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� Introduction

Synchronization of large interacting systems has been observed in several natural situa

tions such as synchronized �ashing of the �re �ies� pace maker cells of the heart� neurons�
etc 
	� �� ��� Synchronization of chaos in low dimensional systems was studied by Pecora
and Carroll 
��� It has also been studied in coupled oscillator systems and other spatially
extended systems 
�� ��� Due to potential applications in various problems of practical
interest� synchronization of chaotic elements in a coupled dynamical system has been an
active area of research 
�� ���

Spatially extended systems are suitably modelled by coupled map lattices �CML�� In
comparison to partial di�erential equations� CMLs are more suitable for computational
studies because of the discrete nature of time and space while all the analytical aspects
of dynamical systems theory can also be used� CMLs were introduced as a simple model
for spatio
temporal chaos 
��� They show a variety of phenomena from regular periodic
behaviour to very complicated spatio
temporal patterns� chaos� intermittency� etc 
	��� In
CMLs� the dynamical elements are situated at discrete points in space� time is discrete�
and the state variable is continuous� Each spatial unit is coupled to its neighbours� The
selection of neighbours is determined by the structure of the network� In most studies
di�usive coupling �nearest neighbour interaction� is used� There are studies on CMLs
with various coupling schemes� such as open network� random network� global coupling �
etc 
		�� In most studies a symmetric coupling matrix is employed�

Here we study the synchronization properties of systems formed by a large number of
identical dynamical elements that are connected by identical symmetrical links� We derive
general conditions for the stability of spatially homogeneous solutions of a CML with any
symmetric interaction matrix making use of the spectral properties of the interaction
matrix� The coupling topology can a�ect crucially the synchronizability of the system�

In the next section we describe the properties of the spectrum of the CML� We perform
a linear stability analysis and give the conditions for the stability of synchronous solutions
and di�erent regimes of stability� This is given in section �� Results on the global stability
analysis are given in section �� In section � we provide some numerical results to elucidate
the analytical results with speci�c examples� Here we take a quadratic map for the site
dynamics as an example but the results are valid for any dynamical system� The results
are even more general in the sense that their validity is not restricted just to CMLs� but
can further be applied almost directly to partial di�erential equations� coupled ordinary
di�erential equations� etc� Finally we provide a discussion on related aspects of the
dynamics of CMLs�

� CML and its Spectrum

We consider a coupled map lattice of the form�

u�x� n� 	� � �

�
B� 	

nx

X
y

x�y

f�u�y� n��� f�u�x� n��

�
CA� f�u�x� n��� �	�

�



where nx denotes the number of neighbours of x� Here� f � R� R is some di�erentiable
function� often chosen to be the quadratic �logistic� map in the literature� x is a spatial
variable� its domain being some �nite discrete set M � That set carries a neighbourhood
relationship� specifying which y �M are neighbours of a given x �notation� x � y�� The
extreme case is the one of a global coupling where all y are neighbours of any x� If M
has the structure of a k
dimensional periodic grid� the other extreme case is the one of
nearest neighbour coupling where only those y are neighbours of x that are one step away
from x in one of the coordinate directions� In that case� each x has �k neighbours� Of
course� we also have the trivial case where each x is its own neighbour� but has no other
neighbours� That case of course� represents the absence of coupling�

In the sequel� the only assumption we shall need is that the neighbourhood relation

ship is symmetric� i�e�� if y is a neighbour of x� then x in turn is a neighbour of y� We
also adopt the 
 completely inessential 
 convention that x is not considered as a neigh

bour of itself� �Abandoning that convention would simply amount to a rede�nition of
the value of ��� Finally in order to avoid trivial case distinctions� we assume that the
neighbourhood relationship is connected in the sense that for any given x�� x� � M � we
�nd y� � x�� y�� � � � � ym � x�� s�t� yj�� is a neighbour of yj for j � 	� �� � � � � m � 	� We
consider n � �� 	� �� � � � � as the time variable of the evolution�

Our subsequent analysis will not depend in conceptual terms on the detailed structure
of M� Of course� the numerical values of the bifurcation parameters below will re�ect the
geometry of M�

Our analysis is phrased in general terms and so it is straightforward to extend it to
the cases�


 where f is vector valued�


 where M is a continuous space which then has to carry a measure d�� and the
averaged sum needs to be replaced by an averaged integral�


 to weighted neighbourhoods i�e�� where we are given a nonnegative function

h � M �M � R�

that is symmetric �h�x� y� � h�y� x� � x� y � M� and consider in place of the
averaged sum in equation �	�

�	�
X
y

h�x� y��
X
y

h�x� y�f�u�y� n���

�the situation in �	� corresponds to the choice h�x� y� �

�
	 if x� y neighbours�

� else
��


 replacing the last term f�u�x� n�� in �	� by g�u�x� n�� for some function g�


 as well as to the case of coupled ordinary di�erential equations in place of di�erence
equations�

�



As these extensions are rather trivial� we refrain from carrying them out�
The following represents a generalization of the linear stability analysis that has been

carried out in the literature for various special cases such as global coupling 
	��� nearest
neighbor coupling 
	��� and random coupling 
	���

We shall need the L�
product for functions on M �

�u� v� ��
	

jM j

X
x�M

nxu�x�v�x��

where jM j stands for the number of elements ofM � We also put jjujj �� �u� u����� �L�
norm
of u�� We consider the operator�

L � L��M�� L��M��

Lv�x� ��
	

nx

X
y

x�y

v�y�� v�x�� ���

L has the following properties�
�i� L is selfadjoint w�r�t ������

�u�Lv� � �Lu� v�

for all u� v � L��M�� This follows from the symmetry of the neighbourhood relation�
�ii� L is nonpositive�

�Lv� v� � ��

This follows from the Cauchy
Schwarz inequality�
�iii�

Lv � ��� v 	 constant�

Hence� �i� implies that the eigenvalues of L are real� By �ii�� they are nonpositive� we
write them as ��k� and the eigenvalue equation then is

Luk � �kuk � ��

We order the eigenvalues as �� � �� � �� � 
 
 
 � �K� �This convention deviates from the
one used in the literature� Our operator L corresponds to the interaction matrix minus
the identity matrix� and one usually considers the eigenvalues of the former in descending
order��

We may then �nd an orthonormal basis of L��M��

�uk�k������ �K

of eigenvectors of L�
By �iii� the smallest among the �k is

�� � ��

�



and this is a simple eigenvalue �because we assume that the neighbourhood relationship
is connected�� i�e��

�k � � for k � �� ���

The numerical values of the bifurcation parameters occurring below will depend only
�besides on � and the Lyapunov exponent of f� on the eigenvalue spectrum of L� This
eigenvalue spectrum� of course� re�ects the underlying geometry ofM and of the coupling�
Some general considerations may be helpful for understanding this point�

In the case of global coupling �including self coupling�� we have

�� � � �as always�

and
�� � �� � 
 
 
 � �k � 	�

since
Lv � �v

for any v that is orthogonal to the constant map� i�e�� satis�es

	

jM j

X
y�M

v�y� � ��

If we shrink the neighbourhood size� then the eigenvalues can separate and grow� and in
particular� the largest one� �K � will become larger the smaller the neighbourhood size is�
In particular�

�K � 	

as there may exist v � L��M� withX
x�M

X
y

x�y

v�x�v�y� � �

�e�g� M � f	� �� � � � � mg� m even� m � �� with � having neighbours ��	 and ��	� closed
periodically� i�e� m � 	 	 	�

v��� �

�
	� � even�

�	� � odd
�

Conversely� if the neighbourhood interaction matrix of all points is the same and kept
�xed while we increase the size of M � then all eigenvalues will decrease� This is a version
of Courant�s monotonicity theorem 
	��� Thus� from our analysis below� synchronization
will require� if possible at all� a larger value of the coupling parameter ��

We also have the following version of Courant�s nodal domain theorem 
	���

Lemma �� Consider M as a graph �M � with an edge between x and y precisely if x and y
are neighbours� Let uk be an eigenfunction for the eigenvalue �k� with our above ordering�
� � �� � �� � �� � 
 
 
 � �K� Delete from the graph �M all edges that connect points on
which the values of uk have opposite signs� This divides �M into connected components
��� � � � ��l� Then l � k � 	�

�



� Linear Stability Analysis

We now consider a solution �u�n� of the uncoupled equation�

�u�n� 	� � f��u�n��� ���

Clearly� u�x� n� � �u�n� then is a solution of �	�� This solution is spatially homoge

neous� or as one says� synchronized� The synchronization question then is whether for
certain values of the coupling parameter �� any solution of �	� asymptotically approaches
a synchronized one� A somewhat weaker question is whether� when we consider a pertur

bation

u�x� n� � �u�n� � �	k�n�uk�x�� ���

by an eigenmode uk for some k � 	� and small enough �� 	k�n� goes to � for n��� if
u�x� n� solves �	�� That question can be investigated by linear stability analysis and we
proceed to carry that out� Inserting ��� into �	� and expanding about � � � yields

	k�n � 	� � �	� ��k�f
���u�n��	k�n�� ���

f � denoting the derivative of f � So the su�cient local stability condition

lim
N��

	

N
log

	k�N�

	k���
� lim

N��

	

N
log

N��Y
n��

	k�n� 	�

	k�n�
� � ���

becomes

log j	� ��kj� lim
N��

	

N

N��X
n��

log jf ���u�n��j � �� ���

Here�

�� � lim
N��

	

N

N��X
n��

log jf ���u�n��j

is the Lyapunov exponent of f and so the stability condition ��� is

je�o�	� ��K�j � 	� ���

We may have

�o � �� �	��

i�e� temporal instability� but ��� for all k � 	� i�e� synchronization� We shall now assume
�	�� for the remainder of this section� By our ordering convention for the eigenvalues� ���
holds for all k � 	 if

	� e��o

��
� � �

	 � e��o

�K
� �		�

�



In order to satisfy that condition� we need

�K
��

�
e�o � 	

e�o � 	
� �	��

By our above discussion this hold in the globally coupled case because there �K � ��� By
way of contrast if we have nearest neighbour coupling� this can only hold if the size of M
is not too large� �For a 	
dimensional chain� the critical size is �� with a large value of ��
If we have second nearest neighbour coupling� the critical size of a one dimensional chain
is ���

Let us now assume that �	�� holds� We then predict the following behaviour of the
coupled system as � increases�

For very small values of � � �� as we assume �	��

e�o�	� ��k� � 	�

and so� all spatial modes uk� k � 	� are unstable� and no synchronization occurs� If we
are in the globally coupled case� then there exists a single critical value �c such that

e�o�	� �c�k� � 	

for all k � 	� �� � � � � K� For � � �c� the dynamics become synchronized� For � slightly
smaller than �c� one observes intermittent behaviour� clustering� etc 
	���

Let us now consider the more interesting case where the coupling is not global so that
not all the �k are equal� in particular

�� � �K �

We then let �k be the solution of

e�o�	� �k�k� � 	

The smallest among these values is �K � the largest ��� If now� for k� � k��

�k� � � � �k�

then the modes uk�� uk���� � � � � uK are stable� while the modes u�� u�� � � � � uk� are unstable�
Because of Lemma 	� we see that desynchronization can lead to utmost k��	 subdomains
on which the dynamics is either advanced or retarded�

In particular� if � increases� �rst the highest modes� i�e�� the ones with most spatial
oscillations� become stabilized� and the mode u� becomes stabilized the last� So if �� �
� � ��� then any desynchronized state consists of two subdomains�

We then let ��k be the solution of

e�o� ��k�k � 	� � 	

Again�
��k � ��k���

�



Because of �		��
�� � ��K �

If
�� � � � ��K�

then all modes uk� k � 	� �� � � � � K� are stable� and the dynamics synchronizes�
If � increases beyond ��K � then the highest frequency mode uK becomes unstable and we

predict spatial oscillations of high frequency of a solution of the dynamics � If � increases
further then more and more spatial modes become destabilized�

� Global Stability Analysis

The basis of the preceding analysis was a linear expansion about a synchronized state
�u�n�� Therefore� that analysis is valid only for small perturbations about such a state� In
this section� we want to derive a criterion that guarantees synchronization for arbitrary
starting values u�x� �� of a solution of �	��

From general principles of functional analysis �see 
	���� there exists an operator�

� � L��M�� L��M�

with

��u�Lv� � ��u��v�� �u� v � L��M�� �	��

This follows from the self adjointness of L� It is not di�cult to write a � down explicitly�
but our more abstract approach provides the advantage of a less cumbersome notation�

� is nonnegative in the sense that

��u��u� � �� �u � L��M�� �	��

and we even have

�u � ��� u 	 constant �	��

�This follows from the nonpositivity properties of L��
Moreover � commutes with L� i�e��

�L � L�� �	��

and so� we may assume that the uk are also eigenfunctions of ��
Therefore a natural ansatz for a Lyapunov function for the dynamics �	� is

��n� �� ��u��� n���u��� n��� �	��

and it remains to derive conditions under which

��n�� �� for n��� �	��

�



We have

��n � 	� � ��u��� n� 	���u��� n� 	��

� ��u��� n� 	�����Lf��� n� � �	� ��f��� n���

by �	��
Since the uk are an orthogonal basis of L��M�� we may write

f�u�x� n�� �
KX
k��


k�n�uk�x��

with 
k�n� � �f�u��� n��� uk�� Inserting this into the last equality� we get

��n� 	� �

�
�u��� n� 	���

KX
k��

�	� ��k�
k�n�uk

�
� �	��

The important observation now is that in the last sum� we can discard the summand
k � �� because u� is constant� and so

�u� � ��

Moreover� we observed above that� since � commutes with L� we may assume�

��uk��ul� � �� for k 
� l�

and so

jj�f�u��� n��jj� �
KX
k��


�k�n�jj�ukjj
��

Using these observations and the Cauchy
Schwarz inequality in �	��� we may estimate

��n � 	� �
	

�
jj�u��� n� 	�jj� �

	

�
�	� ����

�jj�f�u��� n��jj�� ����

assuming j	� ��K j � 	� ���� i�e��

� �
�

�� � �K
� ��	�

If we now use the coarse estimate

jj�f�u��� n��jj � sup jf �jjj�u��� n�jj� ����

we obtain from ����

��n� 	� � �	� ����
� sup jf �j���n�� ����

We conclude

�



Theorem �� The coupled dynamical system ��� asymptotically synchronizes if � satis�es
���� and

�	� ���� sup jf
�j � 	� ����

Remark� If ��	� does not hold� ���� needs to be replaced by�

���K � 	� sup jf �j � 	� ����

In the special case of global coupling� the synchronization condition becomes�

�	� �� sup jf �j � 	� �� � � � 	� ����

The reason why we have sup jf �j in ����� in place of e�� � �� being the Lyapunov exponent
of f � as in section �� is that here we do not linearize about a spatially homogeneous
solution� Our global approach rather requires to consider any solution u�x� n� of �	��
This means� however� that our condition �		�� while su�cient� need not be necessary for
synchronization�

� Numerical Results

In this section we demonstrate our results with di�erent coupling schemes or network
topology� For our numerical study we took the quadratic map for the site dynamics�
The quadratic map is a widely studied chaotic map� given by f�x� � 	� ax� 
	��� Here
a is a parameter and varying its value the single map shows a variety of dynamical
phenomena� It becomes chaotic when a � 	���		� going through a period doubling
bifurcation sequence� At a � � the map is maximally chaotic� with a Lyapunov exponent
�� � log����

��� Global coupling

In the case of global coupling� we have �� � � and �� � �� � 
 
 
 � �m�� � 	� �The
self coupling term is also included here�� This case has been studied in various contexts�
When exp�����	� �� � 	� the spatially homogeneous solution is stable� as shown in 
	���
For the quadratic map with a � �� it becomes stable when � � ���� Just below this
value the system shows spatio temporal intermittency� clustering phenomena� etc 
	��� In
Fig� 	�a�� we display ��n�� the �uctuation of the state variable from the mean� de�ned
by ���n� � �

m

Pm
i���xi�n� � �x�n���� ��x�n� is the average of all xi�n��� for di�erent values

of �� for the case with a � ���� It can be seen that when � � �c � ���� the value of �
becomes zero �within the numerical accuracy� indicating that the system is synchronized�
Though the linear stability does not guarantee the synchronization from arbitrary initial
conditions� in this case it happens� We started with random initial conditions for the
individual sites� and after a few iterations the system synchronizes� indicating the stability
of the spatially homogeneous solutions in these parameter regimes� For a � 	��� the system
synchronizes for a smaller value of �� since the Lyapunov exponent at that parameter value
is ������� Here the critical value is �c � ������� Figure 	�b� gives details of this case� We
took m � 	��� for our simulations�

	�
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Figure 	� Fluctuation of the mean� ��n� is shown as a function of the coupling strength�
�� At each value of �� ��� �nal iterates of ��n� are plotted� Here m � 	��� and the
coupling is global� In �a� a � ���� and in �b� a � 	�� �

��� Nearest Neighbour Coupling

Here the eigenvalues are given by �� � � and �i � 	� cos���i
m
�� i � 	� �� �� � � � � m� 	� The

�rst nonzero eigenvalue is

�� � 	� cos�
��i

m
��

and the largest eigenvalue is

�K �

�
� for even m

	 � cos� �
m
� for odd m

�

Using this one can calculate the maximum value of m at which the spatially homoge

neous solution can be stable using the condition for linear stability� It will occur when

�K
��

�
exp���� � 	

exp����� 	

and the value of � lying between

	� exp�����

��
� � �

	 � exp�����

�K
�

For a CML with a fully chaotic quadratic map the maximum value of the system size
which can sustain a stable synchronous solution is m � �� when � is between ��� and �����
In the case of m � �� the �rst mode becomes stable at � � 	� but the last mode becomes
unstable for a value of � above ����� Hence there is no synchronization� The second mode
is stable when � is between ����� and 	� In Figs� ��� we give the plot of the �uctuation
of the mean �eld for di�erent values of �� for m � � and m � �� when a � ��� �a� and
a � 	�� �b�� When m � �� between � � ���� and ���� only one mode is unstable� From
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Figure �� Same as in Fig� 	 with nearest neighbour coupling� for m � � � in �a� a � ����
and in �b� a � 	���

the spectrum one can see that the largest value of m for which only the �rst mode is
unstable is m � � when ���� � � � ����� For higher values of m more than one mode will
be unstable for any value of �� So there cannot be synchronization in large systems with
nearest neighbour coupling�

��� Intermediate Range Coupling

If we consider k nearest neighbours �there will be �k neighbours for each site� the eigen

values are given by �� � � and

�i � 	�
	

�k

kX
j��

cos�
��ij

m
�� i � 	� �� � � � � m� 	�

Let us consider the case of two nearest neighbours �k � ��� As in the case of NN
coupling one can �nd the maximum value of m at which the CML can sustain stable
synchronous chaotic oscillations� For k��� it is m � � with ���� � � � 	� The maximum
value of m at which the second largest mode also becomes unstable is m � 	�� Figure �
gives the plot for m � � for a � ��� �a� and a � 	�� �b�� For � nearest neighbours �k � ���
it is at m � 	�� and for k � �� m � 	��

One can see that for k�m � ����	 the system synchronizes when the coupling is
strong� i�e�� � � 	� In Fig� � ��n� is shown as a function of k for m � 	��� near
the synchronization transition region� In each grid corresponding to a k value� 	���
�nal iterates of ��n� are plotted after discarding initial transients� The system shows
synchronization when k � ��	� As the system size increases we need a higher number of
neighbours for synchronization� For a �xed number of neighbours the behaviour is like
that of the NN case� there is no synchronization when the system size increases�
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Figure �� Same as in Fig� � with nearest neighbour coupling� for m � ��

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

ε

σ

m=9, a=2.0
(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

ε

σ

m=9, a=1.9
(b)

Figure �� Same as in Fig� � with two nearest neighbours coupling� for m � ��
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Figure �� Here ��n� is plotted for di�erent values of k �denoted inside the grid� with
intermediate range coupling� for m � 	���� a � ���� and � � 	��� Between two grid lines
	��� iterates of ��n� are plotted�

��� Random Coupling

Now we consider a case where there is coupling between random sites� For every site
we randomly select k other distinct sites and connect them with each other under the
constraint that self and multiple coupling is prohibited� The average degree of a node in
such a graph obtained is �k� For the quadratic map with a � ��� and � � 	� the system
synchronizes for large m� if k � �� in contrast to the unsymmetric case where it does so
for k � � 
	���

We plot the �uctuation of the mean �eld� �� for di�erent values of k for m � 	����
� � 	��� a � ��� �Fig� ��a��� and a � 	�� �Fig� ��b��� It can be seen that the system
synchronizes when the average degree of a vertex is � or more� for the completely chaotic
quadratic map� This is independent of the system size m� From random matrix theory
one can see that the value of �� depends only on k 
���� For smaller m� synchronization
can occur below k � � because of the �nite system size e�ects� So unlike in the case
of nearest neighbour or intermediate range interactions� in the case of random coupling�
one can have chaotic synchronization for any arbitrarily large value of m� if the number
of neighbours �k� is larger than some threshold determined by the value of the maximal
Lyapunov exponent of the chaotic map�

��� Small�world Networks

Small
world �SW� networks have an intermediate connectivity between regular and ran

dom networks� They are characterized by a very small mean path length as in random
networks while at the same time having a high clustering coe�cient as in regular networks�
SW coupling is done as in the Watts and Strogatz algorithm 
�	�� We start with a lattice
of m vertices each connected to its k neighbours� With a probability p we reconnect each
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Figure �� Same as in Fig� � with random coupling for di�erent k values� for m � 	����
and � � 	��� In �a� a � ��� and in b� a � 	���

edge to a vertex chosen uniformly at random over the entire lattice� Duplicate edges are
avoided� It has been shown in 
�	� that even for a very small random rewiring probability
p there is a transition to the small
world regime�

Here we took p � ��	 at which there is small world e�ect on the structural properties
of the graph� Figure � gives the �uctuation ��n� for di�erent values of �� k � 	� and
m � 	���� One can see that there is no synchronization at this value of p� �� � ���� �
When p � ���� there is synchronization for � � 	��� At this value the number of random
connections per vertex reaches the value needed for synchronization� In Fig� �� ��n� is
plotted for p values from �����	 to 	� and � � 	��� Between two grid lines 	��� iterates of
��n� are plotted and the corresponding log���p� values are also denoted� From this �gure
we can easily see that there is no synchronization for smaller p values�

��� Scale�free Networks

Another widely studied class of networks are the scale free networks� where the degree
distribution obeys a power law which is observed in many real networks� We studied
the synchronization of a scale free network constructed by the Barabasi
Albert algorithm

���� We start with k� vertices and at every time a new node is introduced� The new
node is connected to k already existing nodes and they are selected with a probability
proportional to the degree of that node� The process is continued for a long time and
then the degree distribution is described by the power law� P �k� � k��� where 
 � ��
It is independent of k�� For this study we took k� � k and a network of size m � 	����
Figure � shows the � versus � plot for k � �� and a � 	��� In Fig� 	�� ��n� is plotted for
di�erent values of k� for the case a � 	��� The synchronization behaviour is comparable
to that of a random network� When k � � there is synchronization for a � ���� We
checked our results with higher values of m also� The results seem to converge for large
system sizes and to be independent of the time of evolution �size� of the network�
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� Conclusion

We studied the spectrum of coupled map lattices and its relation to the stability prop

erties of the spatially homogeneous solutions� We derived conditions for the existence of
such solutions using linear stability analysis� Conditions obtained from a global stability
analysis are also provided� Our results are supplemented with numerical examples� For
the numerical study the quadratic �logistic� map is used for the site dynamics� We studied
the synchronization properties of coupled map lattices with di�erent coupling topologies
such as global coupling� nearest neighbour coupling� intermediate range coupling� random
coupling� small
world coupling and real
world coupling� The coupling topology can cru

cially in�uence the synchronizability of the CML� Our study can be generalized almost
directly to other spatially extended systems�
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