrinks to the south pole \((z_\infty = -1) \). Finally, let us remark that, as \((1 + \sqrt{c}) z_\infty \neq 0 \) for any \(c \in [0, \infty] \), the equations (2.20) can be solved for \(\hat{A}_c, \hat{B}_c, \hat{B}_c^* \), and consequently \(x, y, z \) generate the algebra \(P(S^2_{\text{op}}) \). Since they are also self-adjoint and satisfy \(x^2 + y^2 + z^2 = 1 \), we call them the Cartesian coordinates of quantum spheres.
We recall from [S-A91] that $\pi^+_c \oplus \pi^-_c$ is for all $c \in (0, \infty]$ a C^*-isomorphism of $C\left(S^2_{qc}\right)$ onto $C^*\left(\mathcal{S}\right) \oplus \sigma C^*\left(\mathcal{S}\right)$. Here $C^*\left(\mathcal{S}\right)$ is the C^*-algebra of the one-sided shift (Toeplitz algebra). It is the C^*-algebra generated by the shift operator $\mathcal{S}e_i = e_{i+1}$, where $\{e_i\}_{i \in \mathbb{N}}$ is an orthonormal basis of a Hilbert space. The map $\sigma : C^*\left(\mathcal{S}\right) \to C\left(S^1\right)$ is the so-called symbol map defined by $\mathcal{S} \mapsto u$, where u is the unitary generator of $C\left(S^1\right)$. The algebra $C^*\left(\mathcal{S}\right) \oplus \sigma C^*\left(\mathcal{S}\right)$ is defined as the gluing of two copies of $C^*\left(\mathcal{S}\right)$ via σ, i.e.,

$$C^*\left(\mathcal{S}\right) \oplus \sigma C^*\left(\mathcal{S}\right) := \{(a_1, a_2) \in C^*\left(\mathcal{S}\right) \oplus C^*\left(\mathcal{S}\right) | \sigma(a_1) = \sigma(a_2)\}.$$ (2.22)

Let

$$\chi_c := (\pi^+_c \oplus \pi^-_c)^{-1} \circ (\pi^+_c \oplus \pi^-_c) : C\left(S^2_{qc}\right) \to C\left(S^2_{qc}\right)$$ (2.23)

be the isomorphism composed from the isomorphisms $\pi^+_c \oplus \pi^-_c : C\left(S^2_{qc}\right) \to C^*\left(\mathcal{S}\right) \oplus \sigma C^*\left(\mathcal{S}\right)$ and $\pi^+_c \oplus \pi^-_c : C\left(S^2_{qc}\right) \to C^*\left(\mathcal{S}\right) \oplus \sigma C^*\left(\mathcal{S}\right)$. An explicit form of the isomorphisms χ_c is given by:

Proposition 2.2 Let $\eta(t) := \sqrt{t - t^2 + c}$ (cf. (2.11)), and let F_c and G_c be functions given by

$$F_c(x) := \begin{cases} \lambda_+x & \text{for } 0 \leq x \leq 1 \\ -\lambda_-x & \text{for } -1 \leq x < 0 \end{cases}$$ (2.24)

$$G_c(x) := (1 - q^4x^2)^{-1/2} \begin{cases} \eta(q^2\lambda_+x) & \text{for } 0 \leq x \leq 1 \\ \eta(-q^2\lambda_-x) & \text{for } -1 \leq x < 0 \end{cases}.$$ (2.25)

Then $\chi_c(A_c) = F_c(A)$ and $\chi_c(B_c) = G_c(A)B$.

Proof: First, note that, since $\pi^\pm(A)$ is diagonal and F_c and G_c are continuous functions defined on the spectrum of $\pi^\pm(A)$, the operators $F_c(\pi^\pm(A))$ and $G_c(\pi^\pm(A))$ make sense and are easily computable. Subsequently, notice that $\chi_c(A_c) = F_c(A)$ if and only if $\pi^\pm(A_c) = F_c(\pi^\pm(A))$. To verify the latter equality, we check that

$$\pi^\pm(A_c)e_k = \lambda_\pm q^{2k}e_k = F_c(\pi^\pm(A))e_k.$$ (2.26)

Similarly, to verify $\chi_c(B_c) = G_c(A)B$, we observe that $G_c(\pm q^{2k}) = \frac{e_{\pm(k+1)^2}}{(1-q^{4k+1})^{1/2}}$ and compute

$$\pi^\pm(B_c)e_k = \pi^\pm(G_c(A)B)e_k = G_c(\pi^\pm(A))\pi^\pm(B)e_k,$$ (2.27)

which proves the proposition. \qed

The above proposition shows that the isomorphisms χ_c are of non-polynomial nature. Therefore we suspect that:

Conjecture 2.3 The polynomial $*$-algebras of the quantum spheres S^2_{qc} and $S^2_{qc'}$ are non-isomorphic for $c \neq c'$.

6
Our next step is to consider the compatibility of the isomorphisms χ_c with the actions of $U(1)$ inherited from the actions of $SU_q(2)$ on quantum spheres. Let $c \in (0, \infty]$, and let $\delta : C(S^2_{q^c}) \to C(S^2_{q^c}) \otimes C(U(1))$ be the right coaction obtained from the coaction $\Delta_R : C(S^2_{q^c}) \to C(S^2_{q^c}) \otimes C(SU_q(2))$ [P-P87, p.194] with the help of the natural map $C(SU_q(2)) \to C(U(1))$. Explicitly, we have

$$\delta(A_c) = A_c \otimes 1, \quad \delta(B_c) = B_c \otimes u^2. \quad (2.28)$$

Here u is the unitary generator of $C(U(1))$. Since $\delta : C(S^2_{q^c}) \to C(S^2_{q^c}) \otimes C(U(1))$ is a $*$-homomorphism, it is continuous. Therefore, identifying $C(S^2_{q^c}) \otimes C(U(1))$ with $C(U(1), C(S^2_{q^c}))$ (continuous functions on $U(1)$) with values in $C(S^2_{q^c})$; see [W-NE93, Proposition T.5.21]), we obtain, for any $g \in U(1)$, a continuous map

$$\delta_g : C(S^2_{q^c}) \to C(S^2_{q^c}), \quad \delta_g(a) := \delta(a)(g). \quad (2.29)$$

This defines an action of $U(1)$ on $S^2_{q^c}$. It follows from the continuity of δ and the fact that the image of δ is in the continuous functions from $U(1)$ to $C(S^2_{q^c})$ that each δ_g is a C^*-automorphism of $C(S^2_{q^c})$. Contrary to the action of $SU_q(2)$, the action of $U(1)$ on $S^2_{q^c}$ is compatible with the quantum “homeomorphisms” among the spheres $S^2_{q^c}$, i.e., $(\chi_{q^c}^{-1} \circ \chi_c) \circ \delta_g = \delta_g \circ (\chi_{q^c}^{-1} \circ \chi_c)$. This follows from:

Proposition 2.4 \(\forall g \in U(1) : \delta_g \circ \chi_c = \chi_c \circ \delta_g\).

Proof: Since both χ_c and δ_g are C^*-isomorphisms, it suffices to check this equality on generators. It follows from (2.28) that $\delta_g(A_c) = A_c$ and $\delta_g(B_c) = g^2 B_c$. Taking advantage of Proposition 2.2, one can compute:

$$\begin{align*}
(\delta_g \circ \chi_c)(A_c) &= \delta_g(F_c(A)) = F_c(\delta_g(A)) = F_c(A) = \chi_c(A_c) = (\chi_c \circ \delta_g)(A_c), \\
(\delta_g \circ \chi_c)(B_c) &= \delta_g(G_c(A)B) = G_c(\delta_g(A))\delta_g(B) = g^2 G_c(A)B = g^2 \chi_c(B_c) = (\chi_c \circ \delta_g)(B_c).
\end{align*} \quad (2.30)$$

This proves the proposition. \qed

For the sake of completeness (cf. (1.1), (3.27), (4.32)), let us end this section by recalling the topological K-theory of the quantum spheres. First, there is an exact sequence [S-A91, Proposition 1.2]:

$$0 \to \mathcal{K} \oplus \mathcal{K} \to C(S^2_{q^c}) \to C(S^1) \to 0, \quad (2.32)$$

where \mathcal{K} is the ideal of compact operators. It induces the 6-term exact sequence in K-theory, from which it follows that $K_0(C(S^2_{q^c})) \cong \mathbb{Z} \oplus \mathbb{Z}$, $K_1(C(S^2_{q^c})) \cong 0$ [MNW91, Proposition 4.1].
3 Quantum disc

Definition 3.1 ([KL93]) The C^*-algebra $C(D_q)$, $0 < q < 1$, of the quantum disc D_q is the C^*-closure (obtained from $*$-representations in bounded operators) of the algebra $P(D_q) := \mathbb{C}(x, x^*)/J_q$, where J_q is the two-sided ideal in the free algebra $\mathbb{C}(x, x^*)$ generated by the relation

$$x^*x - qxx^* = 1 - q.$$ \tag{3.1}

The goal of this section is to determine the relationship between the thus defined quantum discs and the equator and equilateral quantum spheres (cf. [NN94, p.278] and references therein). The objects D_q form a one-parameter sub-family of the two-parameter family of quantum discs described in [KL93]. Explicitly, the latter family is given by $x^*x - qxx^* = 1 - q + \mu(xx^* - 1)(x^*x - 1)$. It is known ([KL93, Proposition VI.1], [CM00, Proposition 15], [KL92, Theorem IV.7], [S-A91, p.222]) that for $0 \leq \mu < 1 - q$ and $q = 1$, $0 < \mu < 1$, the quantum-disc C^*-algebras are all isomorphic to the Toeplitz algebra (the C^*-algebra generated by the one-sided shift $\mathcal{S}e_i = e_{i+1}$). Furthermore, we know from [KL93] that every irreducible bounded $*$-representation of $P(D_q)$ is unitarily equivalent to a one-dimensional representation π_θ defined by

$$\pi_\theta(x) = e^{i\theta}, \quad \pi_\theta(x^*) = e^{-i\theta}, \quad 0 \leq \theta < 2\pi,$$ \tag{3.2}

or an infinite dimensional representation π given on an orthonormal basis $\{e_i\}_{i \in \mathbb{N}}$ by the formulas

$$\pi(x)e_i = (1 - q^{i+1})^{1/2} e_{i+1}, \quad i \geq 0,$$ \tag{3.3}

$$\pi(x^*)e_i = \begin{cases} 0, & i = 0, \\ (1 - q^i)^{1/2} e_{i-1}, & i \geq 1. \end{cases}$$ \tag{3.4}

The infinite dimensional representation π is faithful [KL93, p.14]. Also, one can directly verify that π is faithful on the polynomial algebra $P(D_q)$, so that $P(D_q) \subseteq C(D_q)$. Finally, let us mention that there are also unbounded representations of the relation (3.1). They are given, e.g., in [KS97, Section 5.2.6].

Now we are going to show that the above-defined q-disc can be obtained by collapsing the equator quantum sphere. In the classical case, the \mathbb{Z}_2-action on S^2 collapsing it to a disc is not free, as it leaves the equator invariant. This entails that the map

$$\psi : S^2 \times \mathbb{Z}_2 \ni (x, g) \mapsto (x, xg) \in S^2 \times S^2$$ \tag{3.5}

is not injective, whence $S^2 \rightarrow D^2$ is not a principal fibration. (The considered \mathbb{Z}_2-action is not Galois.) The \mathbb{Z}_2-action on quantum spheres that we are looking for should identify “points” of the same type and leave the equator invariant. Therefore, since the standard sphere contains only one classical point (pole), we exclude it from our considerations. Our first step is to define the desired \mathbb{Z}_2-action on the polynomial algebra of the equator quantum sphere. As in the classical case, we define it as the reflection with respect to the equator plane, i.e., via the $*$-algebra automorphism r_1 of $P(S^2_{q\infty})$ sending B to itself, and A to $-A$. (It is immediate from
the commutation relations of the equator quantum sphere that r_1 is well defined.) Dualizing the \mathbb{Z}_2-action r_1 on $S^2_{q_{\infty}}$ we get the coaction $\Delta_1 : P(S^2_{q_{\infty}}) \to P(S^2_{q_{\infty}}) \otimes P(\mathbb{Z}_2)$ making $P(S^2_{q_{\infty}})$ a right $P(\mathbb{Z}_2)$-comodule algebra. (See [M-S93, Section 1.6] for generalities.) Explicitly, denoting by \triangleright the action of \mathbb{Z}_2 on $P(S^2_{q_{\infty}})$, we have

$$\Delta_1(p) = (1 \triangleright p) \otimes 1^+ + ((-1) \triangleright p) \otimes (-1)^+ = \frac{1}{2} (p \otimes (1 + \alpha) + r_1(p) \otimes (1 - \alpha)). \quad (3.6)$$

Here $\{1^+, (-1)^+\}$ denotes the basis dual to the basis $\{1, -1\}$ of the group ring $\mathbb{C}[\mathbb{Z}_2]$, and $\alpha(\pm 1) = \pm 1$. The main claim of this section is that the quantum disc is a non-Galois quotient of the equator quantum sphere:

Theorem 3.2 The polynomial algebra of the equator quantum sphere is a non-Galois \mathbb{Z}_2-extension of the polynomial algebra of the quantum disc via the above defined action r_1, i.e.,

1. $P(D^2_q) \cong P(S^2_{q_{\infty}}/\mathbb{Z}_2) \coloneqq \{a \in P(S^2_{q_{\infty}}) \mid r_1(a) = a\}$ (\mathbb{Z}_2-extension).

2. The canonical map $P(S^2_{q_{\infty}}) \otimes_{P(D^2_q)} P(S^2_{q_{\infty}}) \ni p \otimes p' \mapsto p \Delta_1(p') \in P(S^2_{q_{\infty}}) \otimes P(\mathbb{Z}_2)$

is not bijective. (The extension is not Galois.)

Proof: 1. We know from [P-P89, p.116] that the monomials

$$A^k B^l, A^m B^n, k,l,m,n \in \mathbb{N}, n > 0, \quad (3.7)$$

form a linear basis of $P(S^2_{q_{\infty}})$. Since $r_1(A) = -A$ and $r_1(B) = B$, taking advantage of the above basis, one can see that $r_1(a) = a$ if and only if a is a linear combination of basis monomials that have A in the even power. It follows now from (2.5) that any r_1-invariant a is a polynomial in B and B^1. Thus, since every polynomial in B and B^1 is r_1-invariant, $P(S^2_{q_{\infty}}/\mathbb{Z}_2)$ is the $*$-subalgebra generated by B. On the other hand, one can conclude from (2.5) that

$$BB^1 - q^4 B^1 B = (1 - q^4)1. \quad (3.8)$$

This equation, together with (3.1), allows us to define a $*$-epimorphism

$$\varphi : P(D^2_q) \twoheadrightarrow P(S^2_{q_{\infty}}/\mathbb{Z}_2), \quad \varphi(x) = B^1. \quad (3.9)$$

To complete the proof, we need to show that φ is injective. It is immediate from formula (2.8) that $\pi_{\pm} \circ \varphi = \pi$, where π is defined by (3.3)-(3.4). Hence the injectivity of π implies the injectivity of φ.

2. It suffices to show that the map

$$\kappa : P(S^2_{q_{\infty}}) \otimes P(S^2_{q_{\infty}}) \ni p \otimes p' \mapsto p \Delta_1(p') \in P(S^2_{q_{\infty}}) \otimes P(\mathbb{Z}_2) \quad (3.10)$$

is not surjective. (The considered \mathbb{Z}_2-action on $S^2_{q_{\infty}}$ is not free.) Note first that in the classical case to detect the lack of surjectivity of the pullback map ψ^* (see (3.5)), we can use the function $1 \otimes \alpha$. Indeed, for any point x on the equator, we have

$$\psi^*(\text{anything})(x, 1) = (\text{anything})(x, x) = \psi^*(\text{anything})(x, -1), \quad (3.11)$$
whereas \((1 \otimes \alpha)(x, 1) = 1 \neq -1 = (1 \otimes \alpha)(x, -1)\). It turns out that \(1 \otimes \alpha\) also does the job in the quantum case. Suppose that \(1 \otimes \alpha\) is in the image of \(\kappa\). Then there exists a tensor \(\sum_i p_i \otimes p_i'\) such that
\[
\frac{1}{2} \sum_i p_i (p_i' \otimes (1 + \alpha) + r_1(p_i') \otimes (1 - \alpha)) = 1 \otimes \alpha.
\] (3.12)
Evaluating the right tensorands on both sides at 1 and \(-1\) yields
\[
\begin{cases}
\sum_i p_i p_i' = 1 \\
\sum_i p_i r_1(p_i') = -1.
\end{cases}
\] (3.13)
Applying \(\pi_\theta\) (see (3.2)) to these equations gives
\[
\begin{cases}
\sum_i \pi_\theta(p_i) \pi_\theta(p_i') = 1 \\
\sum_i \pi_\theta(p_i) \pi_\theta(r_1(p_i')) = \sum_i \pi_\theta(p_i) \pi_\theta(p_i') = -1,
\end{cases}
\] (3.14)
which is the desired contradiction.

In order to define a \(\mathbb{Z}_2\)-action on the closure \(C(S_{q_\infty}^2)\) of \(P(S_{q_\infty}^2)\), note that the flip map
\[
\tau : C(\mathbb{S}) \oplus_\sigma C(\mathbb{S}) \to C(\mathbb{S}) \oplus_\sigma C(\mathbb{S}), \quad \tau(a, b) = (b, a),
\] (3.15)
satisfies \(\tau \circ (\pi_+ \oplus \pi_-) = (\pi_+ \oplus \pi_-) \circ r_1\). It is therefore natural to define the completion of \(r_1\) to a \(C^*\)-algebra map by \(^1\)
\[
\tilde{r}_1 := (\pi_+ \oplus \pi_-)^{-1} \circ \tau \circ (\pi_+ \oplus \pi_-).
\] (3.16)

Proposition 3.3 The \(C^*\)-subalgebra \(C(S_{q_\infty}^2/\mathbb{Z}_2) := \{ a \in C(S_{q_\infty}^2) | \tilde{r}_1(a) = a \}\) of \(\mathbb{Z}_2\)-invariants in \(C(S_{q_\infty}^2)\) coincides with the \(C^*\)-completion of \(P(S_{q_\infty}^2/\mathbb{Z}_2)\) inside \(C(S_{q_\infty}^2)\), and is isomorphic to \(C(D_{q_1})\).

Proof: First let us argue that the map \(\varphi\) defined in the proof of Proposition 3.2 extends to a \(C^*\)-isomorphism of \(C(D_{q})\) with the closure of \(P(S_{q_\infty}^2/\mathbb{Z}_2)\) inside \(C(S_{q_\infty}^2)\). Since \(\varphi : P(D_{q_1}^2) \to P(S_{q_\infty}^2/\mathbb{Z}_2)\) is an isomorphism of \(*\)-algebras, the \(*\)-representations of \(P(D_{q_1}^2)\) can be turned to \(*\)-representations of \(P(S_{q_\infty}^2/\mathbb{Z}_2)\), and vice-versa. We are to show that \(\varphi\) determines a one-to-one correspondence between the \(*\)-representations used to define the norm on \(C(D_{q_1}^2)\) and \(C(S_{q_\infty}^2)\) respectively. As every \(*\)-representation of \(P(S_{q_\infty}^2)\) is bounded, it yields via \(\varphi\) a bounded \(*\)-representation of \(P(D_{q_1}^2)\). On the other hand, every bounded \(*\)-representation of \(P(D_{q_1}^2)\) gives a \(*\)-representation of \(P(S_{q_\infty}^2/\mathbb{Z}_2)\) which can be extended to \(C(S_{q_\infty}^2)\). Indeed, let \(P(D_{q_1}^2) \to B(H)\) be such a representation. Then \(\tilde{\rho} := \rho \circ \varphi^{-1}\) is a bounded \(*\)-representation of \(P(S_{q_\infty}^2/\mathbb{Z}_2)\), and since \(B\) and \(B^*\) satisfy the disc relation (3.8), it follows from [KL93] that \(\|\tilde{\rho}(B^*B)\| = 1\). As a consequence, \(I - \tilde{\rho}(B^*B) \geq 0\), and one can define \(\tilde{\rho}(A) = \sqrt{I - \tilde{\rho}(B^*B)}\). This gives the desired extension.

\(^1\)We owe this idea to S.L. Woronowicz.
To complete the proof, note first that, since \(\tilde{\tau}_1 \) is continuous, the \(C^* \)-closure of \(P(S_{q^\infty}^2/\mathbb{Z}_2) \) is contained in \(C(S_{q^\infty}^2/\mathbb{Z}_2) \). Thus it only remains to show that every \(\mathbb{Z}_2 \)-invariant in \(C(S_{q^\infty}^2) \) is in the closure of \(P(S_{q^\infty}^2/\mathbb{Z}_2) \). Let \(a \in C(S_{q^\infty}^2/\mathbb{Z}_2) \). Then, again by the continuity of \(\tilde{\tau}_1 \) and density of \(P(S_{q^\infty}^2) \) in \(C(S_{q^\infty}^2) \), \(a = \lim_{n \to \infty} a_n \) with \(a_n \in P(S_{q^\infty}^2) \) and
\[
a = \frac{1}{2}(id + \tilde{\tau}_1)(a) = \frac{1}{2}(id + \tilde{\tau}_1)(\lim_{n \to \infty} a_n) = \lim_{n \to \infty} \frac{1}{2}(id + \tau_1)(a_n).
\]
As \(\frac{1}{2}(id + \tau_1)(a_n) \in P(S_{q^\infty}^2/\mathbb{Z}_2) \) for any \(n \), \(a \) is in the closure of \(P(S_{q^\infty}^2/\mathbb{Z}_2) \), as claimed. \(\square \)

Remark 3.4 Since all quantum disc algebras \(C(D_q) \), \(0 < q < 1 \), are isomorphic as \(C^* \)-algebras to the \(C^* \)-algebra of the one-sided shift, in the above proposition \(q^4 \) can be replaced by any element of the interval \((0, 1) \).

We extend the \(\mathbb{Z}_2 \)-action to the equilateral quantum spheres by the formula
\[
\tilde{\tau}_1^c := \chi_c^{-1} \circ \tilde{\tau}_1 \circ \chi_c.
\]
It is now evident that we have

Corollary 3.5 The subalgebra \(C(S_{q^c}^2/\mathbb{Z}_2) := \{ a \in C(S_{q^c}^2) \mid \tilde{\tau}_1^c(a) = a \} \) of \(\mathbb{Z}_2 \)-invariants of \(C(S_{q^c}^2) \), \(c \in (0, \infty) \), is isomorphic to the \(C^* \)-algebra \(C(D_{q^c}) \) of the quantum disc.

Furthermore, it is clear from (3.16) and (3.18) that
\[
\tilde{\tau}_1^c = (\pi^c_+ \oplus \pi^c_-)^{-1} \circ \tau \circ (\pi^c_+ \oplus \pi^c_-).
\]
Explicitly, the above equality reads \(^2\)
\[
\pi^c_+(a) = \pi^c_-(\tilde{\tau}_1^c(a)), \quad \pi^c_-(a) = \pi^c_+(\tilde{\tau}_1^c(a)), \quad a \in C(S_{q^c}^2).
\]
For \(a = A_c \), these equations are solved by the formulas
\[
\tilde{\tau}_1^c(A_c) = f_c(A_c), \quad f_c(x) = \begin{cases} \frac{\lambda_c x}{\lambda_c x} & x \geq 0 \\ \frac{\lambda_c x}{\lambda_c x} & x \leq 0. \end{cases}
\]
Note that this piecewise linear function \(f_c \) can be replaced by any continuous function having the same values as \(f_c \) at the points \(\lambda_c q^{2k} \). For \(c \in (0, \infty) \), among these functions there is no polynomial. This shows that \(\tilde{\tau}_1^c \) does not leave \(P(S_{q^c}^2) \) invariant. Furthermore, considering the image of \(B_c^+ \) under \(\pi^c_+ \oplus \pi^c_- \), one finds the polar decomposition \(B_c^+ = V_c|B_c^+| \) with
\[
\pi^c_+(V_c)e_k = e_{k+1}, \quad \pi^c_-(|B_c^+|)e_k = c_\pm(k + 1)^{1/2}e_k, \quad k \in \mathbb{N}.
\]
\(^2\)We are grateful to S. L. Woronowicz for putting us on the track of the reasoning below.
Hence \((\pi^+ \oplus \pi^-)(V_c) = (\mathcal{S}, \mathcal{S})\), and \(\pi^c(V_c) = V_c\). Recall that the spectrum of \((\pi^+ \oplus \pi^-)(A_c)\) and \((\pi^+ \oplus \pi^-)(|B_c^+|)\) is \(\{0\} \cup \{\pm q^{2k} | k \in \mathbb{N}\}\) and \(\{\sqrt{c}\} \cup \{\sqrt{c}(k+1) | k \in \mathbb{N}\}\) respectively. On the other hand, \(\pi^c(\pi^c(|B_c^+|))e_k = c_\mp(k+1)^{1/2}e_k, k \in \mathbb{N}\). One can directly check that

\[
\pi^c(|B_c^+|) = g_c(A_c), \quad g_c(t) := \begin{cases}
\eta_c(\frac{\lambda^+q^{2t}}{\lambda_+}) & 0 \leq t \leq \lambda_+ \\
\eta_c(\frac{\lambda_-q^{2t}}{\lambda_-}) & \lambda_- \leq t < 0,
\end{cases} \quad \eta_c(t) = \sqrt{t - t^2 + c}.
\] (3.23)

Clearly, \(g_c\) can be replaced by any continuous function having at the points \(\lambda_{\pm}q^{2k}\) values \(c_{\mp}(k+1)^{1/2}\), for any \(k\). Note that we used \(A_c\) instead of \(|B_c^+|\) to obtain \(\pi^c(|B_c^+|)\) as a continuous function of a generator because the assignment \(\sqrt{c_+}(k+1) \mapsto \sqrt{c_-}(k+1)\) does not give a function, as \(k_1 \neq k_2\) implies \(c_-(k_1) \neq c_-(k_2)\), whereas it might happen that \(c_+(k_1) = c_+(k_2)\) for \(k_1 \neq k_2\). Indeed, let \(k_1, k_2\) be any two different positive natural numbers. Then the equation \(\sqrt{c_+(k_1)} = \sqrt{c_+(k_2)}\) is equivalent to the equation \(q^{2k_1} + q^{2k_2} = \lambda_{\mp}^{-1}\). Since \(\lambda_{\mp}^{-1} \in (0, 1)\), there exists \(q \in (0, 1)\) solving this equality.

Remark 3.6 The formulas for \(f_c, F_c, g_c, G_c\) are consistent with one another by construction. Nevertheless, it is entertaining to verify this consistency in a direct manner. Taking into account Proposition 2.2 and formula (3.21), we obtain a sequence of equivalent equalities

\[
\begin{align*}
\pi^c(A_c) &= (\chi_c^{-1} \circ \pi_1 \circ \chi_c)(A_c) \\
f_c(A_c) &= (\chi_c^{-1} \circ \pi_1)(F_c(A)) \\
f_c(A_c) &= \chi_c^{-1}(F_c(-A)) \\
\pi_c(f_c(A_c)) &= \pi(F_c(-A)) \\
f_c(\pi_c(A_c)) &= F_c(-\pi(A)) \\
f_c(\pi^c(A_c))e_k &= F_c(\pi_{\mp}(A))e_k.
\end{align*}
\]

Recalling (2.8) and (2.10) one can see that the last equality is true. Similarly, taking advantage of the polar decomposition \(B_c^s = V_c|B_c^+|, \pi^c(V_c) = V_c\) and (3.23), we get

\[
\begin{align*}
\pi^c(|B_c^+|) &= (\chi_c^{-1} \circ \pi_1 \circ \chi_c)(B_c^s) \\
\pi^c(V_c|B_c^+|) &= (\chi_c^{-1} \circ \pi_1)(\chi_c(B_c^s)) \\
\pi^c(V_c|B_c^+|) &= (\chi_c^{-1} \circ \pi_1)(B^s G_c(A)) \\
V_c g_c(A_c) &= \chi_c^{-1}(B^s G_c(-A)) \\
\pi_c(V_c g_c(A_c)) &= \pi(B^s G_c(-A)) \\
\pi^c(V_c|B_c^+|)g_c(\pi^c(A_c))e_k &= \pi_{\mp}(B^s G_c(\pi_{\mp}(A)))e_k.
\end{align*}
\]

Remembering formulas (2.8), (2.10), (3.22), the last equality is evident.

Next, let us consider the rotational invariance with respect to the South-North Pole axis of the above-studied \(\mathbb{Z}_2\) actions on quantum spheres. The \(U(1)\)-action on \(S^2_{2\infty}\) (see (2.29)) is given on generators by \(\delta_g(A) = A, \delta_g(B) = g^2B\). Therefore, one can infer from Proposition 2.4 that the \(U(1)\)-action on \(S^2_{2c}\) \((c \in (0, \infty])\) and the reflection \(\pi^c\) are compatible:

\[
\delta_g \circ \pi^c = \pi^c \circ \delta_g.
\] (3.24)
Remark 3.7 It follows already from (3.24) that \(\delta \circ \tau^i = (\tau^i \otimes id) \circ \delta \). Let us, however, provide also a direct proof. Since \(A_e \) and \(B^e \) generate \(C(S^2_{q_e}) \) in the \(C^* \)-algebraic sense, and both \(\tau_e \) and \(\delta \) are continuous, it suffices to check the desired equality on \(A_e \) and \(B^e \). Taking advantage of (3.21) and using the fact that \(\delta \) is a \(C^* \)-homomorphism, we obtain
\[
(\delta \circ \tau^i)(A_e) = (\delta(f_e(A))) = f_e(\delta(A_e)) = f_e(A_e) \otimes 1 = \tau^i(A_e) \otimes 1 = ((\tau^i \otimes id) \circ \delta)(A_e). \tag{3.25}
\]
To handle \(B^e \) it is useful to consider its polar decomposition \(B^e = V_e|B^e| \) (see (3.22)). Now, \(\delta(B^e) = B^e \otimes u^2 \) entails \(\delta(B_e B^e) = B_e B^e \otimes u^2 u^2 = |B^e|^2 \otimes 1 \), whence, by the continuity of the square root function, \(\delta(|B^e|) = |B^e| \otimes 1 \). Consequently,
\[
\delta(V_e)(|B^e| \otimes 1) = \delta(B^e) = B^e \otimes u^2 = (V \otimes u^2)(|B^e| \otimes 1). \tag{3.26}
\]
Thus, due to the invertibility of \(|B^e| \otimes 1 \), we have \(\delta(V_e) = V_e \otimes u^2 \). (We chose \(B^e \) rather than \(B_e \) because, unlike \(|B_e| \), \(|B^e| \) is invertible.) On the other hand, \(\tau^i(V_e) = V_e \) (see above) and \(\tau^i(|B^e|) = g_e(A_e) \) (see (3.23)). To complete the proof, one can reason in the same way as for generator \(A_e \).

We end this section by recalling \(K \)-facts for the quantum disc. Since \(C(D^2_{q_4}) \) is isomorphic to the Toeplitz algebra, the “standard” exact sequence [B-B98, p.68] (cf. (1.2), (2.32), (4.32)) is equivalent to:
\[
0 \longrightarrow \mathcal{K} \longrightarrow C(D^2_{q_4}) \longrightarrow C(S^1) \longrightarrow 0, \tag{3.27}
\]
from which it follows that
\[
K_0(C(D^2_{q_4})) \cong \mathbb{Z}, \quad K_1(C(D^2_{q_4})) \cong 0 \quad \text{[W-NE93, p.123].} \tag{3.28}
\]

4 Quantum real projective space

Our first aim is to define on the equator quantum sphere \(S^2_{q_{\infty}} \) a \(\mathbb{Z}_2 \)-action mimicking the antipodal action of \(\mathbb{Z}_2 \) on \(S^2 \). The geometrical meaning of generators (see 2.20) hints at the formulas \(r_2(A) = -A \), \(r_2(B) = -B \). Owing to the even nature of algebraic relations in \(P(S^2_{q_{\infty}}) \), these equalities indeed define the desired action on \(P(S^2_{q_{\infty}}) \). (Note that this recipe would not work for \(P(S^2_{q_e}) \), \(e \in [0, \infty) \)). The \(* \)-algebra of quantum real projective 2-space can now be defined by

Definition 4.1 ([H-PM96]) \(P(\mathbb{R}P^2_q) = \{ a \in P(S^2_{q_{\infty}}) | r_2(a) = a \}. \)

Remark 4.2 Recall that \(\Delta_R \circ r_2 = (r_2 \otimes id) \circ \Delta_R \) (see above Section 6 in [P-P87]), where, much as before, \(\Delta_R \) is the restriction to \(P(S^2_{q_{\infty}}) \) of the coproduct \(\Delta \) in \(P(SU_q(2)) \). (Since both \(r_2 \) and \(\Delta_R \) are algebra homomorphisms, it suffices to check this formula on generators, where it is evidently true.) Thus the antipodal action and the \(SU_q(2) \)-action on the equator quantum sphere are compatible. Consequently, just as quantum spheres themselves, \(\mathbb{R}P^2_q \) is an (embeddable) quantum homogeneous space of \(SU_q(2) \), i.e., \(\Delta(P(\mathbb{R}P^2_q)) \subseteq P(\mathbb{R}P^2_q) \otimes P(SU_q(2)) \).
Unlike the quantum disc, \(\mathbb{R}P_{q}^{2} \) is a \(\mathbb{Z}_{2} \)-Galois quotient of the equator quantum sphere, i.e., \(S_{q_{\infty}}^{2} \rightarrow \mathbb{R}P_{q}^{2} \) is an (algebraic) quantum principal bundle \([\text{H-PM96, Proposition 2.10}].\) As mentioned in the proof of Proposition 3.2, the elements \(A^{k}B_{1}, A^{m}B_{-n}, n > 0, \) form a basis of \(P(S_{q_{\infty}}^{2}). \) Taking this into account, it is straightforward that \(P(\mathbb{R}P_{q}^{2}) \) is the \(*\)-subalgebra of \(P(S_{q_{\infty}}^{2}) \) generated by \(A^{2}, B^{2} \) and \(AB. \) We put

\[
P = A^{2}, \quad R = B^{2}, \quad T = AB,
\]

and find immediately the following relations:

\[
P = P^{*}, \quad T^{2} = q^{2}PR, \quad RT^{*} = q^{2}T(-q^{4}P + I), \quad R^{*}T = q^{-2}T^{*}(-P + I), \quad \tag{4.2}
\]

\[
RR^{*} = q^{12}P^{2} - q^{4}(1 + q^{4})P + I, \quad R^{*}R = q^{-4}P^{2} - (1 + q^{-4})P + I, \quad \tag{4.3}
\]

\[
TT^{*} = -q^{4}P^{2} + P, \quad T^{*}T = q^{-4}(P - P^{2}). \quad \tag{4.4}
\]

\[
RP = q^{8}PR, \quad RT = q^{4}TR, \quad PT = q^{-4}TP. \quad \tag{4.5}
\]

Proposition 4.3 Let \(I_{q} \) be the \(*\)-ideal in the free \(*\)-algebra \(\mathbb{C}(P, R, T) \) generated by the relations (4.2)-(4.5). Then the \(*\)-algebra \(\mathbb{C}(P, R, T)/I_{q} \) is isomorphic to \(P(\mathbb{R}P_{q}^{2}). \)

Proof: There exists a \(*\)-algebra epimorphism \(f : \mathbb{C}(P, R, T)/I_{q} \rightarrow P(\mathbb{R}P_{q}^{2}) \) given on generators by \(f(P) = A^{2}, \) \(f(R) = B^{2}, \) \(f(T) = AB. \) On the other hand, we can define a linear map \(g : P(\mathbb{R}P_{q}^{2}) \rightarrow \mathbb{C}(P, R, T)/I_{q} \) by its values on the elements of a basis of \(P(\mathbb{R}P_{q}^{2}): \)

\[
g(A^{2k}B^{2l}) = P^{k}R^{l}, \quad g(A^{2k+1}B^{2l+1}) = P^{k}TR^{l}, \quad g(A^{2m}B^{-2(n+1)}) = P^{m}R^{m+1}, \quad g(A^{2m+1}B^{-2n+1}) = q^{2}P^{m}T^{*}R^{n}. \quad \text{Evidently, } f \circ g = id. \] Consequently \(g \) is injective and the above elements of \(\mathbb{C}(P, R, T)/I_{q} \) are linearly independent. To have the reverse equality \(g \circ f = id \) it suffices to show that these elements span \(\mathbb{C}(P, R, T)/I_{q}. \) Assume inductively that every monomial in \(P, R, T, R^{*}, T^{*} \) of length at most \(n \) is in the span. This is clearly true for \(n = 1. \) Take now an arbitrary monomial \(M_{n+1} \) of length \(n + 1. \) It can always be written as \(M_{n}W, \) where \(M_{n} \) is a monomial of length \(n \) and \(W \) is one of the elements \(P, R, T, R^{*}, T^{*}. \) By assumption \(M_{n} \) is a linear combination of \(P^{k}R^{l}, P^{k}TR^{l}, P^{m}R^{m+l}, P^{m}T^{*}R^{l}. \) Using the commutation relations (4.2)-(4.5) among generators, it can be directly verified that each of the monomials \(M_{n}W \) is again in the span. \(\square \)

In order to extend the antipodal \(\mathbb{Z}_{2} \)-action to \(C(S_{q_{\infty}}^{2}), \) note first that (2.29) entails

\[
r_{2}(A) = (\bar{r}_{1} \circ \delta_{\sqrt{-1}})(A), \quad r_{2}(B) = (\bar{r}_{1} \circ \delta_{\sqrt{-1}})(B). \quad (4.6)
\]

Therefore, we can define the completion of \(r_{2} \) by

\[
\check{r}_{2} := \bar{r}_{1} \circ \delta_{\sqrt{-1}} : C(S_{q_{\infty}}^{2}) \longrightarrow C(S_{q_{\infty}}^{2}). \quad (4.7)
\]

Observe that we need to put \(g = \sqrt{-1} \) rather than \(g = -1 \) because this \(U(1) \)-action comes from \(SU(2) \) which is the double-cover of \(SO(3). \) Therefore, to rotate the quantum sphere by the
angle π (antipodal action is such a rotation composed with reflection), we take $g = e^{i\pi/2}$ rather than $g = e^{i\pi}$. Since both \tilde{r}_1 and $\delta_{\sqrt{-1}}$ are C^*-homomorphisms, we can define the C^*-algebra of $\mathbb{R}P^n_\mathbb{Q}$ as

Definition 4.4 $C(\mathbb{R}P^n_\mathbb{Q}) := \{ a \in C(S^2_{q^{\infty}}) \mid \tilde{e}_2(a) = a \}$.

Arguing as in Proposition 3.3 (second part of the proof), we get that the completion of $P(\mathbb{R}P^n_\mathbb{Q})$ with respect to the norm on $C(S^2_{q^{\infty}})$ coincides with the thus defined $C(\mathbb{R}P^n_\mathbb{Q})$. To study the structure of this C^*-algebra, let us prove:

Theorem 4.5 There are no unbounded \ast-representations of the \ast-algebra $P(\mathbb{R}P^n_\mathbb{Q})$. Up to the unitary equivalence, all irreducible (bounded) \ast-representations of this algebra are the following:

(i) A family of one-dimensional representations $\rho_\theta : P(\mathbb{R}P^n_\mathbb{Q}) \rightarrow \mathbb{C}$ parameterized by $\theta \in [0, 2\pi)$, which are given by

$$\rho_\theta(P) = \rho_\theta(T) = 0, \quad \rho_\theta(R) = e^{i\theta}. \quad (4.8)$$

(ii) An infinite dimensional representation ρ (in a Hilbert space H with an orthonormal basis $\{e_k\}_{k \in \mathbb{N}}$) given by

$$\rho(P)e_k = q^{4k}e_k, \quad (4.9)$$

$$\rho(T)e_k = \begin{cases}
0 & k = 0 \\
q^{2(k-1)}(1-q^{4k})^{1/2}e_{k-1} & k > 1
\end{cases}, \quad (4.10)$$

$$\rho(T^*)e_k = q^{2k}(1-q^{4(k+1)})^{1/2}e_{k+1}, \quad k \geq 0, \quad (4.11)$$

$$\rho(R)e_k = \begin{cases}
0 & k = 0, 1 \\
(1-q^{4k})^{1/2}(1-q^{4(k-1)})^{1/2}e_{k-2} & k > 1
\end{cases}, \quad (4.12)$$

$$\rho(R^*)e_k = (1-q^{4(k+1)})^{1/2}(1-q^{4(k+2)})^{1/2}e_{k+2}, \quad k \geq 0. \quad (4.13)$$

Proof: Suppose that ρ is an unbounded \ast-representation ([S-K90, Definition 8.1.9]) of $P(\mathbb{R}P^n_\mathbb{Q})$. The relations $T^*T = q^{-1}(P - P^2)$ and $P = P^*$ entail that both P and $1 - P$ are positive. Thus we have $0 \leq \rho(P) \leq 1$, so that $\rho(P)$ is bounded. It follows then from the relations (4.3) and (4.4) that also $\rho(R)$ and $\rho(T)$ are bounded. Therefore, unlike $P(\mathbb{D}^2_\mathbb{Q})$, the \ast-algebra $P(\mathbb{R}P^n_\mathbb{Q})$ has no unbounded representations.

Now, let ρ be an irreducible bounded \ast-representation in a Hilbert space H. As before, we have $0 \leq \rho(P) \leq 1$. Let $\rho(P) = 0$. Then $T^*T = q^{-1}(P - P^2)$ implies that also $\rho(T) = 0$. Hence the only remaining relation is $\rho(R^*R) = 1 = \rho(RR^*)$, and we can see that the image of ρ is commutative. Since the only irreducible representations of a commutative algebra are one-dimensional, we arrive at (i).
Let us now assume $\rho(P) \neq 0$. It is immediate from $RP = q^8PR$ and $PT = q^{-4}TP$ that $\text{Ker}\rho(P)$ is ρ-invariant. Due to the irreducibility and the boundedness of ρ, either $\text{Ker}\rho(P) = H$ or $\text{Ker}\rho(P) = 0$. Since the first case is excluded by the assumption $\rho(P) \neq 0$, we have $\text{Ker}\rho(P) = 0$. Using the characterization of elements of the spectrum by approximate eigenvectors and taking advantage of the relation $PT = q^{-4}TP$ we will show that the spectrum of $\rho(P)$ consists of the eigenvalues q^k, $k \in \mathbb{N}$, and their limiting point 0. We already know that the spectrum of $\rho(P)$ lies in the interval $[0, 1]$. Next, note that 0 cannot be the only element of $Sp(\rho(P))$ because this would mean $\rho(P) = 0$, contradicting $\text{Ker}\rho(P) = 0$. For the same reason, 0 cannot be an eigenvalue. If 1 would be the only element of the spectrum, we would have $\rho(P) = 1$, and consequently, due to $PT = q^{-4}TP$, $\rho(T)$ would vanish. This would contradict $\rho(TT^*) = 1 - q^4$ resulting from the relation $TT^* = -q^4P^2 + P$. Thus 1 cannot be the only element in the spectrum. It is also impossible that $Sp(\rho(P)) = \{0, 1\}$ because then 0 would be an eigenvalue. Summing up, we have shown that there exists $\lambda \in Sp(\rho(P)) \cap (0, 1)$, and that $\rho(T) \neq 0$.

By [KR97, Lemma 3.2.13, vol.1], there exists a sequence $(\xi_n)_{n \in \mathbb{N}}$ of unit vectors in the representation space H such that

$$\lim_{n \to \infty} \|\rho(P)\xi_n - \lambda\xi_n\| = 0. \quad (4.14)$$

We will now show that there exist $N \in \mathbb{N}$ and $C > 0$ such that $\|\rho(T)\xi_n\| \geq C$ for $n \geq N$. To estimate $\|\rho(T)\xi_n\|$, we use $T^*T = q^{-4}(P - P^2)$. Now, the right hand side of this equality we want to put in a form allowing us to apply (4.14). Adding and subtracting $\lambda^2 - \lambda$ gives:

$$(P - P^2) = (P - \lambda) + (\lambda^2 - P^2) - (\lambda^2 - \lambda) = (1 - \lambda - P)(P - \lambda) + \lambda(1 - \lambda). \quad (4.15)$$

Therefore, using the triangle inequality and $\|a\|\|\eta\| \geq \|a\eta\|$, we obtain

$$\|(\rho(P) - \rho(P^2))\xi_n\| \geq \lambda(1 - \lambda) - (1 - \lambda - \rho(P))\|((\rho(P) - \lambda)\xi_n\|. \quad (4.16)$$

On the other hand,

$$\|\rho(T^*)\|\|\rho(T)\xi_n\| \geq \|\rho(T^*T)\xi_n\| = q^{-4}\|\rho(P) - \rho(P^2)\|\xi_n\|. \quad (4.17)$$

Combining (4.16) with (4.17) and remembering that $\|\rho(T^*)\| = \|\rho(T)\| \neq 0$, we get

$$\|\rho(T)\xi_n\| \geq \frac{|\lambda(1 - \lambda)|}{q^4\|\rho(T^*)\|} - \|(\rho(P) - \lambda)\xi_n\| \frac{1 - \lambda - \rho(P)}{q^4\|\rho(T^*)\|}. \quad (4.18)$$

Since $\frac{|\lambda(1 - \lambda)|}{q^4\|\rho(T^*)\|}$ is positive, the existence of the desired N and C follows from (4.14). Hence we conclude that

$$\eta_n := \frac{\rho(T)\xi_n}{\|\rho(T)\xi_n\|} \quad (4.19)$$

are well-defined unit vectors for $n \geq N$. Our goal now is to show

$$\lim_{n \to \infty} \|\rho(P)\eta_n - q^{-4}\lambda\eta_n\| = 0, \quad (4.20)$$

16
which is tantamount to \(q^{-4}\lambda \in Sp(\rho(P)) \). Assume \(n \geq N \). Then \(\|\rho(T)\xi_n\| \geq C \). Using \(PT = q^{-4}TP \), we have

\[
\|\rho(P)\eta_n - q^{-4}\lambda\eta_n\| = \frac{\|\rho(T)\rho(P)\xi_n - \lambda\rho(T)\xi_n\|}{q^4\|\rho(T)\xi_n\|} \leq \frac{\|\rho(T)\|\|\rho(P)\xi_n - \lambda\xi_n\|}{q^4C}\. \tag{4.21}
\]

Consequently, (4.20) follows from (4.14). Thus we have shown that

\[
\lambda \in Sp(\rho(P)) \cap (0, 1) \Rightarrow q^{-4}\lambda \in Sp(\rho(P)) \tag{4.22}
\]

Therefore, there exists \(k \) such that \(q^{-4k}\lambda = 1 \), for otherwise we would get an unbounded sequence \(\lambda, q^{-4}\lambda, q^{-8}\lambda, \ldots, q^{-4k}\lambda, \ldots \in Sp(\rho(P)) \) contradicting \(Sp(\rho(P)) \subseteq [0, 1] \). Hence \(Sp(\rho(P)) \subseteq \{q^{4k} \mid k \in \mathbb{N}\} \cup \{0\} \). It also follows that \(1 \in Sp(\rho(P)) \). Thus \(1 \) is isolated in \(Sp(\rho(P)) \), so that it is an eigenvalue, and there exists a vector \(\xi \) such that \(\rho(P)\xi = \xi, \|\xi\| = 1 \). (Notice that now we evidently have \(\|\rho(P)\| = 1 \).)

It follows from the relation \(T^*P = q^{-4}PT^* \) that \(\rho(T^{4k})\xi \) are eigenvectors of \(\rho(P) \) corresponding to the eigenvalue \(q^{4k} \). Let us prove inductively that all these eigenvectors are different from zero. For \(n = 0 \), the statement \(\rho(T^{4n})\xi \neq 0 \) is automatically true. Assume now that \(\rho(T^{4n})\xi \neq 0 \) for some \(n \in \mathbb{N} \). Then, using \(TT^* = -q^4P^2 + P \) and \(T^*P = q^{-4}PT^* \), one obtains

\[
TT^{n+1} = T^n(q^{4n+1}P - q^{8n+4}P^2) \tag{4.23}
\]

Therefore, \(\rho(T)\rho(T^{4n+1})\xi = (q^{4n}-q^{8n+4})\rho(T^{4n})\xi \neq 0 \) and consequently \(\rho(T^{4n+1})\xi \neq 0 \). Hence, by induction, \(\rho(T^{4n})\xi \neq 0, \forall n \in \mathbb{N} \). This proves that \(Sp(\rho(P)) = \{q^{4k} \mid k \in \mathbb{N}\} \cup \{0\} \). Since \(\rho(P) \) is self-adjoint and \(\rho(T^{4k})\xi \) are eigenvectors of different eigenvalues of \(\rho(P) \), they are mutually orthogonal. Thus, the vectors

\[
e_k := \frac{\rho(T^{4k})\xi}{\|\rho(T^{4k})\xi\|}, \quad k \in \mathbb{N} \tag{4.24}
\]

form an orthonormal system. Let us now show that the span of the \(e_k \)'s is closed under the action of the entire algebra. We already know that

\[
\rho(P)e_k = q^{4k}e_k \tag{4.25}
\]

On the other hand, the formula (4.23) entails

\[
\|\rho(T^{4k+1})\xi\| = \langle \rho(T)\rho(T^{4k+1})\xi, \rho(T^{4k})\xi \rangle^{1/2} = \langle \rho(T^{4k})(q^{4k} - q^{8k+4})\xi, \rho(T^{4k})\xi \rangle^{1/2} = q^{2k}(1 - q^{4(k+1)})^{1/2}\|\rho(T^{4k})\xi\|. \tag{4.26}
\]

Hence, from the definition (4.24) we have

\[
\rho(T^*)e_k = q^{2k}(1 - q^{4(k+1)})^{1/2}e_{k+1}. \tag{4.27}
\]

The relation \(T^*T = q^{-4}(P - P^2) \) implies that \(\rho(T)e_0 \) has zero length:

\[
\|\rho(T)e_0\|^2 = \langle e_0, \rho(T^*)\rho(T)e_0 \rangle = 0. \tag{4.28}
\]
Thus \(\rho(T)e_0 = 0 \). Similarly, \(R^*R = q^{-1}P^2 - (1 + q^{-4})P + 1 \) entails that \(\rho(R)e_0 = \rho(R)e_1 = 0 \). Using the equality \(TT^* = q^4P^2 + P \) one obtains
\[
\rho(T)e_k = q^{2(k-1)}(1 - q^{4k})^{1/2}e_{k-1}, \quad k > 0.
\]

(4.29)

Furthermore, a straightforward computation taking advantage of \(RT^* = q^2T(-q^4P + 1) \) and \(RT = q^4TR \) gives
\[
\rho(R)e_k = (1 - q^{4k})^{1/2}(1 - q^{4(k-1)})^{1/2}e_{k-2}, \quad k \geq 2,
\]
and
\[
\rho(R^*)e_k = (1 - q^{4(k+1)})^{1/2}(1 - q^{4(k+2)})^{1/2}e_{k+2}, \quad k \geq 0.
\]

(4.30)

(4.31)

Therefore the Hilbert space \(H_e := \text{span}\{e_k\} \) is a closed invariant subspace of \(H \), and we have \(H_e = H \) by the irreducibility of the bounded representation \(\rho \). Any other irreducible representation \(\rho' \) with \(\rho'(P) \neq 0 \) generates an orthonormal basis in the same way, so it has to be unitarily equivalent to the above one.

Observe that the irreducible representations of the above theorem are restrictions of representations of \(C(S^2_{q_{\infty}}) \). More precisely, we have that \(\rho_\theta \) is the restriction of \(\pi_\theta \), and \(\rho \) is the restriction of \(\pi_+ \). Since every representation in a separable Hilbert space is a direct integral of irreducible representations, we can conclude that all representations of \(C(\mathbb{R}P^2_q) \) extend to representations of \(C(S^2_{q_{\infty}}) \). Therefore, the norm of the universal \(C^* \)-algebra of \(P(\mathbb{R}P^2_q) \) coincides with the norm inherited from \(C(S^2_{q_{\infty}}) \). Note also that \(\rho \) is a restriction of both \(\pi_+ \) and \(U\pi_\sigma U^{-1} \), where \(U \) is the unitary defined by \(Ue_k = (-1)^ke_k \). Now the faithfulness of \(\rho \) follows from the faithfulness of \(\pi_+ \oplus \pi_- \). Again, since the norm in any representation is always less or equal to the norm in a faithful representation, we can conclude that the universal and inherited norms coincide. Summarizing we have established:

Corollary 4.6 The \(C^* \)-algebra \(C(\mathbb{R}P^2_q) \) is the universal \(C^* \)-algebra of \(P(\mathbb{R}P^2_q) \).

Remark 4.7 Similarly to the case of the reflection action \(\pi^c_0 \), we want the diagram

\[
\begin{array}{c}
C(S^2_{q_{\sigma}}) \xrightarrow{\pi^c_{\sigma}} C^*(\mathbb{R}) \\
\pi_+^c \oplus \pi_-^c \\
\tilde{\pi}_2
\end{array}
\]

\[
\begin{array}{c}
C(S^2_{q_{\sigma}}) \xrightarrow{\pi^c_{\sigma}} C^*(\mathbb{R}) \\
\pi_+^c \oplus \pi_-^c \\
\tilde{\pi}_2
\end{array}
\]

\[
\begin{array}{c}
C(S^2_{q_{\sigma}}) \xrightarrow{\pi^c_{\sigma}} C^*(\mathbb{R}) \\
\pi_+^c \oplus \pi_-^c \\
\tilde{\pi}_2
\end{array}
\]

\[
\begin{array}{c}
C(S^2_{q_{\sigma}}) \xrightarrow{\pi^c_{\sigma}} C^*(\mathbb{R}) \\
\pi_+^c \oplus \pi_-^c \\
\tilde{\pi}_2
\end{array}
\]

\[
\begin{array}{c}
C(S^2_{q_{\sigma}}) \xrightarrow{\pi^c_{\sigma}} C^*(\mathbb{R}) \\
\pi_+^c \oplus \pi_-^c \\
\tilde{\pi}_2
\end{array}
\]

to be commutative. To this end, we define the antipodal \(\mathbb{Z}_2 \)-actions on the equilateral spheres by \(\tilde{\pi}^c_2 := \chi_\sigma^{-1} \circ \tilde{\pi}_2 \circ \chi_\sigma \). It is clear that \(\{a \in C(S^2_{q_{\sigma}})|\tilde{\pi}_2(a) = a\} \cong C(\mathbb{R}P^2_q) \). Furthermore, it follows directly from definitions, Proposition 2.4 and (3.24) that \(\tilde{\pi}^c_2 = \tilde{\pi}^c_1 \circ \delta_{\sqrt{-1}} = \delta_{\sqrt{-1}} \circ \tilde{\pi}^c_1 \).

Remembering also that \(U(1) \) is Abelian, we have that the antipodal actions are compatible with the \(U(1) \)-actions on quantum spheres: \(\delta_g \circ \tilde{\pi}^c_2 = \tilde{\pi}^c_2 \circ \delta_g \).

\(\Diamond \)

\(^3 \)We owe this observation to P. Podles.
Let us turn now to the computation of K-groups of $C(\mathbb{R}P_{q}^{2})$. Just as in the classical case (e.g., see [K-M78, Corollary 6.47]), we have:

Theorem 4.8 The topological K-groups of the quantum real projective space $\mathbb{R}P_{q}^{2}$ are as follows: $K_{0}(C(\mathbb{R}P_{q}^{2})) \cong \mathbb{Z} \oplus \mathbb{Z}_{2}$, $K_{1}(C(\mathbb{R}P_{q}^{2})) \cong 0$.

Proof: First we need to find an exact sequence analogous to (1.3). Let J be the closed two-sided $*$-ideal of $C(\mathbb{R}P_{q}^{2})$ generated by P, and let $p : C(\mathbb{R}P_{q}^{2}) \to C(\mathbb{R}P_{q}^{2})/J$ be the natural surjection. Arguing as in the proof of Theorem 4.5, we see that in the quotient all relations (see (4.2)-(4.5)) reduce to $p(RR^{*}) = I = p(R^{*}R)$. Consequently $p(R)$ is unitary, and we have $C(\mathbb{R}P_{q}^{2})/J \cong C^{*}(p(R)) \cong C(S^{1})$.

Lemma 4.9 The ideal J is isomorphic (via the faithful representation ρ) to the C^{*}-algebra \mathcal{K} of compact operators on a separable Hilbert space.

Proof: The operator $\rho(P)$ is evidently compact (see Theorem 4.5 for an explicit formula), whence $\rho(J) \subseteq \mathcal{K}$. On the other hand, as $\rho(P)$ is a diagonal operator with eigenvalues of multiplicity one, all the one-dimensional projections P_{k} onto the vectors e_{k} are elements of $\rho(J)$. Furthermore, since also $\rho(T)$ belongs to $\rho(J)$ (see above the lemma) and it is a weighted shift with non-vanishing coefficients, all matrix units E_{ij} belong to $\rho(J)$. (They can be obtained from the P_{k} and $\rho(T)$.) Therefore, $\mathcal{K} \subseteq \rho(J)$, and consequently $\mathcal{K} = \rho(J)$. The claim of the lemma follows from the faithfulness of ρ.

Denote by i the inverse of the appropriate restriction of ρ, and again by p the canonical surjection p composed with the isomorphism $C(\mathbb{R}P_{q}^{2})/J \cong C(S^{1})$. With the help of Lemma 4.9, we obtain the desired exact sequence:

$$0 \longrightarrow \mathcal{K} \longrightarrow i \longrightarrow C(\mathbb{R}P_{q}^{2}) \longrightarrow p \longrightarrow C(S^{1}) \longrightarrow 0. \quad (4.32)$$

Since $K_{1}(\mathcal{K}) \cong 0$, $K_{1}(C(S^{1})) \cong \mathbb{Z} \cong K_{0}(\mathcal{K})$, the 6-term exact sequence of K-theory yields

$$0 \longrightarrow K_{1}(C(\mathbb{R}P_{q}^{2})) \longrightarrow \mathbb{Z} \overset{\partial}{\longrightarrow} \mathbb{Z} \overset{i}{\longrightarrow} K_{0}(C(\mathbb{R}P_{q}^{2})) \overset{p}{\longrightarrow} \mathbb{Z} \longrightarrow 0, \quad (4.33)$$

where $\partial : \mathbb{Z} \cong K_{1}(C(S^{1})) \to K_{0}(\mathcal{K}) \cong \mathbb{Z}$ is the index map. Due to the exactness of the above sequence, to compute the K-groups it suffices to determine the index map ∂. We know from the preceding discussion that $p(R)$ is the unitary generator of $C(S^{1})$. Hence $[p(R)]$ generates $K_{1}(C(S^{1}))$. We have $[p(R)] \cong 1$ via the identification of $K_{1}(C(S^{1}))$ with \mathbb{Z}. Thus all we need to complete the calculation is the value of ∂ on $[p(R)]$. In general, if A is a unital C^{*}-algebra, $0 \to I \to A \to A/I \to 0$ the short exact sequence inducing the 6-term exact sequence, u a unitary element of A/I, and $\nu \in A$ such that $\nu \nu^{*} = 1$ and $\nu/I = u$, then $\partial([u]) = [1 - \nu^{*}\nu]$ (see [B-B98, Section 8.3.2] or [W-NE93, Remark 8.1.4]). We need to lift the unitary $p(R)$ to an appropriate coisometry in $C(\mathbb{R}P_{q}^{2})$. As $p(R)$ is a weighted double-shift, the desired coisometry could be given by $U(e_{n}) = e_{n-2}$, $Ue_{1} = 0 = Ue_{2}$. The operator U satisfies the polar
decomposition $\rho(R) = U|\rho(R)|$. Furthermore, since $p(|R|) = 1$ and ρ is faithful, if there exists $\nu_2 \in C(\mathbb{R}P_{q}^{2})$ such that $\rho(\nu_2) = U$, then $p(R) = p(\nu_2)$ and ν_2 is the desired coisometry. Thus we need to show that $U \in \rho(C(\mathbb{R}P_{q}^{2}))$. Let U be an open neighbourhood of $\{1,q^{i}\}$ such that $U \cap \{q^{4k}\}_{k=2,\ldots,\infty} = \emptyset$, and let $\beta : \mathbb{R} \to \mathbb{R}$ be a continuous function given on $\mathbb{R} \setminus U$ by the formula

$$\beta(x) = (1 - x)^{-1/2}(1 - q^{-4}x)^{-1/2}. \quad (4.34)$$

Then $U = \rho(R)\beta(\rho(P))$, whence $U \in \rho(C(\mathbb{R}P_{q}^{2}))$, as needed. Consequently,

$$\partial([p(R)]) = [1 - \nu_{2}^{*}\nu_{2}] = [\text{diag}(1,1,0,\ldots)] \cong 2. \quad (4.35)$$

Here in the penultimate equality we identified $K_{0}(C(\mathbb{R}P_{q}^{2}))$ with $K_{0}(\rho(C(\mathbb{R}P_{q}^{2})))$, and in the last step $K_{0}(\mathcal{K})$ with \mathbb{Z}. Finally, as ∂ is injective, (4.33) breaks into two exact sequences:

$$0 \longrightarrow K_{1}(C(\mathbb{R}P_{q}^{2})) \longrightarrow 0 \quad (4.36)$$

and

$$0 \longrightarrow \mathbb{Z} \xrightarrow{2^{*}} \mathbb{Z} \xrightarrow{i} K_{0}(C(\mathbb{R}P_{q}^{2})) \xrightarrow{p^{*}} \mathbb{Z} \longrightarrow 0. \quad (4.37)$$

The former gives immediately $K_{1}(C(\mathbb{R}P_{q}^{2})) \cong 0$, and the latter splits, as \mathbb{Z} is a free module over itself. Therefore we conclude that $K_{0}(C(\mathbb{R}P_{q}^{2})) \cong \text{Im } i \oplus \mathbb{Z}$. On the other hand, the exactness of (4.37) implies the exactness of

$$0 \longrightarrow 2\mathbb{Z} \longrightarrow \mathbb{Z} \xrightarrow{i} \text{Im } i \longrightarrow 0. \quad (4.38)$$

Hence $\text{Im } i \cong \mathbb{Z}_{2}$, and consequently $K_{0}(C(\mathbb{R}P_{q}^{2})) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}$. \hfill \Box

Remark 4.10 From the exact sequence (4.33) we can read the generators of $K_{0}(C(\mathbb{R}P_{q}^{2}))$: $[I]$ of infinite order and $[f]$ of order 2, where f is a minimal projection in the ideal J. \hfill \Diamond

It is an immediate consequence of Theorem 4.8 and (3.28) that $C(\mathbb{R}P_{q}^{2})$ is not the standard extension of $C(S^{1})$ by \mathcal{K}:

Corollary 4.11 The C^{*}-algebras $C(\mathbb{R}P_{q}^{2})$ and $C(D_{q}^{2})$ are not isomorphic, i.e., $C(\mathbb{R}P_{q}^{2})$ is not the Toeplitz algebra.

Remark 4.12 The C^{*}-algebra $C(S_{q_{\infty}}^{2})$ is generated by A and B. The antipodal \mathbb{Z}_{2}-action sends A to $-A$, B to $-B$, and $C(\mathbb{R}P_{q}^{2})$ is the fixed-point subalgebra. There is a conditional expectation (e.g., see [KR97, pp.570,571 in vol.2]) $E : C(S_{q_{\infty}}^{2}) \to C(\mathbb{R}P_{q}^{2})$ sending even monomials to themselves and annihilating the odd ones. We have a “quasi-basis” $\{u_{1} := I, u_{2} := A, u_{3} := B^{*}\}$ for E (in the sense of [W-Y90, p.2]). This means that

$$a = \sum_{i=1}^{3} E(au_{i})u_{i}^{*} = \sum_{i=1}^{3} u_{i}E(u_{i}^{*}a), \ \forall a \in C(S_{q_{\infty}}^{2}). \quad (4.39)$$

20
Hence
\[
\text{Index}(E) := \sum_{i=1}^{3} u_i u_i^* = I + A^2 + B^* B = 2I.
\] (4.40)

We can think of $S^2_{q_{\infty}}$ as a two-fold covering of $\mathbb{R}P^2$.

Acknowledgments. The authors are indebted to M. Bożejko, D. Calow, L. Dąbrowski, P. Podleś, W. Pusz, K. Schmüdgen, J.C. Varilly, S.L. Woronowicz and J. Wysoczański for very helpful discussions. This work was partially supported by the KBN grant 2 P03A 030 14 and the Naturwissenschaftlich-Theoretisches Zentrum of Leipzig University. P.M.H. and R.M. are grateful for hospitality to Leipzig University, Max Planck Institute for Mathematics in the Sciences, and Warsaw University, Polish Academy of Sciences, respectively.

References

