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MESOSCOPIC LIMIT FOR NON�ISOTHERMAL PHASE TRANSITION

NICOLAS DIRR AND STEPHAN LUCKHAUS

Abstract� Motivated by the problem of modelling nucleation in non�isothermal systems�
we consider the stochastic evolution of a coupled system of a lattice spin variable � and
a continuous variable e �corresponding to the phase and the energy density of a contin�
uum system�� The spin variables �ip with rates depending both on a Kac�potential type
interaction with the spins and on an intercation with the e��eld� which plays the role
of the external �eld in ferromagnetics but evolves by a di�usion equation with a forcing
depending on the spins�

We analyse the mesoscopic limit� where space scales like the diverging interaction range
of the Kac potential� ���� while time is not rescaled� By writing � as random time change
of a family of independent spins� and thus reducing the problem to investigating integral
equations parametrised by independent random variables� we show that as � � � the
average of the spins over small cubes and the �eld e converge in probability to the solution
of a system of nonlocal evolution equations which is similar to the phase �eld equations�
In some cases the convergence holds until times of order log������

�� Introduction

The phase �eld equations

�tm�t� x� � �m�t� x�� V ��m�t� x�� � ���t� x� �����

�t
�
m�t� x� � ��t� x�

�
� ���t� x� �����

were introduced by Caginalp 	
� to describe solidi�cation in the presence of heat di�usion
on a scale where regions of well de�ned phase form with a small transition layer between
them� Here m is the order parameter
 � the temperature and V a double well potential
whose wells correspond to the two phases� In this case
 e � m�� is the energy density� We
refer to 	��� for a large bibliography and an extensive discussion of deterministic models
for moving phase boundaries coupled with di�usion�
After di�usive rescaling with a parameter of order of the coupling constant �� one should

expect in analogy to the behaviour under rescaling of ����� with constant � the formation
of a sharp interface moving by an evolution of the type V � ����� where V is the velocity
in direction of the outward normal and � the mean curvature of the phase boundary�
Indeed
 for classical solutions this was shown by Caginalp and Chen
 	��� Soner 	���

showed that the rescaled solutions of a slightly modi�ed version of the phase �eld equa�
tions converge on a subsequence to weak solutions of the Mullins�Sekerka problem with
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kinetic undercooling� The theorem holds beyond possible singularities of the �classical�
limit equations�
It is important to choose the coupling constant and the rescaling parameter of the same

order� The coupling should in�uence the �in unscaled time� slow motion of the interface

but should not interfere with the formation of a sharp interface� �Otherwise the Stefan
problem is expected to be the limit problem
 cf� 	��
 	����
Although we consider here only the mesoscopic limit
 we were motivated by the problem

of nucleation in the presence of heat di�usion� �For an introduction to the modelling of such
problems
 see for example 	����� One has to analyze a stochastic process approximating
the phase �eld equations and its deviations from this deterministic limit
 which allow the
system to tunnel through a potential barrier and hence a droplet to nucleate�
In order to add stochasticity to a deterministic equation
 one could in principle add

noise to it� We chose however to model the phase change by spins ��x� � f�����g�
which �ip at rates depending both on the average of their neighbours via a Kac�Potential
and on the local average of the �eld� Thus we avoid the di�culties of adding noise to
nonlinear equations in higher space dimensions
 and we hope that our approach
 though
a caricature
 is more natural because the mechanism behind phase change phenomena is
actually collective behaviour of interacting atoms�
We think of a lattice where each point represents a more complicated cell which is

characterized by two possible states
 e�g� an inversion like in ferroelastica or a di�erent type
of symmetry breaking� In our simpli�ed description this state is modelled by a f�����g�
�eld on the lattice
 the spin �eld� Furthermore the thermal energy at a point of the lattice
is characterized by a �eld which could be thought of as a �eld of phonons
 for simplicity
performing a random walk on the lattice� The energy is the sum of the potential energy
and the thermal energy�
We assume that the evolution of the thermal energy for a given spin �eld is well ap�

proximated by a discretized heat equation� �This is for example the case if there is a large
number of phonons on each lattice point which jump independently given the spin �eld��
So in the following our model for the thermal �eld is a deterministic di�usion equation

coupled to a spin �ip model
 where the interaction between the spins is described by a
Kac�potential� In order to simplify the proofs
 we work with the continuum heat kernel�
The choice of the Kac�potential was motivated by 	�� and 	��� who study spins on a

lattice which interact with the average of their neighbours and a constant external �eld�
However our methods are di�erent�
Similar to the model studied in 	��
 our model has a quantity which is locally conserved

during the �ips� The sum of potential and thermal energy� This models the e�ect of latent
heat and is responsible for recalescence
 see 	���� As the total energy is conserved
 a �ip in
a region can change the thermal energy locally in such a way that the spin has before and
after the �ip for some time the unfavourable sign with respect to the thermal �eld�
Note that in our model the spin��ip process is non�Markovian
 the joint system ��� e�

however is a Markov process� We hope that the behaviour of a coupled system consisting
of one �uctuating quantity and a deterministic equation for a locally conserved quantity
will be interesting from a purely mathematical point of view
 e�g� with respect to spinodal
decomposition and large deviations�
For simplicity
 we will assume from now on only periodic boundary conditions�

�



As in 	��
 we expect convergence to a nonlocal equation in the mesoscopic limit
 where
space scales like the diverging interaction range of the Kac potential
 ���� while time is not
rescaled�

�tm � �m � b��	J �m� ���� ���
�

�te���m� �� �t�� �m� � ��� �����

Here b � C�
b antisymmetric and monotone
 e�g� b � tanh� � denotes convolution and � is a

small parameter� J is a C� kernel with compact support which we assume for simplicity to
depend only on jx� yj
 however we expect the results to hold for kernels J�x� y� as long as

they are smooth enough and supported in jx� yj 	 �� say� A kernel J�x� y� � eJ�x� x� y�
would also include the case of re�ecting �Neumann� boundary conditions� Note that at this
stage we do not require J � �� i�e� not necessarily ferromagnetic interactions
 but for the
sharp interface limit
 which is not studied in this paper
 J � � is expected to be crucial�
For technical reasons we are forced to introduce a smoothingK��m�t� x� which makes the

part of the interaction of the spins which is done through their action on the �eld and the
feedback of the �eld on the spins also of local mean �eld type� Here K��x� �� 
�dK�
��x�
for a rapidly decreasing nonnegative K � C� which has integral normalized to �� such that
K� �m approximates m for small 
� We will let 
� � slowly�
As 
 is much larger than the lattice spacing
 the kernel seems to be necessary for a

discretized heat equation as well� We remark that because of P �
� � P �t� � P �t� 
�� this
corresponds to a cut�o� at the singularity of the heat kernel�
Setting � � e�K� �m� we arrive at the so�called mean��eld equation for m �

�tm�t� � �m�t� � b��	J �m�t� � �K� � �e�K� �m��� �����

�te�t� � �e�t����K� �m��t� �����

From now on we will always express the �eld � as a function of e and m�
In this paper we allow a more general version of equation �����
 which we replace by

�tm � �mc��J �m� �K�
� �m� �K�

� � e� � c��J �m� �K�
� �m� �K�

� � e�� �����

Here � � jc��x� y� z�j 	 c��x� y� z� are bounded and uniformly Lipschitz in all arguments

so that we can de�ne a jump intensity by c���� x� y� z� �� �

�
�c��x� y� z��c��x� y� z��� J is as

above
 the kernels K�� K� are C
�� symmetric
 rapidly decreasing or with compact support�

Now we want to de�ne the stochastic process on the lattice which converges on the
mesoscopic scale to this equation �or rather to a space�discretized version with discretization
parameter ��� We require that this stochastic process takes values in f��� �g � R and we
construct it as random time change of a family of independent spins�
Let N��� x�x�Zd be a family of independent Poisson processes with rate �
 and let Z� be a

cube such that for a period n� of order ����
�� or slightly larger Zd � Z� �n�Z

d holds� For
any lattice site x � Z� we construct a strictly monotone function �random time change�
T �

�
�
� �e�

�t� x� N� � 	��	� � 	��	�� T �

�
�
� �e�

��� x� � �� We set T ��t� x� N� �� T �

�
�
� �e�

�t� x� N� and

de�ne

�� 	��� � T
�� N ��t� x� �� ��� �x�����N

�
T ��t�x�N��x

�
� �����

This allows us to construct the spins for any � on a common probability space ���F �P��
de�ned by the paths of N��� x�x�Zd � Remember that a single site �ip process ��t� with
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intensity c can be constructed as time changed rate � �ip process
 ��s� � e��T �s��� where
T �s� is given by

T �t� ��

Z t

�

c���s��ds �

Z t

�

c�e��T �s���ds�
In our case T is vector�valued
 however the principle is the same� �See also 	�� for multi�
parameter time changes�� As Z� is �nite
 we need only �nitely many time changes for a
�xed value of �� The others we set equal to the identity�
Set for ��x� � f��� �g� f� e � L��Rd� �or in L��T��� where T� is a cube of sidelength

��� with periodic boundary conditions�

c	�� f� e��x� �� c ���x�� �J � f���x�� ��K�
� � e���x�� ��K�

� � f���x�� � �����

The intensity c is a positive function and � � �� 
 � � may tend to � slowly as � � ��
In order to treat lattice functions as function de�ned on T� or R

d � we de�ne the operation

f 
� f � f�s� r� �� f�s� x� for � �

�
� ri � �xi 	

�

�
� i � �� � � � � d� ������

If the spins interact by the Kac potential J � ��� this leads to the following integral
equations for the time changes
 where we set T ��t� x� �� T �

�
�
� �e�

�t� x� N� to simplify notation�

T ��t� �

Z t

�
c
h
�� �T � ��s�� �� �T � ��s�� e��� �T � ���s�

i
ds ������

e��� �T � ���t� � P �t� � e� �
Z t

�
P �t� s� ���K� � �� �T � ��s��ds� ������

Whenever necessary
 we will extend functions de�ned originally on T� or Z� periodically
to functions de�ned on the whole of Rd or Zd without stating it explicitly�
����� corresponds to the case where K� � K� K� � K �K� c���� �� �� �� � c���� �� �� �� � �

and c���� x�� x�� x��� c���� x�� x�� x�� � b��x� � ��x� � x����
If one requires the spins to be independent and their mean to be exactly the solution

m� of �����
 then the corresponding Tm�

�
�
� �e�

�t� x� N� solve for any path N of the family of

Poisson processes and for any ��� � e� the following equations
 where again Tm�

�� Tm�

�
�
� �e�

�

Tm�

�t� �

Z t

�
c
�
�� �Tm�

��s��m��s�� e�m� ��s�
�
ds ����	�

e�m� ��t� � P �t� � e� �
Z t

�
P �t� s� ���K� �m��s�� ds ����
�

m��t� x� � E ��� �Tm�

��t� x��� ������

The expectation is taken with respect to the product of the distributions of the independent
Poisson processes N and of the independent ���x�� The spins interact only with the ex�
pectation of their neighbours
 not with the actual con�guration� Note that ������ is purely
deterministic�
With the help of the time changes
 this auxiliary process �called Mean�Field process� can

be constructed on the same probability space as the process de�ned by ������������
In chapter � we will show that on not too large time intervals
 ����
� to ������ approximate

������
 ������ in probability as � � �� The weak dependence of expressions like J � �� on
each single spin makes the convolution behave like its mean�

�



To show this
 we make use of the fact that the inverse functions �T ���� �� T� and
�Tm�

��� �� T� exist and solve a �xed point problem of the type

Ti�t� �

Z t

�

Fi�Ti� N��s�ds�

were N is a path of the family of independent Poisson processes and the dependence of Fi

on Ti�x� for a single lattice point x is weak� Formally
 we write

T��t�� T��t� �

Z t

�
�F��T�� N��s�� F��T�� N��s��ds�

Z t

�
�F��T�� N��s�� F��T�� N��s��ds�

For small times
 the �rst integral can be estimated byZ t

�

	F��T�� N��s�� F��T�� N��s��ds � �

�
sup
���t�

jT��s�� T��s�j

on a set of large probability
 using the fact that expressions as
R t
�
J � ��	T ��s�ds are by the

law of large numbers �almost Lipschitz in T� in a sense to be speci�ed in chapter ��
The second integral is small on a set of large probability by the law of large numbers

for the independent ��	Tm�

�� The convergence of the inverse time changes implies the
convergence of the time changes for c bounded away from ��
In chapter � we use the short time convergence of the time changes to show the conver�

gence of the block spins

A�����
� �T ��s� x�� 
� ��d

X
jx�yj����

�� �T ��s� y� ������

to the solution of a system similar to ����
 ���� on intervals of length of order log������
Remarks Corresponding to the more general form of the order parameter equation �����


it would be desirable to replace ����� by a di�usive equation of the form �te � r�L���r��
and a relation between e and � involving the phase which is some regularization of

e��� �� �
� � �

�
����� �

�� �

�
������

But although we need not really the precise form of the heat kernel but only the short
and long time asymptotics and the averaging behaviour
 the question whether our results
extend to nonlinear di�usive equations is not clear�
It would also be desirable to get rid of the auxiliary kernelsK�� which force the interaction

to be of Kac�type everywhere� We expect however that the qualitative behaviour of the
di�usively rescaled limit equations ����
 ���� does not depend on the auxiliary kernel

because 
 can be chosen much smaller than the transition layer thickness�
Our methods use only basic calculus and elementary probability
 i�e� the weak law of

large numbers� This can be formulated as a property of product measures� Thus we hope
that that our approach might appeal to researchers interested in phase�change models but
without probabilistic background�
Parts of this paper are based on a diploma thesis at the University of Bonn
 	���
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�� Definitions and results

���� De�nitions� We give a precise de�nition of the periodic boundary conditions�

De�nition ���� Let � � R� � � �� let � 	 C�� � ������ � Cj log���j�� and further let
� 	 p�� � C 		� Assume � and ���� are such that n� �� ���p� � Z and let

Z� �� fx � Z
d � � � xi 	 n� for � � i � dg�

T� �� R
d�p�� T �� T��We require functions on R to be p��periodic
 and so the discretized

functions on the lattice are periodic with period n� � They are uniquely de�ned on Z
d by

their values on Z� �

De�nition ���� De�ne

C���t��t���Z�� 
� ff
 �t�� t���Zd�R

��f��� x� � C���t�� t���� f�t��� is n��periodic�

L���t��t���Z�� 
� ff
 �t�� t���Zd�R
��f��� x� � L���t�� t���� f�t��� is n��periodic�

kfk��t��t� 
� sup
x�Z� � t��t��t��

jf�t� x�j �� sup
Zd��t��t��

jf�t� x�j� if f is n�� periodic��

De�nition ���� �Space of time changes�

C�
M�a��t�� t���Z�� 
� ff � C���t��t���Z��

��f�t�� x� � a and ��� holds for all x � Z�g�
�

M
� f�s�� f�t�

s� t
�M for s� t � �t�� t�� ���

Remark ���� For any f� g such that ��� holds� we have

�

M
sup
���t�

jf�s�� g�s�j � sup
f����t���g����t��

jf���s�� g���s�j �M sup
���t�

jf�s�� g�s�j�

Remarks on Notation

We denote by D�	�� t� � Z��Z�
� � the cad�lag�functions on 	�� t� � Z� with values in the

nonnegative integers Z�
� � equipped with the product �over x � Z�� of the Skorohod�metrics

and the corresponding Borel ��Algebra� For the precise de�nition we refer to standard
textbooks of probability theory such as 	���
Further we use a � b �� maxfa� bg� a 
 b �� minfa� bg�
���� Results�

Lemma ���� Existence
For c���� �� �� �� uniformly Lipschitz�continuous� �

M
� c �M� and N Cad�lag with values

in N
Z�

� f�� 
� �g � ��� ��� there is a family of time changes T �

�
�
� �e�

�t� x� � C�
M���	�� t��Z��

such that for �� 	T �

�
�
� �e�

� as in ����� the system ������
 ������ is solved for any ����� and

e� � L�� Moreover� let

��
���� �e��

�t� N� �� ��	��� � T
�

�
�
� �e�

�N�� N ��t� �����

e�
���� �e��

�t� �� e	��
���� �e��

��t�� �����

then ������e���t� N� is cadlag and we have with respect to its natural �ltration Ft �which is

not the �ltration generated by N��

E 	��
���� �e��

�t � s�jFt� � ���
�
�

��
�
�
�e��

�t��e�
��
�
�
�e��

�t�

��s�� ���
�

�



As e	��	T � ��j�t��t�� is a measurable function of ���
���� �e��

�t� N�j�t��t��� e�t���� standard methods

from measure theory show that ����t�� e��t�� is Markov�

Lemma ���� Existence of the Mean�Field Process
Under the same conditions� there is a solution of ����
�������� such that �� 	Tm�

� N ���� x�
are Markov and independent for di	erent x� Moreover� m��t� x�� x � Z�� solves for t � �
the system

�tm
��s� � �m�c��m

� � e�m� ���s�� c��m
� � e�m� ���s� ���
�

e�m� ��t� � P �t� � e� �
Z t

�
P �t� s� ���K� �m��s��ds �����

m���� x� � m��x�� �����

c��m� e� x��s� 
� c����m� e� � c����m� e��

Theorem ��	� Convergence of the time changes on short time intervals�
If the conditions of Lemma ��� and Lemma ��� hold and if T � and Tm�

as in Lemmas
��� and ��� are constructed from the same initial values �� and e�� then there are constants
C�� C depending only on the kernels J�K�� K�� on the bound M and the Lipschitz constant

of the intensity c such that for all � 	 �t 	
�

�
	
C� ��� � ke�kL���
���

�
�
and for all 
 � �

P

�
sup

x�Z� ���t�
t

jT ��t� x��Tm�

�t� x�j � �

�
� C

�t

�d��

�
�p�

��

�d

� �����

Theorem ��
� Block�spin convergence
Under the assumptions of ���� but now for � 	 c��� �M 		� let �m� � e	m��� solve ����


���� starting from ��� e�� Let A������ be as in ����
�� If C�� 	 
 log����� and � is as in
���� then there is a � 	 h� � �� such that for all � � h� 	 � 	 � there are real constants
a� �� b� �� � ��� �� such that for � � ��

P
�
sup���a log�������Z� jA����m

��t���A�����
�	T ���t��j � ��

� � �b �����

P
�
sup���a log������ ke	�� 	T ����t�� e	m� ��t�kL��T�� � ��

� � �b �����

The proofs allow to give explicit bounds for h�� ��� a� �� b�

Corollary ���� Continuum limit

�� Let �m���� e���� solve � ����
 ����� on 	�� a log �����T� with initial value �m�� e�� � C��
Let ���� 
�� � Cj log �j� Let �� be distributed according to a product measure �� such

that for some �a� �b � ��� ��

���kA��������m���x�kL� � ��a� � �
�b� ������

Then there are �� b� �� such that ����� holds with m����t� �x� replacing A����m
��t���

�� Let �m� �� solve ���
�
 ����� on 	�� T ��T� Construct the process ������ e���� from the time
changes as in ������ for �� independent with distribution ��� e

������ � �� �K� �m��
K� � K � K� K� � K� and c��� x�� x�� x�� �

�
�
	� � b��� � �x� � x� � x����� If ������

holds and 
���� �� but 
�� � C log������ then for all 
 � �

P

h
sup���T ��T

���A����������t� r��m�t� r�
��� � 


i
� � as � � �� ������

�



Remarks� Ad �� The conditions on m� could be relaxed
 we refer to 	�� for a re�ned
discussion of initial values for spin��ip processes with Kac potentials�
Ad �� The convergence of the equations with auxiliary kernel K� to the equations ���
�


����� on long time intervals 	�� ���� for 
 and � of the same order could fail because there
is an unstable equilibrium for ������


� Existence and properties of time changes


��� Proof of Lemma ���� We use the Banach �xed point theorem for short time exis�
tence and iterate the result� Let

B�	�� t��� ��
n
f � C��	�� t���Z��

��� f��� x� � m��x�� kf�t� x�k����t� � ��

sup
x� ��r�s�t�

jf�r� x�� f�s� x�j
jr � sj � �M

o
�

For f � B�	�� t���� c	�� �� �� as in ����� and e	f � as in ������ let T �f��t� x� be the solution of

T �f��t� x� �

Z t

�

c
�
��� �������N

�
T �f��s�����

�
� f�s�� e	f ��s�

�
�x�ds�

Now set A�f��t� x� �� E 	�� 	T �f���t� x��� where �� 	T �f���t� x� is de�ned in ������ We show
A�f� � B and A is a contraction for t� small enough� Set k � k �� k � k����t��
First note that for any x the inverse time change T �f����t� x� solves

T �f����t� x� �

Z t

�

ds

c
�
�
�
� ����N�s�� f

�
T �f����s� x�

�
e�f �

�
T �f����s� x�

��
�x�

� �	���

This shows that T �f����t� x� is adapted to the ��algebra Fx
t �� ��N�s� x�� s � t� ���x���

hence the inverse T �f��t� x� is a stopping time for Fx
t � The bound c � M and the strong

Markov property of the Poisson process N with the stopping time T �f� imply A�f� � B �

jA�f��t��A�f��s�j � �P
�
N
�
T �f��s��M jt�sj��N�T �f��s�� � �

�
� �

�
��e�M jt�sj

� � �M jt� sj�
Now we show that kA�f�� A�g�k � �

�
kf � gk for t� small enough� We will show that for

t� small enough

kT �f�� T �g�k � �

�
kf � gk� �
���

From �
��� we get
 using the strong Markov property of the Poisson process N��� x� with
the stopping time T �f��t� x� 
 T �g��t� x� and the independence of �� and N

jA�f��t� x��A�g��t� x�j � �P
h��N�T �f��t� x�� x��N�T �g��t� x�� x��� � �

i
� �P

h
N
�
T �f��t� x� � T �g��t� x�� x

��N�T �f��t� x� 	 T �g��t� x�� x
�
� �

i
��P

	
N

�
T �f��t� x�	T �g��t� x�� �



kf�gk� x

�
�N�T �f��t� x�	T �g��t� x�� x�� �



� �

�
kf � gk�

�



Proof of �
����
As T �f�� T �g� � C�

M���	�� t���Z��� remark ��� shows that it is enough to give an estimate

for the inverse time changes� As c is Lipschitz and bounded away from �
 �
c
is Lipschitz


say with Lipschitz constant L� So we get from �
��� for all x ���T �f����t��T �g����t�
�� � L

Z t

�

��J � f�T �f����s�
��J � g�T �g����s�

��� ds
��L

Z t

�

��K�
� � f

�
T �f����s�

��K�
� � g

�
T �g����s�

��� ds
��L

tZ
�

���K�
� � e�f �

�
T �f����s�

��K�
� � e�g�

�
T �g����s�

����ds�
We denote the �rst integral by I���� the second by I���� and the third by I��
Further we have for any y � Z�� s � T �f��	�� t��� x� � T �g��	�� t��� x�� f� g � B by adding

and subtracting f�T �g����s� x�� y�

jf�T �f����s� x�� y��g�T �g����s� x�� y�j � �M� sup
���t��

jT �f��t� x��T �g��t� x�j

� sup
���t��

jf�t� y�� g�t� y�j�

This implies I����I��� � t�C�J�M�K�� �kT �f��s�� T �g��s�k�kf�gk� � Further

I� �
Z t

�

��K�
� � e	f �

�
T �f����s�

��K�
� � e	g�

�
T �f����s�

��� ds
�

Z t

�

��K�
� � e	g�

�
T �f����s�

�j �K�
� � e	g�

�
T �g����s�

��� ds�
Let the �rst integral be I� and the second I	� We claim�

I	 �
p
t�


��C�K�K��M�ke�kL�kT �f��s�� T �g��s�k � �
�
�

As T �f����s� 
 T �g����s� �M��s� we get

I	 �MkT �f�� T �g�k
Z t�

�

kK�
� � e	g��r�kC�����M��s�Mt���L�� ds�

where C����	a� b��L�� means Lipschitz in time uniformly in space� For r� 	 r� we get from
������ �with m� replaced by g� by a change of variables in time

e�g��r��� e�g��r�� �
�
P �r��� P �r��

� � e� � Z r�

r�

P �s� � ���K� � g��r� � s��ds

�

Z r�

�
P �s� � ���K�� � �g�r� � s�� g�r� � s���ds�

From standard estimates on the heat kernel �use K � �tP � rK � rP � and the Lipschitz
continuity of g we get

kK�
� � e	g��r�kC�����M��s�Mt���L�� � C�M�s�

�
� 
���

�For the precise calculations and justi�cation of the change of variables see also 	����
�



To estimate I�� note that the inverse time changes are piecewise di�erentiable with de�
rivative bounded by M� Hence by the change of variables T �f����s� � r and estimates on
the heat kernel we get

I��M

Z t�

�

Z t

�

��rP �t�s� � �rK��	f�s��g�s���� dsdt � 
��t
�
�
�C�K�M�kf�gk�

We can iterate this short time existence with the new independent initial distribution
�� �� �� 	T ��t��� as long as kek� does not explode� This cannot happen on compact time
intervals� The Markov property follows directly from the strong Markov property of the
independent N with stopping time Tm�

� �

Proof of the di�erential equations ����� ����� �Mean �eld equations��
Using the fact that the �rst jump time of a Poisson process is exponentially distributed
 one
gets from the representation ������ and the strong Markov property the following estimates�

m��t�h��m��t�

h
� ���m��t��c

�� ��m� � e�m� �
�
�t�����m��t��c

�
���m� � e�m� �

�
�t��o���

m��t��m��t�h�
h

� ���m��t�h��c�� ��m� � e�m� �
�
�t�h�����m��t�h��c����m� � e�m� �

�
�t�h��o����

Letting h� �� the claim follows from the uniform continuity in time of m� and e	m� ��


��� Proof of Lemma ���
As Z� contains only �nitely many sites
 only �nitely many spins �ip in any compact time
interval
 so we can construct the time changes piecewise
 thus the existence is clear�

Lemma ���� Measurability properties
For the de�nition of D�	��Mt��Z� �Z�

� � see the remarks on notation in section ��

�� The Map f��� �gZ� � L��T���D�	��Mt�� Z��Z�
� �� C�

M���	�� t��Z�� �
���� e�� N�� T �

���e�
�N� is continuous�

�� The Map from f��� �gZ� � L��T���D�	��Mt��Z� �Z�
� � to f��� �gZ�

�
���� e�� N�� �� 	��� T

�
���e�

�N�� N ��t� x� is Borel�measurable�

Proof Claim �� is a consequence of ��
 as for large integers n the map

N 
� n

Z t� �
n

t

��� �x�����N
�
T ��s�x�N��x

�
ds

is continuous because of the continuity from the right of N and ��
 moreover because of the

cadlag property
 this map converges to ��� �x�����N
�
T ��t�x��x

�
�

�� follows directly from

Lemma ���� Fix N � D�	��Mt���Z� �Z�
� � and let e�� ee� � L��T��� t� � � and � 	 � 	 ��

Let d denote the Skorohod�metric� Then there is for any such N a 
��N� � �� such that

for all � 	 
 	 
��N� the inequality kee� � e�kL��T�� � supZ� d�N��� x�� eN��� x�� 	 
 implies

sup
���t���Z�

jT���e��t� x� N�� T���ee��t� x� eN�j � C�N�
�

�	



Sketch of the proof of 
���
We give here a sketch of the proof and refer to 	�� for the calculations� The proof is done

by induction on the number of jumps of N� If two paths are close in the Skorohod�metric

then their respective jump times are close� From ������ we see� As long as both time
changes are on each site x between jump number ix and jump number ix � �� the change
of their di�erence depends only on the error in e� which in turn depends on kee� � e�k and
the di�erence of the time changes�
As the times at which jump number ix � � occurs for N and eN are less than 
 apart

and the intensities are bounded
 we can estimate the contribution to the distance of the
time changes coming from the neighbourhood of a jump� From the distance of the time
changes before the jump
 we can derive an upper bound for the time interval in which one
time change has reached the jump time and the other has not� One has to be aware of the
possibility that one time change could be several jumps ahead of the other�
In order to prove property ���
�
 we need the following lemma�

Lemma ���� Let P be a probability such that N�t� x�� x � Z
d is a family of independent

Poisson processes and T � as in ������� De�ne for u �� �ux� x�Z� � ux � 	��	� a ��algebra
by

Fu �� �����x�� N�sx� x�� sx � ux� x � Z���

and for t � �

FT ��t� ��

��	A �



u������Z
�

Fu � A
�
Z�

	T ��t� x� � vx� � Fv for all v � ���	�Z
�

�
� �

Then eN�t� x� �� N
�
T ��t�� x� � t� x

� � N
�
T ��t�� x�� x

�
� x � Z�� is again a family of inde�

pendent Poisson processes �with rate �� and independent of FT ��t���

Remark� T � is a multi�parameter stopping time in the sense of 	��� The theorem is true
for multi�parameter stopping times in general� It is a generalisation of the strong Markov
property for the Poisson process�
Proof �Sketch� The proof mimics the proof of the strong Markov property for the Poisson
process� For xi � Z� � � � i � m� � � si�� � ti�� � � � � si�mi

� ti�mi
� A � FT ��t�� zi�j � Z and

S �� A
Tm

i
�

Tmi

j
�f eN�ti�j� xi�� eN�si�j� xi� � zi�jg� we show that

P�S� �
mY
i
�

miY
j
�

P�fN�ti�j � si�j� � zi�jg�P�A�

by approximating T from above by functions with �nitely many values and using the in�
dependence of the increments of the Poisson process and the independence of the family
�N��� x��x�Z� � �

Now we can continue the proof of property ���
�� As in the case of one�parameter stopping

times
 ��� �x�����N
�
T
�
���e�

�t�x�N��x
�
and hence e	��	T � ���t� are FT � �t�� measurable and thus

independent of eN�s� x�� From ������ and ������ we see that

T �
���e�

�t� � s�N�� T �
���e�

�t�� N� � T �

�
�
� �x�����

N�T
�
�� �e�

�t����e��� �T � ���t��
�s� eN� �� T �	 eN jt���s�

��



so for ������e��� e
�

����e��
as in ����
 ����

�
�

����e��
�t� � s� x� � �

�

����e��
�t������

eN�T � � eN jt���s��x� � F �������e���t��� e
�

����e��
�t��� eN ��

F measurable� As eN is in distribution a family of independent Poisson processes
 ���
� is
a consequence of the theorem of Fubini�

�� Convergence of time changes

In this section
 we will proof Theorem ���� Fix e�� �
�
� and de�ne a function F

�	T ��t� x� N�
for T �x� t� � C�

M��� �
� 	��� � T� N ��t� x� as in �����
 e	�� 	T �� as in ������
 T�� denoting the

inverse function and c	�� �� �� as in ����� by

F � �T ��t� x� 
�
�

c
h
�
�
� ����N�t�x�� �� �T ��T���t� x��� e��� �T ���T���t� x��

i
�x�

�

Obviously
 �T �����t� x� �
R t

�
F �	T ���s� x�ds� In the same way
 we set

Fm�

�T ��t� x� 
�
�

c
h
�
�
� ����N�t�x��m��T���t� x��� e�m� ��T���t� x��

i
�x�

and have �Tm�

����t� x� �
R t

�
Fm�

	Tm�

��s� x�ds�
Set I��x� t�� �� T ��	�� t��� x� � Tm�

�	�� t��� x�� then it is an interval and

sup
���t��

jT ��t� x�� Tm�

�t� x�j �M sup
I��x�t��

j�T �����t� x�� �Tm�

����t� x�j�

as the time changes are in C�
M��� so we have

sup
���t��

jT ��t� x�� Tm�

�t� x�j � M

�
sup

I��x�t��

����Z t

�

�
F � �T � ��s� x�� F � �Tm�

��s� x�
�
ds

����
� sup

I��x�t��

����Z t

�

�
F � �Tm�

��s� x�� Fm�

�Tm�

��s� x�
�
ds

����
�

The local convergence of the time changes is a consequence of two lemmas�

Lemma ���� There is for any t�� � � ��� ��� 	
����p������
�� �	 a set G� and a constant

C such that

P�� nG�� � Ct�
��
�
�p��

��
�d
�

and such that on all paths in G� for all T�� T� � C�
M�� the following holds�

sup
I
�
x �t��

����Z t

�
�F � �T���s� x��F � �T���s� x�� ds

���� � C
p
t�

�
��

�

�
���ke�kL��

�
kT��T�k��t� ���

��



Lemma ���� If t�� ��� ��� ��� 	
����p������
�� �	 then there is for any 
 � � a set G��
�

and a constant C such that

P	� nG��
�� � Ct�

��
��d���

�
p������


�

�d

�
t�

�

��p����

�

�d�A �

and for all paths in G��
� the following estimate holds for all x � Z� �

sup
I��x�t��

����Z t

�

�
F �	Tm�

��s� x��Fm�

	Tm�

��s� x�
�
ds

���� � 

p
t�C�

p
t���


����

Theorem ��� follows by taking t� so small that C
p
t�
�
�� �

�
���ke�kL��

� � �
�M

�
Proof of Lemma ����
Set e	T � �� e	��	T �� and k � k �� k � k����t�� We use the Lipschitz continuity of �

c
and split

the integral up as in the proof of �
���� It is enough to estimate integrals of the following
type uniformly in x � Z t

�

���K� �


�� �T��

�
T��
� �s� x�

�� �� �T��
�
T��
� �s� x�

����� ds �
���Z t

�

���K� �


e�T��

�
T��
� �s�

�� e�T��
�
T��
� �s�

����� ds �
���Z t

�

���K� �


e�T��

�
T��
� �s�

�� e�T��
�
T��
� �s�

����� ds �
�	�

In order to estimate ���
�
 we perform a change of variables T��
� �s� � s�� put one deriva�

tive from the Laplacian on the heat kernel and interchange the order of integration of the
time integrals to get

���
� � C
p
t�

����Z t�

�

jrK�j � j��	T���s�� �� 	T���s�jds
����
L�

� �����

For ����� we set T s �� T��
� � T��

� � Ti �� T��
� 
 T��

� and get�

�
��� �
tZ

�

K��
�����P �T��

� �r���P �T��
� �r��

��e����� ���T
s�r�Z

Ti�r�

P �s����K� � �� �T���T s�r��s��ds���
�
��� Z Ti�r�

�
P �s� ��K� �



�� �T���Ti�r��s���� �T���T s�r��s�

�
ds
����dr�

We call the three integrals on the right hand side �over ds and dr� I�� I� and I�� From
standard estimates for the heat kernel �put one space derivative on K� and one on P �s��
then use Ti�s� �Ms���
 we get�

I� �
����Z t

�
K��



P
�
T��
� �x� s�

��P �T��
� �x� s�

���e������pt����Cke�kL�kT��T�k�

I� � C���
p
t�kT��T�k

��



For I�� we put one derivative on the heat kernel and interchange the order of integration�
We get

I� �
MtZ
�

jrP �s�j � jrK�j �

��� MtZ
T��
i

�s�

���� �T���T s�r��s���� �T���Ti�r��s�
��dr

���ds
We have for functions f� g such that ��� in ��
 holds and functions ��s� taking only the
values �� the inequalityZ t�

t�

j��f�s��� ��g�s��j � 
M N�t�� t�� sup
�t��t��

jf�s�� g�s�j�

where N�t�� t�� is the number of jumps of � in 	f�t��
 g�t��� f�t��� g�t���� If we apply this

to �s�r� �� ����N
�
T��r�s��x

�
and Ti�s� y�� T

s�s� y�� it remains to bound

sup
u�T�

X
y�Z�

N�Mt�� y�

Z
jv��yj� �

�

��X
z�Zd

j�rK���u� v � zp��j
�A � �
���

on a set of large probability� If we can do this
 the proof of the lemma is �nished
 because
we can estimate ����� and ����� in the same way� Note that for jZ�j � O������ 
 � O����
it is simply a law of large numbers�
We can divide T� in k� cubes Wk� 	p�


��� � k� � �	p�

���� each of them of side length b
�


 � b
 � �
� �To estimate expressions concerning the kernel J� simply put 
 � ��� Note that
for K with compact support or rapidly decreasing
X

k

���X
Zd

j�rK���u� v � zp�j
���
L��Wk�

� ��dC�K��

Thus

�
��� � C�K� sup
��k�k�

X
y� dist��y�Wk��

�
�


�
�

�d
N�Mt�� y��

If we apply the weak law of large numbers for the random variables N�Mt�� x��Mt� which
are independent with mean � and variance Mt�� we get

P

�� X
y� dist��y�Wk��

�
�

��



�d
N�Mt�� y� � �Mt�

�� � CM

t�

��



�d
�

�The constant accounts also for the fact that there are not exactly
�
�

�

��d
grid points in

each Wk�� Now sum over k� �

Proof of lemma ���� By a change of variables �Tm�

����s� x� � s� and as �
c
�M we see that

it is su�cient to estimate uniformly on 	�� t�Z t

�

���c ��� �Tm�

��s�� �� �Tm�

��s�� e��� �Tm�

���s�
�� c

�
�� �Tm�

��s��m��s�� e�m� ��s�
� ���ds�

��



As c is Lipschitz continuous
 we see from ������ that it is enough to estimate expressions
of the type

I�u� t� 
�
X
y�Z�

Z
jv��yj� �

�

��X
z�Zd

K��u�v�zp��

�A dv


�� �Tm�

��t� y� � E
�
�� �Tm�

��t� y�
��

�Also the e�dependent di�erence can be written in such a way��
In principle
 the estimate we need follows from the weak law of large numbers for the

independent �� 	Tm�

��t� y�� But we need a uniform estimate for �t� u� � Mt� � Z� � So we
divide Z� as in the proof of the previous lemma in cubes Wk�
� of side length of order 

�
Within such a cube
 I�u� t� varies at most by C�d�
� because the �� are bounded�
Then we divide the time interval in subintervals Ij of length 
� The m� are Lipschitz�

continuous
 so they do not vary by more than �M
 in one Ik�
By the law of large numbers for the independent random variables N

�
Tm�

�t� x��M
� x��
we can bound the number of jumps of the ��	Tm�

��t� in Ik on a set of large probability in
the following way� For js� tj � 


P

�� X
y�Wk

�
�� �Tm�

��t� y�� �� �Tm�

��s� y�
�
� �M�

�� � C�M����M�

�
�

�d

To conclude
 we apply the law of large numbers for a family of representatives I�uk� tj��
uk � Wk�
�� tj � Ij�

�� Convergence of the Block Spins

In this section we prove theorem ���� For A��� as in ������
 we use the abbreviation
kf � gk� �� kA����f � g�kL� and show as a �rst step�

Lemma ���� For �t as in Theorem ��
 and m� and �� 	T �� starting from the same e�� �
�
� �

we have for small �

P

�
sup
���
t�

k�� �T � ��t��m��t�k� � �

�
� C

�t�d��

�
p��

���
�d�

�t

�
�p��
��

�d

���d

�
�

Proof We write

G���� t� x� 
�
n ���A���



�� �T � ��t��m��t�

�
�x�

��� � �
o

and have

G���� t� x� 

����A���



�� �Tm�

��t��m��t�
�
�x�

��� � �

�

�
�
����A���



�� �T � ��t�� �� �Tm�

��t�
�
�x�

��� � �

�

�
�

��



Call the �rst expression on the right hand side G�
� �
� x� t� and the second one G�

� �
� x� t��
We have for t	 �� t� 	

��M

G�
� ��� x� t� 


�
kT � � Tm�k����
t �

�

��M�

�
�
�
A���

�����N �
Tm�

�t	� y��
�

�
� y

�
�N �

Tm�

�t	� y�� y
����� 	 �

�
�x� �

�




�
� G���� �G	��� t� x��

observe that fT ��t�� Tm�

�t�g � 	Tm�

�t� 	
��M

�� Tm�

�t� 	
��M

� � 	
��
���M���� follows from

jT ��t�� Tm�

�t�j � 	
��M� � and G	 contains paths where the A���� average of jumps in this

time interval exceeds 
���
The probability of the set G��
� is bounded by lemma ���� For each �xed �t� x� we can

estimate P�G�
� �
� t� x�� by the Chebyshev�inequality for the independent ��	Tm�

��
As N�Tm�

�t� y� � �� y� are distributed as independent Poisson processes
 the probability
of G	�
� t� x� for a �xed x can be estimated by the Chebyshev inequality as well� To estimate
the probability of their union
 we proceed as in the convergence proof for the time changes�
We divide 	���t� in subintervals of length of order 
 and T� in cubes of side length of
order ����
� Then A����f�t���x� varies on these subintervals and cubes by less than 
� if
f is either ��	T � ��t�� ��	Tm�

��t� or jN�Tm�

�t	��
	
�
��N�Tm�

�t	��j 
 �� So we choose again
representatives �ti� xk� in each cube and have�

t�x

�G���� t� x� �G	��� t� x�� 

�
k�i

�
G��C

���� ti� xk� �G	�C
���� ti� xk�

�
�

Now we use the results obtained on intervals of lenght �t to obtain convergence on
long time intervals� This will be done by a method adapted from 	��� We de�ne a piece�
wise deterministic process
 called quasi�solution of the Mean �eld equation on an interval
	�� t������� for t������ � C log����� �
Let �m�

e����
�t�� ee�����t�� be the solution of �����
 ����� starting from the initial values

e�� ��� The quasi�solution �m�

t�N�� e�
t�N�� for the interval size �t and the path N is

de�ned as follows� Let �e��t� N�� ���t� N�� �� �e	�� 	T ��N�� N ��t�� �� 	T ��N�� N ��t��� then

�m�

t� e

�

t��t� �� �me��k
t�N���� �k
t�N�� ee��k
t�N���� �k
t�N���t� k�t� for t � 	k�t� �k � ���t��

This means that �m�

t�N�� e�
t�N�� is updated at the end of each subinterval of length �t

by the true value of the stochastic process ��� 	T ��� e	��	T � ����
Note that a rough a priori estimate gives ke	T ��kL� � C � t��� � 
��� hence we can �nd

a �t��� such that Theorem ��� can be applied for e� �� e	T ���k�t�� k � t����t���
Now we condition stepwise on the ��algebra generated by �� 	T ���k�t� and we derive

from property ���
� and Lemma ���� The probability of ��	T ���t� to deviate in the ��norm
from the quasi solution on 	�� t���� by more than 
 is t�����t��� times the probability
estimated in Lemma ����
Now we choose 
 �� �� for a � small enough� As 
��� ��t���� p���� and t��� are all of at

most logarithmic growth in �
 we have the desired estimate ����� with the quasi�solution
m�


t in place of m� �
��



As 
 is much larger than ���� the convergence ofA�����
�	T � �� implies the L��convergence

of e	�� 	T ��� in probability to the quasi�solution
 this means we have ����� with another �
and e�
t in place of e	m� ��
An estimate for the distance of the quasi� solution and the solution of the mean��eld

equation will conclude the proof� For this
 we have to estimate the distance of two solutions
of �����
 ����� starting from di�erent initial values�
Denote for simplicity the solutions by �m� e� and �bm� be� respectively� As K� is C��

� �� e�K� �m solves �t� � �� �K� � �tm� so e solves

e�t� � P �t� � �e��� �K� �m���
�
�K� �m�t��

Z t

�
P �t� s� � �K� � �tm

�
�����

The operator A��� commutes with convolutions
 so we have

ke� bek� � ke��� � be���k� � CkP ���kL�km���� bm���k�
�C

�
km�t�� bm�t�k� � kP ���kL�

tR
�

k�t�m�s�� bm�s��k�ds
�
�

For �t�m�s� � bm�s�� we substitute equation ������ We now make use of the fact that for
Lipschitz�functions c

jc�K� � g��� c�K� � g��j � LCkg� � g�k� � LC
������� �����

Then we get

ke�t�� be�t�k� � f���e�be�����m � bm� t� � C

tZ
�

�ke� bek��s�ds� C��������

f���e�be�����m� bm� t� � k�e�be����k��C

��km���� bm���k��km�t�� bm�t�k��
tZ

�

km�s�� bm�s�k�ds
�A �

The Gronwall lemma gives�

ke�t�� be�t�k� � eC�t
�
�f��e���� be���� m� bm� t� � 
������

�
���
�

We observe that for �
M
� c���� c Lipschitz���e� R t

s
c�f���s�ds � e�

R t
s
c�f���s�ds

��� � e�
t�s
M L

Z t

s

jf��s�� f��s�jds� �����

Using the variation of constants formula for �����
 which is

m�t� x� � e�
R t
�
c��m�s��e�m��s��dsm��� �

Z t

�

e�
R t
s
c��m�s��e�m��s��drc��m�s�� e	m��s��ds� �����

we get from �����
 ���
� and ����� for � 	 t 	 �t 	 � �

sup
���t�

km� bmk� � C
�

�������km���� bm���k���ke���� be���k���C Z t

�

sup
���s�

km� bmk�ds
which allows to apply Gronwall�s lemma to sup���s� km�r�� bm�r�k�� which implies

km�s�� bm�s�k� � eC
�
t

�
����

�
� km���� bm���k� � ke����be���k�� � �����

��



The k�k��convegence of the ��	T � � implies the L��convergence of the energy e� as 
 is large
compared to any power of ��
Because ��t��� and t��� are of logarithmic order in �� this implies the convergence

theorem for the ��	T �� � We iterate the estimates for the di�erent time steps of size �t�
using at each end point the estimate for the quasi solutions and ����� to get the error at
the beginning of the next interval�

To conclude the proof of Theorem ���
 we have to free ourselves from the restriction
�
M
� c���� We �rst show that the solution e of ����� on 	�� t����� T� is uniformly bounded

by C�log����� � C�� �Note that on a �xed time interval 	�� T �� a uniform bound follows
immediately from ����� and the boundedness of �tm� � First note that �te � ��e�K� �m�
implies

e 
�

Z
T�

e��r�dr �

Z
T�

e�t� r�dr for all t � ��

By considering e� e we can assume e � �� Then we have for f� �� f � �� f� �� ��f 
 �� �R
T�
f� �

R
T�
f� � jT�jkfkL��

Further de�ne

PT��t� r� 
�
X
z�Zd

P �t� r � zp��� r � T�� t � �

where P is the euclidean heat kernel on Rd �
For t � 	� the kernel PT��t� r� � jT�j�� uniformly in r� From this and the scaling

relation jT�jPT�����t� ���r� � jTjPT�t� r� we �nd a t	 such that �
	
� jT�jPT�����t	� r� � �

	
�

If we apply the estimate to PT���
��t	� � �e�� � e�� �� we get kP ����t	� � e�kL� � �

�
ke�kL��

Now we estimate the contribution of the �tm�integral in ������ We assume ���t	 � � and
have by integrating by parts for t	� �� t	���Z t��

�
P �t	��s���t�K��m�s��ds �

Z t��

t�
�
��
P �t	��s���t�K� �m�ds�

�
P �s���K��m�t	��s��

�t��
�

�
Z t��

�
�tP �s���K� �m�t	��s��ds�

This implies � as
R
Rd
�tP �s� � Ct��������

Z ���t�

�
P ����t	 � s� � �t�K� �m�s��

����� � C�log����� � C��

By dividing 	�� t���� in subintervals of length ���t	� we �nd�

sup
���t�����T�

je�t� x�j � C�e���� � log������� �����

So for e� �xed �e�t� is uniformly bounded by some � log�����C�e��� �Note that without
space rescaling
 the same proof yields the boundedness of e� itself�
Now replace c by cA �� c��� �� �� ������ where � � C�

� �R� is such that ��s� � s on
	�A��� A���� The random variables e	T �

A� as in ������
 where in ����
� the intensity is cA

instead of c� converge by the convergence theorems for the case c�� 	 M� which are already
shown
 in probability to the solution of ����� with cA instead of c� �Remember that due to
the scaling relation between � and 
� the convergence of the spins in the ��norm implies the

��



convergence of e in the L��norm�� But from the bound on e we see that this is �for A large
enough� equal to the solution for c� because e does not reach the cut�o�� e	T �

A� converges
in probability to e� so they do not see the cuto� on a set of large probability� But on this
set
 T �

A are equal to the time changes de�ned without cut�o��

�� Continuum limit� Proof of Corollary ���

For the �rst part of the corollary
 it remains to bound kA����m
���t� �x� �m�t� �x�k��

where m� solves ����� and m solves ����� for a sequence jlambda���� 
��� with the usual
logarithmic growth restrictions�
We use the integrated version of eqn� ����
 ���� and ����
 ����� �See �����
 which gives

the integrated version of �����
 the space continous eqn� ����� is treated in the same way��
We use the following facts�

� c�� c� are bounded and Lipschitz in their arguments
 � 	 c��
� Because of �����
 we may still use ������
� supx�Z jA����f�� f j � L���� if f is uniformly Lipschitz�

Setting
l�t� �� kjm��t� r��m�t� r�j� �jK� � �e� � e��t� r�jkL��T��

we get directly from the facts listed above�

l�t� � l��� � C

Z t

�

l�s�ds� Ct
����




The claim follows now from the Gronwall lemma together with the convergence of the initial
conditions in the ��norm in probability and the logarithmic dependence of 
 and � on ��

In order to prove the second part of the corollary
 we only have to show the convergence
of solutions of ����
 ���� to those of ���

 ����� For simplicity we will use that K��y� � �
for jyj � 
 and

R
Rd
K��y�dy � �� but the result holds for rapidly decreasing kernels as

well� Note that in this case in the integral formulation of ����� the part coming from the

variation of constants formula is
R t
�
P �t� s� � �tm and j�tmj � C by ������ We start with

the following observation�����Z t

�

P �t� s� � �K� � f � f�

����
L��T�

�
Z t��

�

kP �t� s� �K� � P �t� s�kL��T�kfkL��T�� �
kfkL��T��

Set I�s� ��
R
Rd
j�P �t� s� �K� � P �t� s���x�jdx� then

I�s� �
Z
Rd

Z
jyj��

Z �

�

jrP �t� s�j�x�ry�jdrjx� yjjK��y�jdydx � C
I��s�� where

I��s� �

Z Z
jyj��

Z �

�

jrP �t� s�j�x�ry�jdrjK��y�jdydx � Cp
t� s

So
R t��

�
I�s�ds � C�t�� Extend periodically to get the result for T� and the corollary follows

from Gronwall type estimates as in the previous proofs�
��
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