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Abstract

We consider flows of hypersurfaces in R**! decreasing the energy
induced by radially symmetric potentials. These flows are similar to
the mean curvature flow but different phenomena occur. We show for
a natural class of potentials that hypersurfaces converge smoothly to a
uniquely determined sphere if they satisfy a strengthened starshaped-
ness condition at the beginning.

1 Introduction

Consider a smooth family F;, : M — R*™' \ {0} of oriented hypersurfaces
M, := F;(M) that evolve according to

d
ZF=—(H = $(s)(F.v))v = ~fv, (1)

where we have omitted the index t. Here, H denotes the mean curvature of
M; w. r. t. the outer unit normal » and ¢ is a smooth, radially symmetric
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function (reflecting the presence of a central force) depending on s := '5-.

More precisely ¢ is related to the potential v on R*™! \ {0} by

S

v(s) := exp —g/@da L B(s) = — 3_3)7(};‘) : _ m;(ss)
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where 77 : Rt — R is a smooth function. The total potential energy V' (F') of
the hypersurface F'(M) will then be defined as

V(F) ::/MU(S(F’))d,u.

A physical interpretation of our flow is as follows. Suppose we have an
electrically charged membrane with a constant charge per area. If this surface
is in a radially symmetric potential, then the energy of the system is given by
the energy in the exterior potential plus other terms, for example are there
forces between different parts of the surface, which we neglect. The negative
gradient flow for this energy is given by

d

SF = —o(H ~ 6(s)(F, ),
so we see that the stationary solutions of (1) coincide with the stationary
solutions of the negative gradient flow. We will prove the following main
theorem

Theorem 1.1 Let F : S" — R"*! be a smooth embedding such that
0<s_§s:¥§s+<oo.
Further assume that n satisfies
dsy € [s—,sy] with n(se) =1, (2)
n'(s) < _%Cn <0 Vsé€ls_,sy] (3)

for a constant ¢, and




holds for F. Then (1) admits an embedded solution F, for all t > 0 with
Fy = F and Sy := F;(S™) converges exponentially in the C*-topology to a
stable sphere centered at the origin with radius rq = \/2sy.

Remark: Condition (4) can be easily satisfied and implies that Sy is star-
shaped w. r. t. the origin.

Let a > 0, B > 0 and assume that ¢ has the form ¢(x) = 55. Let F be

as in the main theorem, ro = max ‘F‘ At the point where this mazimum is

attained we have with so = 3r¢

On the other hand 1/ (sy) < —Z¢, implies

af
8(1)+ﬁ

> Cy

so we obtain

o < (%a(l + B))

and see that ro < R(n,«, 3).

We have chosen the special ansatz for the potential v as the stability of a
stationary sphere of radius ro = /25 is equivalent to the simple condition

n'(so) < 0.

We wish to explain the condition (4) assumed for the embedding F. First we
show, that the flow does not preserve convexity nor starshapedness during the
evolution (so a somehow different initial condition is needed for the smooth
long-time existence), then we give a geometric interpretation of (4).

We assume a potential v that tends to infinity for s — 0 and decays for
s — oo. Then a convex hypersurface does not need to stay convex during
its evolution. We take a sphere of large radius but assume that the origin
is very close to the surface. At the beginning of the evolution the surface is



repelled apart from the origin where it is very close to the origin but moves
relatively slowly at a large distance from the origin. As a sphere of large
radius is nearly flat near a fixed point this destroys convexity.

A more elaborated example will show that starshapedness with respect to
the origin is not preserved, too. We describe our surface in polar coordinates
as follows. The height above the unit sphere is given by a positive constant
times the characteristic function of a small geodesic ball around a fixed point.
The example is obtained if we smooth out this situation slightly. Figure 1
shows a cross-section of this hypersurface.

Figure 1: Starshaped example

Rotating it around the horizontal axis gives the whole hypersurface. If the
neck is thin, n — 1 principal curvatures become very large there. The remain-
ing negative principal curvature there is small compared to the others when
the neck becomes small (we also could increase the dimension of the surface
n). Of course the non-spherical part has to be made longer simultaneously
so that the curvature near the tip remains bounded. This construction yields
for a small potential compared to the mean curvature that the motion of the
surface is especially large at the neck where we assume that it shrinks so fast
that not only the starshapedness is lost but also the evolution will become
singular in finite time.

If we represent the hypersurface as graph /g, (this is possible for starshaped
hypersurfaces with respect to the origin), then the time derivative of logu
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equals —Fiﬂ/. The change of coordinates u — logu, however, is natural as
the induced metric of the hypersurface in this new coordinates is very similar
to the induced metric for graphs in Euclidean space, in fact, this shows the
conformal equivalence of S” x R and R"*! \ {0}. More details can be found
in the appendix.

Another interesting feature of our flow can be obtained for ¢ = 1, a case which
is not considered in our main theorem. Then the stationary solutions are
characterized by H = (F,v) and these hypersurfaces shrink homothetically
under the evolution of the mean curvature flow %F = —Hv.

We consider a potential with appropriate asymptotics as for example the
potential induced by n(s) = 21. Then there are two possibilities to reduce
the energy; the surface may move apart from the source of the potential or it
may contract and thus reduce its area and its energy as the charge is assumed
to be proportional to the area. When the surface encloses the origin, i. e. the
source of the potential, a charged point, these two effects are opposite to each
other and so it is reasonable to conjecture that the surface tends to a sphere
for which both forces compensate each other when the topology allows this.

We wish to mention some further papers on related problems. In [1], [4], [6]
and [7] the evolution of starshaped hypersurfaces for various curvature driven
flow equations has been considered. In contrast to outward directed flows,
where starshapedness usually is preserved, this fails for inward directed flows
like the mean curvature flow. For these flows convexity is naturally preserved
[2]. But even for inward directed flows we have nice properties for starshaped
hypersurfaces [6].

The paper is organized as follows: In section 2 we introduce notations from
differential geometry and compute the Euler-Lagrange equations, in section
3 we show how spheres can be used as barriers for our flow. In section
4 we derive evolution equations for geometric quantities, deduce a priori
estimates and prove the smooth convergence to a stable sphere. Finally, we
state additional properties of our flow in the appendix.

We wish to thank Jiirgen Jost and the Max-Planck-Institute for Mathematics
in the Sciences (MIS), Leipzig, for their hospitality.



2 Euler-Lagrange equations

We are interested in the first and second variation of V. To this end assume
that F} : (—¢,€) x M — R™"! is a smooth family of immersions of orientable
hypersurfaces such that

d

ZF =—

dt t f]/,

with a smooth function f depending on ¢ € (—¢,¢) and v denoting the
outward unit normal. We also recall the Gaufl formula, the equations of

Gauf}, Weingarten, Codazzi and Simons

Proposition 2.1

Rijii = highji — hihjg, (5)
V.V,F = —hyv, (6)
Vv = h'V,F, (7)
Vihi; = Vjh, (8)
ViV;H = Ahy— Hh'h;+ |A]*hy, 9)
2hIV,ViH = A|A? —2|VA]> - 2Z. (10)

Here h;; is the second fundamental form and
H = glijihij;
AP = g7g"hichy,
C = ¢"¢"g" hixhjshu,
7 = HC — |A*

¢" is the inverse of the induced metric

__ /OF OF
gz] T <axz ) 35173> .
Doubled indices are always summed from 1 to n, indices are raised and
lowered with respect to the induced metric and V denotes the Levi-Civita
connection on M w. r. t. g;;. In the sequel we won’t distinguish between
vectors V € T, M and DF (V) € Tp»R**! and we also use (-, -) both for the
scalar product on R"*' and on M. The calculations in [5] give
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Proposition 2.2

d
7% = —2fhij , (11)
d
g = —fHdu, (12)
d .
i DF(Vf)=g¢"“V,fV,F, (13)
d
d
Li = Af+ AR, (15)
d -~
ZIAR = 2WIV,V,f + 2fC, (16)
In addition we get
d o d
pribai et fo(F, viv. (17)

Lemma 2.3 The first and second variation for V and compactly supported
f € Ce(M) are given by

Ty | potrt = o(F )y

= — [ s o
[ (VIR = AR + 0+ S0

@V

Proof: The first variation formula is a direct consequence of (12) and (17).
For the second variation we use (13), (15) and compute

_Uf%(H—ng(F,V)) = —uf(Af + fIAR + fS(F,0)? + fé — ¢(Vs, V)
= —div(vf V) +u(|VI]2 = FPAP + 6+ ¢'(F, 1))

and the second variation formula follows from partial integration. a]



Corollary 2.4 The Fuler-Lagrange equation for stationary hypersurfaces w.
r. t. V is given by

H — ¢(F,v) =0.

A stationary hypersurface is stable (resp. strictly stable) if and only if

/ (VS = PPAR + 6+ #(F,0)))odp > 0 (resp. > 0)
M

for all smooth, compactly supported f # 0.

Corollary 2.5 Assume that sy satisfies n(so) = 1 and that n'(s¢) < 0. Then
the sphere with center at the origin and radius ro = \/2sq s strictly stable.

Proof: Left to the reader. o

The negative gradient flow for V' is given by 4 F = —v(H — ¢(F,v))v. Since
this is stationary if and only if H — ¢(F,v) = 0 we can as well consider the
modified gradient flow

d
@F: —fv (18)

with
f :H_¢<F7V>
We will set M, := F;(M). Then the results in [3] imply
Proposition 2.6 (18) is a system of quasilinear parabolic equations and

there exists a mazimal time 0 < T < oo such that (18) admits a smooth
solution on [0,T).

3 Inclusion principle

Lemma 3.1 Assume that the initial value Fy of a smooth solution Fy, 0 <
t < T, of the flow equation (18) is embedded. Then F;, 0 < t < T, is also
embedded.



Proof: Let t be the first time when the immersion fails to be an embedding,
Fi, (o) = Fiy(v0), o # yo. We choose a local coordinate system such that
Fy, (z0) = Fi,(yo) = 0 and the unit normals at the origin are +e, 1. So we
may write F}y, around zy and gy, as graph (u!) and graph (u?), respectively.
The representation as a graph is possible for a small time interval [to—¢, to+¢],
e > 0, too. We may assume that u' > u? for t < t,. If we replace v by —v in
the flow equation, H, (F,v) and v change sign, so we may assume that the
normals at (xg,t) and (yo,%y) both equal e,,;. We rewrite the geometric
evolution equation as a parabolic evolution equation for ' and u? and obtain

9 4 2 g, 1 2 if,1 2 1 2

&(u —u®) = a" (uy — ug;) + 0" (u; — ui) +c(u’ —u). (19)
We remark that this equation is parabolic as H is elliptic for every smooth
solution, i. e. especially for any function 7u' + (1 — 7)u?, 0 < 7 < 1. From
the strong maximum principle we deduce, that ! and u? coincide locally and
furthermore, that these two functions have locally to be equal before ¢ = t.
This contradicts our assumption about . O

Corollary 3.2 Let F be a smooth immersed solution of (18) and F be an
immersed solution of this evolution equation. If F is contained in a connected
component of R*\ F or in the closure of such a component at the beginning
of the evolution, then this remains true during the evolution.

Proof: As the geometric situation at the first point of contact is similar to
the situation in the proof of Lemma 3.1, we can argue as we have done there.
If F and F touch for ¢t = 0 then the strong maximum principle yields that
they are disjoint at least for small positive times unless there are connected
components of F and F which coincide for ¢ = 0. m

The following barrier argument will become important in the sequel.

Lemma 3.3 Assume s_, sg, sy are positive numbers such that s_ < so < s
and that n satisfies

n(se) = 1,
n'(s) < 0 Vséel[s_, sy
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Then under our flow all centered spheres of radius r = /2s with s € [s_, 5]
converge to the stable sphere with radius ro = \/2s9. Moreover, if My, t > 0
15 a smooth evolution of hypersurfaces such that My is contained in

{ye R"r = /25 < |y| <ry:=/2s.},
then M; will be contained in
{y e R"™Hro(t) < ly| <ri(1)},

where r_(t) and v, (t) are the radii for the evolutions of the inner and outer
sphere. If My exist for all t > 0, then M; converges pointwise to the stable
sphere of radius ry.

Proof: The first part is an easy consequence of

d

s =nn—1) (20)
which holds for centered spheres, see the independently proven Lemma 4.2.
The remainder then follows from the inclusion principle 3.2. o

Remark: From (20), n(so) = 1 and n'(sy) < 0 we deduce that the conver-
gence in Lemma 3.3 is even exponentially.

4 Convergence to a stable sphere
Lemma 4.1 The evolution equation for f is

d
il = AL = 6V V) 4 F(AP + 6+ ¢/ (F.0)?).

Proof: This has been calculated in the proof of Lemma 2.3. u]

Lemma 4.2 s satisfies

d
5= As — ¢|Vs|? + 256 — n,

10



Proof: First we compute
Vis = (F, F;)
with F; := %. Then the Gaufl formula implies
V.Vis = gij — (F,v)h.
Therefore
As=n— H{(F,v)y =n— f(F,v) — ¢(F,v)>

On the other hand

d d
aS:<F,£F>:—f<F,Z/>

and by writing F' = DF(Vs) + (F,v)v
—p|Vs|* = —(2s — (F,v)?).
The combination gives

is = —f(F, )+ As —n+ f(F,v)+ ¢(F,v)?

dt
oIVs[* + ¢(25 — (F,v)?)
= As— ¢|Vs|® +2s¢ — n.

Next we want to compute the evolution of (F,v).

Lemma 4.3 (F,v) satisfies

i(R v) = A(Fv) = ¢(Vs, V(F,v) +(Fv) (A + ¢+ ¢(F,v)°)

dt
— 2H —2s¢'(F,v)

Proof: We compute

VZ<F, l/> = hilvlS

11



and
V.Vi(EF, vy =V'h;Vis + hij — (F,v)h
where we used the Codazzi equation (8). This gives
A(F,v) = (Vs,VH) + H — |A]*(F,v).
On the other hand with (13) and (18) we conclude

D)= —f + (FDF(Vf)) = —f + (V5. V)

i
so that
%(F, VY = A(F,w) — (Vs,V(H — ) — H — [+ |A(F, ).

Since

V(H = f) = (F,1)¢'Vs + 6V(F,v) (21)
and

|Vs|? = 25 — (F,v)?

we obtain the result. O

We want to rewrite equations (15) and (16). To this end we need an expres-
sion for V;V,(f — H). From (21) we obtain

ViVi(f —H) = =Vi((F,v)¢'V;s + ¢V(F,v))
= —V,;(((F, l/>¢'5jl + qﬁhjl)vls)
= —(h}Vise's,! + (Fv)¢"Viss, + ¢'Vish)' + ¢V'hij)Vis
— ((E,n)¢'8) + oh))) (ga — (F,v)ha)
= —¢'(h/V;s+h/Vis)Vis — ¢"(F,0)V;sV;s — ¢V'hi; Vs
— (¢ — ¢ (F,v)*)hij + ¢(F,v)h'hy; — ¢'(F,v)gi;. (22)

Then

A(f—H) = —2¢'hV;sV;s — ¢"(F,v)(2s — (F,v)?*) — ¢(Vs, VH)

— (6= ¢ (F,v))H + o(F,v)|A] — nd(F,v).

Now (15) implies

12



Lemma 4.4

iH = AH — ¢(Vs,VH) + H(|A]* — ¢ + ¢/ (F,v)?)

dt
— 2¢'hV;sV s + (F,v)(¢"(F,v)? — 25¢" — ng').

(22) also gives
WIVV,(f — H) = —4¢'h'h/V;sV;s — 2¢"(F,v)hV sV ;s
— ¢(Vs, VIAP) = 2|A*(¢ - ¢(F,v)?)
+ 2¢(F,v)C — 2¢'(F,Vv)H.
From (16) and Simons’ identity (10) we then derive
%|A|2 = 2h9V,V,f +2fC =2h"V,;V;H +2hV,V,;(f — H) + 2fC
= A|A]?—2|VA|?-2Z
— 4¢'W'hI VsV s — 20" (F, )WV 5V ;5 — ¢(Vs, V| A[?)
— 2|AP (¢ — ¢ (F,v)?) + 20(F,v)C — 2¢'(F,v)H + 2fC.

Cancellation gives

Lemma 4.5
d
%|A|2 = AJAP — ¢(Vs, V[AP) — 2[VAP

— 4¢'hhI VsV s — 29" (F, v)hiV;sV ;s
+ 20AP(JA — ¢ + ¢/(F,v)*) — 2¢/(F,v)H.

In the next steps we want to prove that our spheres remain starshaped and
that (4) remains true under the evolution. Therefore we define the quantity

f
(Fyv)
A geometric motivation for ¢ will be given in the appendix. Then the evolu-
tion equations for f and (F,v) imply

q:=

%q B (F1y> (Af = &(Vs, VI) + FAP + ¢+ ¢(F,v)%))
- ﬁ(A(F, V) — &(Vs, V(E,v)) + (F,v)(|A]* + ¢ + ¢'(F,v)?)
— 2H — 2s¢/(F, V>) (23)

13



On the other hand we compute

Ay 1 5 2 2
M= s A F + s VE)P)
2
- <F,V>2<vfav<F7V>>
= Af — f V) — 2 14
- <F,l/> <F,V>2A<F, > <F,V><V<F’ >7Vq>

Inserting this in (23) yields

Lemma 4.6

d

0 = A
dtq q+

2
(Fyv)

(V(F,v),Vq) — ¢(Vs,Vq) + 2q(q + s¢' + ¢). (24)

Corollary 4.7 Under the assumptions of Theorem 1 there exists a positive

constant € > 0 independent of t such that

q+s¢'+¢

S —E€,
¢ <

2\ —4et
(max ¢°)e

as long as a smooth starshaped solution of (1) exists.

Proof: From Lemma 4.6 we obtain
d ,
aq

= A¢ —2|Vq|* + (V(F,v),V*) — ¢(Vs,Vq?)

2
(F,v)
+ 4¢%(q+ s¢' + ¢).

Since 5¢’ + ¢ = 41', the barrier argument 3.3 and (3) imply that
s¢'+ ¢ < —¢y

as long as S; remains smooth and starshaped. Consequently

d
—¢* < A¢-2|VgP+

dtq <V<F7 V>7 vq2> - ¢<V87 vq2>

2
(F,v)
+ 4¢*(q — cy)-

14
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Hence the maximum principle and (4) imply that ¢ cannot develop a positive
maximum with %qQ > 0 and ¢ — ¢, remains bounded above by the maximum
of zero and its initial maximum. This proves (25). Now choose

€ := ¢y — max g.
But then the evolution equation for ¢? and (25) even imply that ¢%e* re-

mains bounded by its initial maximum.

Lemma 4.8 Under the assumptions of Theorem 1 the starshapedness of Sy
remains true as long as a smooth solution of (1) exists.

Proof: We compute the evolution for the quantity

1
(F,v)?

which remains bounded above if and only if S; remains starshaped. From
Lemma 4.3 we get

B T T AR T TR
+ (E (AP + ¢+ ¢/ (F,v)?) — 2H — 25¢/(F,v))
1 6 2 s 1
+ <F2y>2(—|A|2—¢—¢'<F,u>2+2(q+s¢’+¢)>- (29)

Now as long as (F,v) remains positive we can use (25) and estimate

d 1 1 1 2 1
imer < Smop T V) ma (TE Y )
2 2 /
+ (Al -6 - 20) 20
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The barrier argument 3.3 implies

¢(s(z,t)) = min ¢(0) = cp10,  (30)
o minf sy 57 s f {5 o
o' (s(x,t)) > min P'(0) = cyy, (31)

; .k |F|2
o€ | ming min —5—,sp ¢, Maxq max -——,so
t=tg t=tg

for all z € S™ and all t > ty, where t; > 0 is a fixed time. Hence for all ¢t > ¢,
the following inequality is valid for starshaped S,

d 1 1 1 2 1
aEe < AEee? <VS’ VI u>2> T F) <V<F’ VT u>2>
2(|A|2 + 2¢ + c¢,t0)
F.0)?

— 2C¢I7t0. (32)

Let p(t) be the solution of

d
d_p = _2(26 + C¢7t0)p - 2C¢,7t07
t
(to) 1
= Inax
Pllo t=to <F, l/>2’

i. e. for 2e +cy 4y # 0

_ C¢' o —2(2e4c ) (t—to) C¢' o
1) = (plty) + —22 ) e dig)t—to) ___ “Ohlo
plt) (p((ﬂ 264‘C¢¢o> 2€ + c10

Then for all ¢ > t;, and starshaped S,

£at-n) < (k) -+ ()
__ﬂ%+%m<@%p_®'

The maximum principle then implies

1 1 C¢/ to _2(2 + _ Co' t,
< s € C¢,,t0)(t to) _ ¢ sLo 33
(F,v)2 — <rtn&}§< (F,v)? + 2e + cy 1 ‘ 2e + Cot (33)

for all t > to. Consequently the quantity (F,v) cannot tend to zero in finite
time and S; remains starshaped. u]
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Theorem 4.9 With the same assumptions as in Theorem 1 a smooth solu-
tion exists for all t > 0.

Proof: We need bounds for |[V¥A|? for all k¥ > 0. We begin with a bound
for
Al
(Fv)*

From Lemma 4.5 and the evolution equation (29) we obtain

d |AP 1 6 .
dt (F, v)? |A|2(A(F, w2 (Fv) L <VS’ VW>
+ (F,2u>2 (—|AP? = ¢ = ¢'(F,v)* +2(q + s¢' + ¢)))
1
+ o (BIAP — 9(Vs, VIAP) — 21V AP

— 4¢'hhI VsV s — 20" (F,v)h¥ VsV ;5
+ 2[AP(|AP = ¢+ ¢(F.v)?) — 2¢/(F,v)H)

= a2 (VAT ) -0 T V)

VAR APVEDP VR0
FE O () (Fovy?
o H AP
_ 2 1) . . _21 4 l.
Foyt VisVis = 20y e+ sd)

To proceed we define

Q2 = |<F, y)Vzh]k—Vz(F, l/>hjk|2
= (Ev)|VAP + |APIV(F,v)]? = (Fv)(V(F,v), VIAP).

This implies

VAR ARVE AP o1
2FEe S E 2<V'A"V<F,u>2>
N o lAr

= XEo T ED) <V<F’ »VIF, u>2>

17



and finally

d AP AP? o 14 2 o lap
i@ Fvy ~ S \V Vi >>+<F,u> <V<F’ >’V<F,u>2>
o, @ IVIE P O i sV
R A V0 E (7 L
CH AP ,
260 s A 0+ 56 (34)

To proceed we need the estimate
IV(F,V)|> = h\hV;sV;s

APIVs|?
2s]A|?.

ININ

Moreover
H2
< -
— 2(F,v)?
n|AP
2(F,v)?

‘ H
+

(F,v)

1
2
1
T3

Then we use the barrier argument 3.3 and estimate

d AP AP AP 2 AP
GEE S ATFp ¢< <,u>2>+<m> <V<F’”>’V<F,u>2>

AP

(F,v)?

+ Co (35)

+

for two positive constants ¢, co independent of . So we see that <‘ |>2 can

increase at most exponentially in time and since by Lemma 4.8 S; remains
starshaped this also means that |A|?> remains bounded on any finite time
interval. We can then proceed as in [2] to derive uniform upper bounds for
all higher covariant derivatives of A on any finite time interval [O,T) for
which a smooth solution of the flow exists. Consequently 7" = co. o

Proof of the main theorem: We are now able to prove uniform upper
bounds in ¢ also. First we need a uniform upper bound for ﬁ Therefore

18



we go back to inequality (33). From Lemma 4.9 we know that the flow exists
for all > 0 and since by assumption (2) ¢(sg) = 220) — 35 > 0, the barrier

250
argument 3.3 implies the existence of t; > 0 estimated from above such that
Coto > 0. But then inequality (33) implies that with a constant ¢ > 0 and

forallt >0

S C3. (36)

Our idea is to add enough of ﬁ to <}Al‘j2 to obtain a uniform bound for

|A|?. Therefore, let

2
B |A”P + &
(F,v)
for a large constant k to be determined. Then (32) and (35) give
d
—B < AB- B F B
G < DB 0(VsVB) 4 s (V(F).VE)
|A|? 2(2¢ + c44)
+ (Cl - 2]€)W —k W + 2C¢’,t0 + (37)

for all t > ty, with a fixed ty, without loss of generality t, = 0. We choose
k = c¢;. Then

%B < AB—¢(Vs, VB) + (V(F,v),VB)

(F,v)
- ClB + ¢4, (38)

where ¢4 depends only on ¢i, 2, ¢3, €, ¢40 and cg o but not on . Consequently
a maximum of B with %B > 0 must be smaller than 2 and furthermore B
and |A|? are uniformly bounded. Once we've obtained a uniform bound
for |A|*> we use the technique in [2] to obtain uniform upper bounds for all
quantities |[V*A[?. This shows that F} is uniformly bounded in C* for all
t > 0. From the barrier argument 3.3 we conclude that |s — sq| decays
exponentially. Then the elementary inequality

IV[* < const (M) - ||| - [[V*¢l,

for the sup-norms || || of C*-functions 1) on a compact manifold M and the
C*-bounds for s — sy (which follow from those for the second fundamental
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form) imply an exponential decay of |V¥(s — sq)|? for all k € N. We thus
conclude exponential convergence in C'™ to the stable sphere of radius ry =

vV 230. [}

5 Appendix

Corollary 5.1 Assume f > 0 for t = 0. If the absolute value of |A]* +
b+ ¢'(F,v)? remains bounded from above by some positive constant ¢ on the
time interval [0,tg),to < T, then fort € [0,ty)

. > . _ct )
min f(z) > min f(z)e™ >0

Proof: This is a direct consequence of the parabolic maximum principle
applied to Lemma 4.1. o

A geometric motivation for )

We wish to represent our evolution problem via graphs over the sphere S™
as in [1]. Therefore we use an embedding of the form

F:x(fi,t) -u(x({i),t),

where z € S™ and &' denotes local coordinates of S™. We use covariant
derivatives with respect to the metric of S™ and compute

F, = xu+au,,
Ej = l‘i]"u + l‘iu]‘ + .'L’jui + .'L’Uz'j,
g = (F,F)) =0y + uu

= u’(0ij + ¢ipj), where ¢ = logu,

y y il

b - r(-22),
w

gpk = O-klgpla

w =y 1+ QOZQOU
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where 0;; denotes the metric of the sphere S™. The outer unit normal is given
by
1

V:E(x—gokxk).

The Gauf} formula relates the second covariant derivatives of the embedding
vector to the second fundamental form and the normal, where the second
derivatives are taken with respect to the induced metric. At the moment,
however, Fj; denotes the second covariant derivatives with respect to the
metric 0;;. However, these derivatives are related by

Ffj = Fj + (T5(0) = T5(9)) Fi,
so we deduce from the Gaufl formulae for M and S"

(Fj, vy = (=hiyv,v) = —hy;

157
1 1,
hij = — AT W Tk UyT + UTj + UjT; — uoT

1 1
Uij + 2$’LLZ’LL] — aui]‘

(045 + wiv; — ©ij)

~Eleg g

Uu
= —gij — —Pij-
uw J w J

Next, we will derive an evolution equation for u

d i 0 ox
_(l‘.u) = ax-u+x-au+l’-<vu,—>, (39)

In view of

9, 9,
0= g(x,@ =2 <§x,x>,

we obtain by multiplying (39) with z
1 Ou oz
v a+<v“’a>-
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From the remaining part of (39) we get

1, 0
fESOZ%' = 555 U,

thus
0 1 .
at = _fa (1+ Ve, p'zi))
= —fuw
and in view of (F,v) = L
9 f

T e T Ty

We now state the parabolic differential equations for ¢, ¢ and W = %(1 +

©* o) to give the reader the opportunity to compare the evolution equations

for ¢ and ¢, Lemma, 4.6, as well as those for W and ﬁ, equation (29),

¢ = g7pi; —ne  + ¢,
¢ = 9oy — e (G + ' )pij + 267 — PP pF gy
w w

+9(=20 + 20 + ¢'e*?),

. .. . 1 . 1 .

W = g"Wi — e plel — —e T PWIW,; + 2—e ™2 (Wiep;)®

w w

+(2W —1) (e (n—1) — 2¢ + 26 + ¢'e*?) .
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