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Abstract� A mathematical model for a �nite�strain elastoplastic evolution problem is pro�

posed in which one time�step of an implicit time�discretisation leads to generally non�convex

minimisation problems� The elimination of all internal variables enables a mathematical and

numerical analysis of a reduced problem within the general framework of calculus of varia�

tions and nonlinear partial di�erential equations� The results for a single slip�system and

von Mises plasticity illustrate that �nite�strain elastoplasticity generates reduced problems

with non�quasiconvex energy densities and so allows for non�attainment of energy minimis�

ers and microstructures�

�� Introduction

This paper is devoted to questions of well�posedness of problems that arise in the nu�

merical and mathematical modelling of �nite elastoplasticity� it aims to design �classes of�

constitutive models �by specifying energy densities� yield functions� and hardening laws�

which allow for a mathematical existence theory and� hence� for a reliable and e	cient �nite

element approximation� The main concern is on the mathematical investigation of the vari�

ational problem in one time�increment utilising state of the art methods from the calculus

of variations and� e�g�� the notions rank�one convexity and quasiconvexity�

The incremental problem for elastoplasticity is a variational problem with respect to the

elastic deformation as well as the plastic parameters �Fp and the hardening parameters p��

One key assumption is the design of a dissipation function which encodes the information on

the yield function and depends on the new and the old plastic parameters� The functional

to be minimised is the increment in the elastic �bulk� energy plus the dissipated energy�

This paper results from the authors
 long�time research� models with similar ingredients

have been proposed in �Lee�
� Sim��� SiO��� MiS
�� Mie
�� OrR

�� As its main advantage�

the proposed model allows for a mathematical and numerical analysis and so facilitates a

theory that predicts microstructures� It appears that shear�bands� cracks� and inclusions

are not bifurcation phenomena� but arise as di�erent aspects of the same general variational

model�

A brief discussion of the model introduced in Section � requires further notation� Let

� � � � R� be the deformation of a body � � R� with a deformation gradient F �� D��

Date� October ��� �����

Key words and phrases� Finite elastoplasticity� incremental formulation� variational problems� continuum

mechanics� quasi�convexity� relaxation�
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Its multiplicative split F � FeFp into an elastic part Fe and an irreversible� plastic part

Fp introduces the plastic parameter P � F��
p � With an additional m�dimensional internal

hardening parameter p� the stored energy density W is assumed to depend only on Fe �

FP and p� i�e�� W �F �Fp� p� � W �FP � p�� The resulting thermo�mechanically conjugated

variables �Ric��� CoG��� Hac
�� HaN��� Mau
�� Mor��� Mor��� ZiW��� are de�ned by

T � �W
�F

�F �P � p� � DFeW �FP � p�P T ��rst Piola�Kirchho� stress tensor��

Q � ��W
�P

�F �P � p� � �F TDFeW �FP � p� �conjugate plastic stresses��

q � ��W
�p

�F �P � p� � �DpW �FP � p� �conjugate hardening forces��

One key�point in the ansatz below is to write the variational inequalities for the irreversible

deformations in terms of the mixed variant tensor Q�

Q � P TQ � �F T
e DFeW �Fe� p��

The yield function � depends on q and Q and so is invariant under plastic deformations�

The principle of maximal dissipation results in the associated �ow rule �which �rst appeared

in �Mor���� �
P�� �P

�p

�
� �

�
��

�Q
�Q� q�

��
�q
�Q� q�

�
for � � � � � with �� � �������

Using the characteristic function J with J�Q� q� � � for ��Q� q� � � and otherwise J ���

����� reads �P�� �P � �p� � �J�Q� q� with the sub�di�erential �J of the convex function J �

A time�discretisation of the problem at hand leads typically to an elastic�plastic in�

teractions which we aim to model as a variational problem� Given a time�discretisation

� � t� � t� � � � � � tN � T and data �P j��� pj���� Section � seeks the state variables

���P � p� at time tj as minimisers of the functional If�tj��P j���pj��
�

If�tj ��P j���pj��
���P � p� �

R
�

�
��D��P � p�P j��� pj���� f�tj� � �

�
dx

with ��F �P � p�P j��� pj��� � W �F P � � J����P j���P �� p�pj����
�����

the volume force f�tj� at time tj� and the Legendre transform J� of J �cf� ������� the dissipa�

tion reads Q � �P�� �P � � q � �p � J��P�� �P � �p� and ��P j���P � approximates P �tj�
�� �P �tj��

Amongst the main advantages of incremental problem ����� we stress the availability of

highly developed mathematical tools for its analysis within the calculus of variations and the

convenient numerical solution of a space�discretised version of ������ Another key�advantage

is the observation in ����� that If�tj��P j���pj��
depends locally on the plastic variables� i�e��

given P j��� pj�� and a deformation gradient F and a material point x we can compute the

reduced density function

�red
P j���pj��

�x�F � � min
P �p

��F �P � p�P j���x�� pj���x�������

�where minimisation is over �P � p� � R��� � Rm�� Thus� ����� is recast into

Iredf�tj ��P j���pj��
��� �

R
�

n
�red
P j���pj��

�x�D��� f�tj� � �
o
dx������
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The proposed model ����� focuses the analysis to the reduced functional Ired of the form as

in nonlinear elasticity� As a consequence� we analyse the rank�one convexity of the reduced

density function �red
P ��p�

�x� �� � R��� � R which depends via W and J� simultaneously on

the elastic and the plastic properties of the material�

Two particular examples illustrate consequences of the theory proposed� both represent

typical models used in the mechanics of materials� The �rst describes an elastoplastic

single crystal with one active slip�system� the second is the �nite�strain version of the

well�known von Mises model for polycrystalline metals� In both cases� the reduced density

function is not quasiconvex which indicates the occurrence of microstructures in the asso�

ciated plasticity models� Indeed such microstructures have been observed experimentally�

�Kor
�� Per
�� OrR

�� The common formulations based on evolution equations for the

internal variables ��ow rules�� however� have only been able to explain the occurrence of

shear bands �singularities of the deformation �eld� but have failed to predict more complex

structures ��OrR

� makes an attempt in this direction for crystal plasticity�� The theory

presented here is in principle able to describe microstructures in their full complexity by

transforming evolution equations into an optimisation problem� Two further results might

be worth mentioning here as they are contradictory to common belief� �a� Finite�strain von

Mises plasticity does not reduce to the Prandtl�Reuss model in the small�strain limit� �b�

Substantial amount of hardening is required in order to render the model quasiconvex�

The remainder of this paper is organised as follows� Section � recalls standard concepts

in �nite�strain continuum mechanics and introduces the time�continuous model for elasto�

plastic evolution� The incremental problem is established in Section � for a class of implicit

time�discretisations and then recast into an incremental minimisation problem in Section ��

Eventually the internal variables are eliminated and so the reduced problem is established

in Section �� The �nal two sections illustrate this reduction procedure for two speci�c plas�

ticity models� a single slip�system and von Mises elastoplasticity� In both cases� the reduced

density function is not quasiconvex which predicts microstructure in the associated plasticity

models�

�� Rate�independent elastoplasticity

This section establishes the �time�continuous� model of elastoplastic evolution in contin�

uum mechanics� The deformation � � �� Rd of a body � � Rd �where d � �� �� or �� is a

mapping with a �distributional� gradient F �x� � Dx��x� � Rd�d of positive determinant for

�almost each� x � �� Usual italics denote scalar functions or n�tuples� lower case bold face

letters indicate vectors and co�vectors �x� �� � � � �� and uppercase boldface letters describe

tensors �F �T � � � � �� All the subsequent notation is consistent with the general notions of the

analysis on manifolds� but we do not employ these concepts and regard tensors as matrices

and so utilise standard matrix algebra�

Our model of quasi�static elastoplasticity is deduced from two basic principles� The equi�

librium equation is derived by energy minimisation �or stationary states� with respect to
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variations of � and the plastic �ow rule is derived from the principle of maximum plas�

tic dissipation� Certain options of relevant plastic strains are possible and amongst several

options of relevant plastic strains� our choice re�ects invariance properties and is based on

the hypothesis that the elastic energy and the yield stresses are independent of the plastic

deformation�

The plastic behaviour is given through the multiplicative split F � FeFp of F into

an elastic part Fe and the plastic part Fp� Fe and Fp are invertible with their product F �

written F � Fe� Fp � GL�d�� The material properties may depend on internal plastic variables

p � Rm �such as hardening parameters� and so the internal stored energy is postulated in

the form

W �F �Fp� p� � W �FF��
p � p� � W �Fe� p�������

In the sequel� we will use the plastic variables �P � p� with the plastic con�guration change

P � F��
p � The assumption that the elastic energy depends only on the elastic part of the

deformation gradient is essential in our analysis and is motivated by the observation that

plastic deformation results from a con�gurational change of the material body �dislocation

movements in the case of metal plasticity�� Plastic deformation simply recasts the reference

con�guration into another one and so does not a�ect the elastic deformation� For details

see� e�g�� �Hac
�� Mau
�� Sim��� Mie
���

Material objectivity requires W �RFe� p� � W �Fe� p� for all R � SO�d� or� equivalently�

W �Fe� p� � cW �FT
e Fe� p��

where T denotes the transposed matrix �in Cartesian coordinates assumed��

In rate�independent elastoplasticity� the body is in equilibrium for each instant �of the

process time t � ��� T ��� This speci�es the deformation � as soon as the evolution of the

plastic variables P � F��
p and p is given� The thermo�mechanical dual variables read

T �
�W

�F
� Q � �

�W

�F ��
p

� q � �
�W

�p
�

Here T is the �rst Piola�Kirchho� stress tensor and Q contains the plastic �back�� stresses�

The minus sign in the de�nitions of Q and q follows standard conventions� in particular in

elastoplasticity using the linearised strain tensor� see �Suq��� Suq��� HaR
��� For the special

ansatz ����� we obtain

T � DFeW �Fe� p�P
T� Q � �F TDFeW �Fe� p�� q � �DpW �Fe� p�������

The evolution of �P � p� is governed by a �ow rule associated with the yield function � via

the principle of maximum plastic dissipation� In general� � depends on the stresses T � Q�

and q� However� our second postulate �in addition to ������ is that the yield function � is

independent of the plastic deformation Fp � P��� From ����� we see that the tensor

Q � P TQ � �F T
e DFeW �Fe� p�
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is invariant under all plastic deformations and hence we postulate that the yield function

depends on Q and q only�

��T �Q� q� � ��Q� q� � ��P TQ� q�������

The yield function de�nes the set of admissible stresses

Q
def
�
�
�Q� q� � Rd�d � Rm � ��Q� q� � �

�
and we assume that Q is convex and contains ��� ��� The characteristic function of Q is

J�Q� q�
def
�

�
� for �Q� q� � Q �

� else�

The principle of maximal plastic dissipation �Sim��� postulates that the plastic dissipation

�DPW �F �P � p� � �P � DpW �F �P � p� � �p � Q � �P � q � p � Q � �P�� �P � � q � �p�

is maximal when the rates P�� �P and �p are kept �xed and the stresses �Q� q� are varied in

Q � This leads to

Q � �P�� �P � � q � �p � S � �P�� �P � � s � �p for all �S� s� � Q ������

Using the de�nition of J and its sub�di�erential

�J�Q� q� �
�
�P � p� � Rd�d � Rm � J�Q� S� q � s� � J�Q� q� � P � S � p � s

for all �S� s� � Rd�d � Rm
�
�

the principle of maximum dissipation ����� reads

�P�� �P � �p� � �J�Q� q�������

The above constitutive functionsW and � result in a total elastoplastic problem we only for�

mulate for pure displacement boundary conditions �changes necessary for traction boundary

conditions are standard��

Elastoplastic problem� Given the �volume� forces f � ��� T � � � � Rd � the

boundary data �bc � ��� T ����� Rd � the initial conditions for the plastic variables

�P �� p�� � � � GL�d� � Rm � �nd a deformation � � ��� T � � � � Rd and plastic

variables �P � p� � ��� T �� �� GL�d�� Rm satisfying

�equilibrium� divT � f � � for �t�x� � ��� T �� ��

��ow rule� �P�� �P � �p� � �J�Q� q� for �t�x� � ��� T �� ��

�deformation gradient� F � Dx��

�constitutive laws� T � DFeW �FP � p�P T�

Q � ��FP �TDFeW �FP � p�� q � �DFeW �FP � p��

�initial conditions� P ���x� � P ��x�� p���x� � p��x� for x � ��

�boundary conditions� ��t�x� � �bc�t�x� for �t�x� � ��� T �� ���
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Remark ���� Note that Q can be understood as a linear operator from the cotangent bundle

of the intermediate con�guration into itself and thus the invariants like eigenvalues� deter�

minant and the trace are well de�ned �Hac
���

Remark ���� Formulations of the type ����� and ����� have been used �rst in the context of

small�strain elastoplasticity by �Mor��� and �HaN����

�� Time�discrete formulation

This section concerns two time�discretisations to emphasise that their choice within the

�ow�rule is non�unique� Mathematical proofs of existence of solutions or their numerical

approximation are based on the understanding of one time�increment� Assume that the time

interval ��� T � is discretised into � � t� � t� � � � � � tn�� � tn � T and that approximations

��j�P j� pj� for ���tj� ���P �tj� ��� p�tj� ��� are known for j � �� � � � � k� The incremental prob�

lem is to �nd approximations at the time level tk��� Since this problem is of the same type

for all k � �� �� �� � � � � n� �� we will restrict the notation to the �rst step� i�e�� k � �� and so

�P �� p��� �P � p� � �P �� p�� and � � t� � t�� As the only link between the time levels are the

derivatives in the �ow rule we have to discretise these derivatives�

In contrast to the straightforward discretisation of the derivative �p 	 �
�
�p � p��� the

discretisation �
�
��P �P �� of P

�� �P at t � t� o�ers various possible realisations� for instance

��P �P �� � ��P � � �����P ����P�P �� or ��P �P �� � ��P��
� � �����P����P�P ���

Both cases coincide for � � � or �� For � � � the approximation is linear in P � and for � � �

it is linear in P��� Another possibility is ��P ��P � � log�P��
� P � which rather corresponds

to the multiplicative decomposition� The only restriction reads

��P ��P ���� S�� � S �O�jSj�� for S � �������

Incremental problem� Given the �volume� forces f � � � Rd � the boundary

data �bc � �� � Rd and the initial conditions for the plastic variables �P �� p�� �

� � GL�d�� Rm � �nd the deformation � � � � Rd � the plastic variables �P � p� �

�� GL�d�� Rm such that the following holds

�equilibrium� divT � f � � for x � ��

�discretised �ow rule� ���P ��P �� p� p�� � �J�Q� q� for x � ��

�deformation gradient� F � Dx��

�constitutive laws� T � DFeW �FP � p�P T�

Q � ��FP �TDFeW �FP � p�� q � �DFeW �FP � p��

�boundary conditions� ��x� � �bc�x� for x � ���

Remark ���� This paper focuses on the solvability of the incremental steps in the time�

discretisation of the time continuous problem� convergence questions for smaller and smaller
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increments are beyond this paper� A result in this direction was obtained in �MTL��� for a

rate�independent �ow�rule model for phase transformations in shape memory alloys�

�� Variational formulation

This section is devoted to recast the incremental problem into a minimisation problem�

Given �bc�f �P �� and p� we associate the functional

I���P � p�Q� q� �

Z
�

h
W �Dx�P � p�� f � ��Q � ��P ��P � � q � �p�p��� �J�Q� q�

i
dx

and study its derivatives� A variation with respect to � �under the given boundary condi�

tions� yields

divT � f � � with T � DFeW �Dx�P �P T�

i�e�� the equilibrium and the constitutive law for the kinematic stress tensor� A variation

with respect to the dual variables �Q� q� gives exactly the discretised �ow rule

�

�
���P ��P �� p� p�� � �J�Q� q��

A variation with respect to the plastic hardening variables p yields the constitutive relation

for q�

DpW �Dx�P � p� � q � ��

A variation of I with respect to P depends on the choice in ����� and we discuss two cases

���P ��P � � P��
� P � � resp� ���P ��P � � �� P��P ��

which are either linear in P or in P��� A variation of I with respect to P yields

�F TDFeW �Fe� p� �

�
�P��

� �TQ for ���

�P��
� �TQ�P��P ��

T for ���

as an approximation of the constitutive relation of Q� Hence the preceding incremental

problem has essentially the structure of a constitutive relation for Q�

In summary� stationary points of I can be obtained by maximising with respect to �Q� q�

and minimisation with respect to the remaining variables�

Proposition ���� A stationary point of the functional I solves the incremental problem of

Section ��

The task to �nd stationary points of I is rewritten by utilising the Legendre transform J��

J��S� s� � sup
�
Q � S � q � s� J�Q� q� � �Q� q� � Rd�d � Rm

�
� sup

�
Q � S � q � s � �Q� q� � Q

�
�

�����

of J � Recall from convex analysis �Zei��� that� the subgradients of J and J� are linked�

�S� s� � �J�Q� q� 
� �Q� q� � �J��S� s��
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Since J assumes only the values � and �� the function J� is homogeneous of degree �� that

is J����S� s�� � �J��S� s� for all � � �� Moreover� J��S� s� � � because of ��� �� � Q and

�J����� ��� � Q � Hence a maximisation of I with respect to �Q� q� leads to the functional

If �P ��p����P � p� �
R
�
��x�D��x��P �x�� p�x��P ��x�� p��x��dx� 	����

where ��x�F �P � p�P �� p�� � W �FP � p� � J����P ��P �� p�p��

and 	��� �
R
�
f�x� � ��x�dx�

�����

The incremental problem can be recast into a �equivalent� minimisation problem�

Incremental minimisation problem� Given the �volume� forces f � �� Rd �

the boundary data �bc � ��� Rd and the initial conditions for the plastic variables

�P �� p�� � � � GL�d�� Rm � �nd a deformation � � � � Rd and plastic variables

�P � p� � �� GL�d�� Rm which satisfy

If �P ��p����P � p� � inf
�
If �P ��p��

e�� eP � ep� � e�� eP � ep admissible
�
������

Proposition ���� If ���P � p� solves the incremental minimisation problem ������ then there

exists �Q� q� in �J����P ��P �� p�p�� such that ���P � p�Q� q� is a stationary point of I�

Remark ���� This minimisation formulation of the incremental problem is the basis of our

subsequent analysis� It allows an instructive interpretation within the realm of material or

Eshelbyan mechanics �Mau
��� Here P and p play the role of a material con�gurational

change� in our case of dislocation movement� whereas J� speci�es an incremental energy

release caused by con�gurational changes enforced by an energy release higher than the

invested elastic energy� The stress Q � �W
�P

is a thermodynamic driving force for con�gu�

rational change called Eshelby�tensor� Similar interpretations are also possible for models

involving material damage and phase transformations ��MTL

� MTL�����

�� Reduction via pointwise minimisation

This section is devoted to a further reduction of the incremental minimisation problem

owing to its structure� The internal variables P and p appear locally under the integral

such that the minimisation with respect to these variables can be performed pointwise� This

de�nes the reduced density and the reduced density function

�red
P ��p�

�x�F � � min
n
��x�F �P � p�P ��x�� p��x��

��� �P � p� � GL�d�� Rm
o
������

Iredf �P ��p�
��� �

R
�
�red
P ��p�

�x�D��x��dx� 	����

Reduced incremental minimisation problem� Given the �volume� forces

f � � � Rd � the boundary data �bc � �� � Rd and the initial conditions for the

plastic variables �P �� p�� � �� GL�d��Rm � �nd a deformation � � �� Rd which

satis�es

Iredf �P ��p�
��� � inf

�
Iredf �P ��p�

�e�� � e� admissible
�
������
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Proposition ���� The �rst component � of a minimiser ���P � p� of the functional If �P ��p�

in ����� is a minimiser of the reduced functional Iredf �P ��p�
� Conversely� for every minimiser

� of the reduced functional there exists �P � p� such that ���P � p� minimises If �P ��p��

Proof� The �rst inclusion is a direct consequence of the preceding construction and� for the

second� consider �P �x�� p�x�� such that the minimum in ����� is attained when F is replaced

by D��x��

The minimisation problem ����� is of the form well�analysed in nonlinear elasticity �Bal���

Dac�
�� The question of existence of minimisers is in general nontrivial as the functionals

are nonconvex�

Su	cient conditions for the existence of minimisers are the weak lower semicontinuity and

the coercivity of the functional� The appendix gives their precise de�nitions and discusses

the relation to the notion of cross�quasiconvexity� It turns out that the reduction step

�elimination of the local plastic variables� is indeed necessary �in the sense that the detection

of non�attainment is otherwise unclear��

In the following sections� two illustrative examples are addressed where the functional

����� is explicitly constructed� In both cases� the essential condition is rank�one convexity

which is violated and so microstructure cannot be excluded�

De�nition ��� �rank�one convexity�� The function 
 � Rd�d � R is called rank�one convex

if for every F � Rd�d and n�m � Rd the function t �� 
�F � tn
m� is convex on R�

Every quasiconvex function is rank�one convex �Dac�
� and attainment of minimisers is

�for the examples below� equivalent to quasiconvexity� Hence� the next sections are concerned

with examples and the question if �and for which parameters� the reduced density function

is rank�one convex�

�� A single slip�system

This section investigates the presented framework in the particular example of a single

slip�system which models elastoplastic single crystals �Asa���� but also describes the material

behaviour of ice respectively snow �GoH
��� or can be applied to problems in soil mechanics�

Let U � R� � R be convex and a � � be a hardening modulus� Then� the energy density

for compressible neo�Hooke material �Cia��� reads

W �Fe� p� � U�detFe� �
�

�
trF T

e Fe �
a

�
p�������

where � � � is a Lam�e parameter�

Two orthogonal unit�vectors m and n �jmj � � � jnj� m � n � �� characterise the yield

function

��Q� q� � jm �Qnj � r � q������
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With a non�negative plastic consistency �slip�rate� parameter �� � �� the �ow rule reads�
P�� �P � �p

	
� ��



sign�m �Qn�m
 n���

�
������

Let �
 � �� sign�m � Qn� with 
��� � �� Notice that� by ������ �p � �j �
j� From ������
�P � �
�Pm� 
 n and so m � n yields �Pm � �� This� the initial condition P � � �� and

a time�integration show Pm � m and so �P � �
m 
 n� From this� the initial condition

P � � �� and by time�integration we infer

P � �� 
m
 n������

Therefore� the evolution of the internal variables P and p can essentially be described in

terms of the single parameter 
� The kinematics of plastic �ow is a simple shear in the plane

spanned by m and n� For this reason m and n are called the slip�system�

Direct calculations provide the Legendre�transform J� of J �

J���� s� � sup
�
Q � ��m
 n� � qs � jm �Qnj � q � r� q � �

�
� sup

�
Q� � qs � jQj � q � r� q � �

�
� sup

�
jQjj�j� qs � jQj � q � r� q � �

�
� sup

�
�jQj � q�j�j� q�j�j� s� � jQj � q � r� q � �

�
� sup

�
rj�j� q�j�j� s� � q � �

�
�

�
rj�j if j�j� s � ��

� else�

By substituting ����� with F � FeP
�� into ����� and making use of detP � � �an immediate

consequence of ������ we obtain a reduced functional

If ����p���� 
� p� �
R
�

n
U�detF � � �

�
�trF TF � �
Cmn � 
�Cmm�

� a
�
p� � rj
 � 
�j � f � �

o
dx�

under the constraint

j
 � 
�j� p� p� � ��

Here� Cmm �m�FTFm and Cmn �m�FTFn denote the components of the Cauchy�Green

strain�tensor C � FTF in the directions given by m and n�

Minimisation with respect to p gives p � p� � j
 � 
�j and we can eliminate p from the

minimisation problem which leads to the unconstrained functional

If ����p���� 
� �
R
�

n
U�detF � � �

�
�trF TF � �
Cmn � 
�Cmm�

� a
�
�
 � 
��

� � �r � ap��j
 � 
�j � f � �
o
dx�

To eliminate 
 from the minimisation process� we perform a variation of If ����p� with respect

to 
 to see

� � �Cmn � �
Cmm � a�
 � 
�� � �r � ap�� sign�
 � 
��������
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By inspection it can be shown that ����� has the unique solution �writing ���� �� maxf�� �g�


 � 
� �
��jCmn � 
�Cmmj � r � ap���

�Cmm � a
sign�Cmn � 
�Cmm��

A substitution into If ����p���� 
� leads to the reduced functional

Iredf ����p���� �

Z
�

n
�red
���p�

�D��� f ��
o
dx

with corresponding reduced density function �where ����� means ������
��

����� �red
���p��F � � U�detF � �

�

�
�trF TF � �
�Cmn � 
��Cmm�

�
�

���Cmm � a�
��jCmn � 
�Cmmj � r � ap��

�
� �

To investigate the convexity properties of the potential �red
���p�

� consider �rst 
� � �� p� � ��

i�e�� we look at a time�increment at the beginning of which the body is completely elastic�

Let us specify F as

F � ��
�

�
�m� n�
 �n�m�������

Note that ����� constitutes a rank�one family of matrices parameterised by �� F represents

a simple shear under an angle of �� degrees with respect to the plastic slip�system given�

Substitution of ����� into �red
���p� yields

 ���� � ��
�

�
�� �

��
�
�� � r���

�a� ���� �� � ���
������

Since  ���� is continuously di�erentiable� convexity can be studied by means of the sign

of the second derivative� A straightforward calculation yields that  �
��

��� � � everywhere

provided a is large enough� So in this case  ���� is convex� This supports the expectation

that the presence of hardening should have a regularising e�ect on the problem at hand�

Let us now consider the opposite case a � �� Then� for r small enough�  ���� is clearly

non�convex� For instance�  �
��

��� � �
�
���r

�
�� � �� � � for � � � � �r

�
� By continuity� this

holds if j
�j� jp�j� or a remain small�

Proposition 	��� There exist positive constants c�� c�� c�� c�� such that for all j
�j � c��

jp�j � c�� r � c� and a � c� the potential �red
���p�

�F � given in �	�	� is not rank�one convex�

This result implies especially that �red
���p�

�F � is not quasiconvex and so suggests the occur�

rence of microstructures as minimisers of energy� see �BaJ���� �BaJ
�� for these notions� To

illustrate the possibility of microstructures� let us consider the case � � �� a � � and r � �

with  ���� displayed in Figure ��

It is easy to show that there exist exactly two values ��� �� such that

 ������ �  ������ �
 ������  �����

�� � ��

�
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Figure ��  ���� for � � �� a � �� r � �

A numerical calculation yields �� � ������� and �� � �����
�� This means there exists a

common tangent of the points ����  ������ and ����  ������ also depicted in Figure ��

The interpretation is that any macroscopic deformation gradient ����� with parameter

�� � � � �� yields a microstructure to lower the macroscopic energy from  ���� to the

smaller energy described by the tangent in Figure �� This is achieved by �ner and �ner layers

of alternating constant gradients ��
�j

�
�m�n�
�n�m� with probability j�j��j�j�����j�

The corresponding microscopic displacement is shown in Figure �

Figure �� Microscopic Displacement for Single Slip�System with Parameter

�� � � � ��
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Remark ��� �In�nitesimal elastoplasticity��� In the case of in�nitesimal �small�strain� elas�

toplasticity ����� would be replaced by the linear� isotropic energy density function

���e� p� �
�

�
�tr �e�

� � � tr ��e �
a

�
p��

where �� � are Lam�e�parameters and �e denotes elastic strain given by the additive decom�

position

�e � �� �p�

Here �p is the plastic strain and � the total strain given by

� � symF � ��

Choosing P � ��p and considering Fp 	 � for in�nitesimal strains we obtain

Q � Q � ��

the linearised stress tensor� The �ow rule asserts�
�P � �p

	
� ��

�
sign�m �Qn� symm
 n���

	
�

from which we obtain

P � 
 symm
 n�

The same reasoning as before leads to the internal energy function

�red
���p��F � �

�

�
�tr ��� � � tr �� � ��
��mn �

�

���� a�
��j��mn � 
�j � r � ap��

�
� ����
�

with �mn �m � �n�

The density function ���
� is convex in �� and so in� F �ACZ
��� This also indicates that

the in�nitesimal model is di�erent from that one which may be obtained by expansion of

the �nite model with respect to small quantities�

�� von Mises plasticity

The von Mises yield�criterion is commonly accepted to model the plastic behaviour of

polycristalline metals and other isotropic materials such as various polymers� We consider

once again the compressible neo�Hooke material de�ned by equation ������ The yield�

function will now be given by

��Q� q� � j dev symQ j � r � q������

Here dev T � T � �
d
trT denotes the deviator of a tensor T and jT j �

p
tr�T ��� We still

have p� q � R� q � �� This constitutes the �nite strain version of the von Mises yield function

with isotropic hardening as derived in �Mie
�� or �Hac
��� The �ow rule ����� can now be

put in the form

P�� �P � �� sign�dev symQ�� �p � � ��������
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Here sign�A� �� A�jAj if A �� � and sign��� constitutes the closed unit ball of matrices

intersected with the symmetric� trace�free matrices� Hence trP�� �P � � which� together

with the initial condition P ��� � �� implies detP � �� Although this relation is not assumed

to hold a priori we use it to eliminate detP from W further on�

The corresponding Legendre�transformed potential is �similar to �ACZ
��� given as

J��S� s� � sup
�
Q � S � qs � j dev symQ j � q � r� q � �

�
�

�
rjSj if trS � �� S � ST and jSj� s � ��

� else�

In this example� the choice of the increment ��P �P �� of plastic deformation is of partic�

ular importance� Volume preservation of plastic �ow can either be expressed in direct form

as detP � � of in rate form as trP�� �P � �� The speci�c form of the potential J� implies

that the latter condition is carried over to the time�incremental problem as tr��P �P �� � ��

This condition� however� does not automatically imply detP � � �here von Mises plasticity

di�ers from the model discussed in the previous section�� which means we have to construct

the time increment ��P �P �� in such a way as to ensure detP � �� There is no obvious

way to achieve this� One possible solution is

��P �P �� � log�P��
� P �������

For P��
� P symmetric and positive de�nite the logarithm is always well de�ned and can be

calculated� e�g�� from a singular value decomposition� On the other hand for given symmetric

S � ��P �P �� we have P � P � expS� hence detP � � � and trS � � imply detP � ��

Numerical time�integration algorithms based on such formulations are quite common in

�nite�strain elastoplasticity �Mie
�� MiS
���

Substitution of the speci�c forms of J� and ��P �P �� leads to the reduced functional

If �P ��p����P � p� �

Z
�

n
U��detC����� �

�

�
tr�PTCP � �

a

�
p� � rj log�P��

� P �j � f � �
o
dx�

�����

with the three constraints

tr log�P��
� P � � �� P��

� P � �P��
� P �T� j log�P��

� P �j� p� p� � ��

The second and third constraint can be eliminated� Minimising with respect to p gives

p � p� � j log�P
��
� P �j������

We introduce the symmetric tensor S as a new independent variable via the substitution

P � P � expS� The substitution of ����� into ����� yields

����� If �P ��p����S� p� �

Z
�



U��detC����� �

�

�
tr


�expS�P T

�CP ��expS�
�
�
a

�
jSj�

� �r � ap��jSj � f � �
�
dx
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up to a �xed additive constant� There is one remaining constraint

trS � ��

The reduced internal energy reads

����� �red
P ��p�

�F � � inf
n
U��detC����� �

�

�
tr
�
�expS�P T

�CP ��expS�
	
�
a

�
jSj�

� �r � ap��jSj
��� S � ST� trS � �

o
�

There is no analytical expression for �red
P ��p�

�F �� but we can still study its convexity properties

by performing the minimisation in ����� numerically� In order to do this we have to specify

the function U�j�� A common choice is

U�j� �
�

�
j� �

�� ��

�
log j������

We have U�j� � � for j � � which prohibits the compression to zero volume with �nite

force� Also ����� reduces to isotropic elastic material in the in�nitesimal case with Lam�e�

parameters � and ��

Once again �red
P ��p�

is not rank�one convex� In order to show this let us de�ne

 ���� � �red
������ �n
 n��

where n is an arbitrary unit vector� �Because of isotropy of �red
P ��p�

the de�nition is in�

dependent from the choice of n�� Figure � shows the graphs of  ���� and  ������ and a

clear indication of non�convex behaviour� �Note that for � � � but small enough we have
 ������ � � for large � while  ���� still remains non�convex��

 ����  ������

1 2 3 4 5
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Figure ��  �����  ������ for � � �� � � �� a � �� r � �

A remarkable feature of this example is that� surprisingly and opposite from what is found

in classical elastoplasticity� even a substantial amount of hardening does not prevent the loss

of �rank�one� convexity�
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Remark ��� �In�nitesimal elastoplasticity�� In the same way as in Remark ��� we can per�

form the transition to the in�nitesimal case� This results in an internal energy

�red
P ��p�

�F � �
�

�
�tr ��� � � tr �� � �� tr�P ����

�

����� a�
���j dev��� P ��j � r � ap��

�
� �

which once again turns out to be convex in F �ACZ
��� Consequently� the in�nitesimal

model di�ers fundamentally from the �nite one�

Appendix A� Discussion and additional mathematical theory

This appendix provides some mathematical concepts employed in the preceding three

sections� Besides notions of quasiconvexity �Dac�
� we discuss cross�quasiconvexity and

motivate the necessity �not only the convenience� of the reduced problem in order to detect

microstructure�

De�nition A�� �quasiconvexity�� A function 
 � Rd�d � R is called quasiconvex if it sat�

is�es


�F � �
�

vol�B�

Z
y�B


�F�D ��y��dy�A���

for all  � �W���
� �B�Rd� �� denotes homogeneous Dirichlet boundary conditions on �B��

Here the set B � Rd is any open domain in Rd � however it su	ces to consider the unit

ball�

It is well established by now that the loss of quasiconvexity gives rise to nonexistence of

minimisers and hence to the formation of microstructure in in�mising sequences� cf� �BaJ���

BaJ
��� The above examples show that �red is not quasiconvex �indeed not even rank�one

convex� for typical examples of �nite�strain plasticity� This is to some extent surprising

since in�nitesimal plasticity is� at least in the presence of hardening� well posed �see Remark

��� above�� The lack of convexity of the corresponding potentials should coincide with the

occurrence of microstructures in the associated material models�

Such microstructures are indeed observed experimentally in form of localisation zones or

shear bands� especially in the plasticity of metals or geomaterials� �Kor
�� Per
��� They

e�ectively are �rst�order laminates consisting of alternating bands with high and small or

no plastic deformation� Such shear bands usually are attributed to loss of ellipticity of the

corresponding model� i�e�� the Cauchy�Hadarmard condition is violated �this is equivalent

to the loss of rank�one convexity�� But even higher�order laminates should be expected�

These are generally not attributed to plastic materials� but even here experimental evidence

can be found� �Kor
�� OrR

��

So far our theoretical �ndings are in agreement with experimental results� There are�

however� new insights to be gained in the �eld of mechanics of materials as well� Up to

now localisation phenomena have always been believed to be associated with the presence of

material softening� usually caused by some sort of material damage� Hence any description

of shear bands had to involve some sort of damage model or at least some phenomenological
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softening model� Our results show� that �nite�strain plasticity in itself is already capable

of exhibiting localisation e�ects of this kind without invoking any additional models� thus

allowing us to explain those phenomena using fewer and maybe better justi�ed constitutive

assumptions�

Comments on the associated mathematical structures behind of our theory conclude the

appendix� The question we want to follow here is why the reduced incremental minimisation

problem ����� is more tractable than the full incremental minimisation problem ������ The

basic source is that all our existence theory of the minimsation problems relies on showing

coerciveness and weak lower semicontinuity of the functional on suitable function spaces�

However� weak lower semicontinuity is only su	cient but not necessary for the existence of

minimisers�

The full functional has the general structure

I��� z� �

Z
�


�x�D��x�� z�x��dx� 	�����A���

where the integral density 
 � � � Rd�d � Rk � R depends only locally on the internal

variable z � Rk not involving any derivatives� Such a structure occurs in many continuum

mechanical problems� such as phase transformations problems� where z describes the volume

fractions of the di�erent phases ��MTL��� GoM���� or in shell�models �LDR

��� Up to

technical details �like growth conditions and continuity� the weak lower semi�continuity of

the functional I on W��q����Rd�� Lq����Rk� �with suitable q�� q� � ������ is equivalent to

the cross�quasiconvexity� see �LDR

� and the references therein where also the relation

to the more general notion of A�quasiconvexity ��Dac��� FoM

�� is discussed�

De�nition A�� �cross�quasiconvexity�� The function 
 � Rd�d � Rk � R is called cross�

quasiconvex� if for all �F �� z�� � Rd�d � Rk we have


�F �� z�� �
�

vol�B�

Z
y�B


�F ��D ��y�� z�� z�y��dy�A���

for all  � �W���
� �B�Rd� and all  z � L��B�Rk� with

R
B
 z�y�dy � ��

Immediate consequences of cross�quasiconvexity are the quasiconvexity �see �A���� of


�x� �� z� � Rd�d � R �choose  z � � in �A���� and the convexity of 
�x�F � �� � Rk � R

�choose  � � � in �A����� In general� these two conditions are not su	cient to guarantee

cross�quasiconvexity�

The situation in �nite plasticity is even worse� We cannot have convexity in the internal

variable z � �P � p� as � is de�ned via ������ frame indi�erence implies non�convexity of

W ��� p� and the convexity of J� will not restore convexity of P �� ��F �P � p�P �� p�� �

W �FP � p� � J����P ��P �� p�p���

We are thus forced to study the reduced functional Ired with the reduced density


red�x�F � � inf
�

�x�F � z�

�� z � Rk
�
�
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Under very weak assumptions �like continuity of 
�x�F � �� � Rk � R and growth at in�nity�

we obtain that the in�mum in this de�nition is really a minimum and we may construct

a �measurable� map Z � � � Rd�d � Rk such that 
red�x�F � � 
�x�F � Z�x�F ��� The

incremental minimisation problem for I in �A��� is solved as soon as we have found the

minimiser � of the reduced functional Ired on W��p����Rd�� In fact� we only let z�x� �

Z�x�D��x���

To obtain a minimiser for Ired it is su	cient to have quasiconvexity of 
red which is

much weaker than cross�quasiconvexity of 
� In fact� cross�quasiconvexity of 
 immediately

implies the quasiconvexity of 
red� However� the hope for �nite elastoplasticity is that under

suitable assumptions we may have quasiconvexity of 
red without cross�quasiconvexity of 
�
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