Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften

Leipzig

On Artin’s braid group and
polyconvexity in the calculus of
variations

by

Ali Taher:

Preprint no.: 71

2001







On Artin’s braid group and polyconvexity in the
calculus of variations

Ali Taherif

Abstract

Let Q2 C R? be a bounded Lipschitz domain and let F : @ x R7** - R
be a Caratheodory integrand such that F(z,-) is polyconvex for £3- a.e.
x € Q. Moreover assume that F' is bounded from below and satisfies the
condition F(z,£€) — oo as det& — 07 for £2- a.e. = € Q. In this article
we study the effect of domain topology on the existence and multiplicity
of strong local minimizers of the functional

Flu] ::/QF(x,Vu(x))dx,

where the map u lies in the Sobolev space W,;”(, R?) with p > 2 and
satisfies the pointwise condition det Vu(x) > 0 for £L?-ae. = € Q. We
settle the question by establishing that F[-] admits a set of strong local
minimizers on W,5?(Q, R?) that can be indexed by the group P, ®Z", the
direct sum of Artin’s pure braid group on n strings and n copies of the
infinite cyclic group. The dependence on the domain topology is through
the number of holes 7 in £ and the different mechanisms that give rise to
such local minimizers are fully exploited by this particular representation.

1 Introduction

Let Q C R? be a bounded domain (open connected set) with a Lipschitz bound-
ary 002 and let F' : Q) x ]RiX2 — R be a Caratheodory integrand such that F(z,-)
is polyconvex for £2- a.e. = € Q. Moreover assume that F is bounded from
below and satisfies the condition F(z,£¢) — oo as det & — 07 for £2- a.e. z € Q.
Here R7* = {¢ € R?*2 : det ¢ > 0}.

In this article we address the question of existence and multiplicity of local
minimizers of the functional

Flu) :/QF(a:,Vu(a:))da:

where the map w lies in the Sobolev space W;;”(Q, R?) = W, *(Q,R?) +id with
p > 2 and satisfies the condition det Vu(z) > 0 for £2-a.e. = € Q.
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It is often convenient to extend the integrand F to the entire space R?*?2
by setting F(z,£) = oo for L2-a.e. © € Q and each £ outside the set ]Ri“.
In this way any map u € W,;P(Q, R?) with Flu] < oo will verify the condition
det Vu(z) > 0 L2-a.e. x € Q. In the sequel we shall speak of F in this extended
sense.

As the term local minimizer has different meanings in different contexts, let
us proceed by clarifying the terminology. Assume that 1 < ¢ < oo and let
u € I/Viz’p (Q, R?) satisfy F[a] < co. Then @ is referred to as an L7 (respectively
W14 ) local minimizer of F if and only if there exists § > 0 such that for
all u € W,5P(Q,R?) it holds that F[a] < Flu] provided that ||u — @||ze < o
(respectively ||u —@||w1.« <6 ). We also adopt a classical terminology from the
calculus of variations and refer to a W4 local minimizer with 1 < ¢ < oo or an
L4 local minimizer with 1 < ¢ < oo as a strong local minimizer.

The central aim in this article is to study the interaction between domain
topology and multiplicity of strong local minimizers of F[-] in I/Vih’p (2, R?). Such
questions can quickly attract one’s attention when one observes that for star-
shaped domains 2, when F' does not depend on the spatial variable z and is
additionally strictly W1P-quasiconvex at £ = I in the sense of J. Ball & F. Mu-
rat [2], any W1? local minimizer of F[-] is bound to coincide with the identity
map (the argument being similar to that in [14] pp. 2). On the other hand
for any annular domain in R?, a heuristic argument of F. John [7] followed by
the work of K. Post & J. Sivalogonathan [12], imply that F[-] admits at least
countably many strong local minimizers in the space Wildp (2, R?), a sharp con-
trast to the former uniqueness result. (As will become clear later, the heuristic
argument, of F. John corresponds to what topologists often call a Dehn-twist
and quite surprisingly such arguments were known to the latter community as
early as the thirties (cf. e.g. M. Dehn [6])).

Motivated by this observation, we focus on the case of Q being an arbitrary
bounded Lipschitz domain in R? and address the question of how the topol-
ogy of Q relates to the number of strong local minimizers of F[-] in the space
Wi}{p (2, R2?). In particular can one obtain multiplicity bounds for such mini-
mizers in terms of the homotopy or homology groups of 2, a question that was
raised in the general multi-dimensional setting in [14].

The answer to the above questions in the two dimensional case studied here
is affirmative and depends only on the number of holes in 2. For clarification,
we refer to the domain Q as having n holes (with n being a non negative integer)
provided that 99 consists of n + 1 connected components. That for bounded
Lipschitz domains this number is finite is immediate (cf. Section 2). It is quite
interesting that this connection can be simply stated in terms of the number of
holes, as opposed to the higher dimensional case where one has to account for
other phenomenon as well (cf. [15]). The link to the homotopy and homology
groups of () is now natural as ) is an aspherical space and thus the non-trivial
groups in the homotopy and homology sequences correspond respectively to the
fundamental group 7 (Q2) being the free group of rank n with its Abelianization
H,(Q,7Z) being isomorphic to Z™ (clearly the connectedness of  implies that
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Hy(Q,Z) is isomorphic to Z). With this brief introduction we can now arrive
at the main result of this article:

Main Theorem. Let F : Q x R*?*?2 — R := RU {oc} be polyconver as de-
scribed and suitably coercive. Then the functional T[] admits a set of L' local
minimizers indezed by the group P, ® Z™.

The group P,, Z™ here is a direct sum of the pure braid group P,, on n string
introduced by E. Artin and n copies of the infinite cyclic group. In addition to
a multiplicity result, as will be clear later, this presentation also describes the
different mechanisms that are involved in giving rise to such local minimizers.
We refer the reader to Section 3 for a detailed discussion on the structure of this
group. Finally we note that the restriction to the boundary values of identity
is merely for convenience and the above theorem holds true for any boundary
data corresponding to the restriction to 92 of an orientation preserving home-
omorphism of the closure of the domain € into R2.

NOTATION AND TERMINOLOGY. For ¢ € R? and r > 0, we denote the
open (closed) disk with center a and radius r by D(a,r) (respectively Dla,r])
and put D = D(0,1). The circle ¢(a,r) refers to the boundary of the disk
D(a,r). For 0 < r < R we denote the open (closed) annulus with center a
and inner and outer radii » and R by A(a,r, R) (respectively A[a,r, R]) and put
A(r,R) = A(0,r, R). For any E C R? we denote by int F its interior and by cls F
its closure. The space of real 2 x 2 matrices is denoted by R?*? and the open
subset containing those with positive determinant by ]Rf_w. Group isomorphism
is denoted by 2. The Greek letters ¢, are used to denote self-maps and in
particular self-homeomorphisms of a domain whereas 7 often denotes a homeo-
morphism (diffeomorphism) between two different domains. Finally homotopy
between maps is denoted by ~.

2 Circular domains in R2

A bounded domain Q C R? is referred to as circular if its boundary consist of a
finite number of pairwise disjoint circles. If for some non negative integer n, the
boundary 0f) consist of n + 1 such circles we often refer to {2 as an n-circular
domain. A simple dilatation and translation in the plane shows that any circular
domain is diffeomorphic to one whose outer boundary is the unit circle. The
following observation will be frequently used in the sequel.

Proposition 2.1. Assume that Q1 and Qs are two circular domains with n, and
na holes each. Then clsQy and cls Qs are diffeomorphic if and only if ny = no.

Proof. We establish only the “if” part as the other one is clear. For this let
n denote the common value of n; and ny and assume that {a!,...,a™} and
{bl,...,b"} are the centers of the inner boundary components of Q; and Qs with
the outer boundary of each being the unit circle.
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We first observe that, up to diffeomorphism, the radii of the inner boundaries
can be assumed small and arbitrary, in particular equal. For this take 0 < s <
R<land0<t < R<1andlet n : Als, R] = Alt, R] be the map defined in
the polar coordinates (r,6) by

711 (r,0) = (o(r), ), (2.1)

where o € C™[s,1] verifies o(s) = ¢, o(r) = r for r € [R,1] and ¢ > 0 on
[s,1]. That 7 is a diffeomorphism is clear and simple calculations show that
det V1, = po'/r. The assertion now follows by applying a suitable translate of
71 at each boundary circle c(a,r) (respectively c(b,r)) by setting s = r and ¢
to be the desired radius and selecting R so that the circle ¢(a, R) (respectively
¢(b, R)) does not intersect any of the other boundary components.

We now claim that for any pair of points a,b € D and any r > 0 sufficiently
small there is a smooth map that pulls the disk D(a,r) to D(b,r) along the line
segment joining a to b in D. More specifically that we can associate to such data
an orientation preserving diffeomorphism 7» : cls D\D(a,r) — cls D\D(b,r)
that coincides with the identity map outside a strip parallel to the line segment
joining a to b.

Indeed assume that the coordinate axis are translated and rotated such that
b lies at the origin and a lies on the vertical axis at a distant £ above b. Let
be the map defined by

T 1 (z1,22) = (21,22 — £((21)n(22)), (2.2)

where ¢ € Cg°(R) with supp ¢ C [—2r,2r] such that ( =1 on [—r,r] with (' > 0
in (—=2r,—r) and ¢’ < 0in (r,2r), and n € C5°(R) with suppn C [-2r, ¢ + 2r]
such that n = lon [ —r, {4+ 7] with 0 <n' < 1/€in [-2r,{ —r] and ' < 0
in (¢ + 7,0+ 2r). (The existence of such 5 follows easily by mollifying the
piecewise affine function that is obtained by slightly perturbing the function
(again piecewise affine) having the same values as n at the end points of the
corresponding sub-intervals). Thus clearly det Vs = 1 — £¢n > 0 in clsD.

Applying the diffeomorphism 7, as many times as necessary it is possible
to show that when r is sufficiently small, one can even pull the disk D(a,r) to
D(b,r) along any polygonal line joining a to b in D, having no self-intersection
and with the resulting diffeomorphism coinciding with the identity map outside
a strip parallel to the polygonal line.

Using this idea it is now simple to complete the proof. We assume that for
each 1 < i < n, the points a’ and b’ are distinct (otherwise we remove them
from the sets and proceed with the remaining ones). We connect the points in
{a',...,a"} to the ones in {b,...,b"} with the same index by disjoint polygonal
lines having no self-intersections (that this is always possible follows form the
fact that the set obtained by removing a finite union of pairwise disjoint, simple
Jordan arcs from the unit disk is connected (cf. e.g. [5] or [10])). We let
10r > 0 denote the minimum distance between any two such lines or between
one and the boundary of D. Applying the diffeomorphism 7; we shrink the inner
disks to ones with all having equal radius . Then use the diffeomorphism 7
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to move these new disks inside D, each along the corresponding polygonal line
and finally scale back to get the boundary circles of Q5. This gives the desired
diffeomorphism, indeed orientation preserving. The proof is thus complete. [

We now make a simple observation regarding arbitrary bounded Lipschitz
domains Q C R?. Indeed we claim that for such €2 there exists a finite collection
of closed Jordan curves (infact Lipschitz) {y0,71,-..,Vn} in the Euclidean plane
such that Q = Qop\ U, clsQ;, where for 0 < i < n we denote by ; the inside
of ;. To justify this assertion we note that from Q being Lipschitz, it follows
that 0 has only finitely many connected components (as otherwise one could
take a sequence of points £; =+ z. with each z; lying on a distinct boundary
component and reach a contradiction by visualising that (2 does not lie on one
side of its boundary at z,). As each connected component of the boundary is
locally a Lipschitz graph and no self-intersection can occur, the argument can
be completed using standard devices from plane topology (cf. e.g. [5] and [10]).
For convenience and for future reference, in the above representation of 90 we
refer to 7o as the outer boundary of Q and often write 9°).

Proposition 2.2. Let Q C R? be a bounded Lipschitz domain. Then there exists
a non negative integer n and for every n-circular domain Q1 a homeomorphism
7 :clsQ — clsQy such that 7(0°Q) = 9°Q. In addition T can be chosen to be
a diffeomorphism when restricted to ).

Proof. Tt follows from the discussion prior to the proposition that for some non
negative integer n the boundary 9 consists of n + 1 connected components
each homeomorphic to the unit circle. There are now several ways to establish
the required homeomorphism. We choose a version of the Riemann mapping
theorem that asserts that 2 is conformally equivalent to an n-circular domain
Qs (cf. [5] pp. 106). Moreover according to a variant of an extension theorem of
Carathéodory (cf. [5] pp. 82) this conformal map can be extended to a homeo-
morphism 7 : cls 2 — cls 5. The proof can now be concluded by appealing to
the previous proposition. (|

Remark 2.1. Note that under sufficient regularity of the boundary 912, one can
extend the homeomorphism 7 in Proposition 2.2, to a homeomorphism between
clsQ and cls Qy with any desired degree of smoothness (cf. e.g. [11]). The lack
of continuity up to the boundary for the derivatives of 7 in the general case
considered here does not cause any inconvenience to us (cf. Section 4).

3 The mapping class group of (2

We denote by A2,(€) the group consisting of those self-homeomorphisms of cls 2
that are identity on the outer boundary 9°Q). The subgroup consisting of the
homeomorphisms that are identity on the entire boundary is denoted by A;jq(Q).

Two homeomorphisms ¢,¢ € AQ() with ¢lag = 9|sq are referred to as
homotopic (or often homotopic in A{;(2)) if and only if there exists a continuous
map h: [0,1] x clsQ — cls Q with h(t,z) = ¢(z) for every z € 9Q and ¢ € [0, 1]
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such that h(0,-) = ¢(-) and h(1,-) = (). It is thus clear that if ¢,9 € Aia(Q)
are homotopic, then for each ¢ € [0, 1] the homeomorphism h(t,-) € Aja(Q). In
this case we refer to the two homeomorphisms as being homotopic in Ajq(£2).

Of special importance in the sequel is the space Ciq(f2) consisting of those
continuous maps from cls () to itself that are identity on the entire boundary. It
follows from standard arguments based on degree theory that indeed any such
map is onto. Similar to that of homeomorphisms we say that two continuous
maps ¢, € Ciq(R2) are homotopic (or often homotopic in Ciq(Q2)) if and only if
there exists a continuous map h : [0,1] x clsQ — cls @ with h(t,z) = z for every
z € I and ¢t € [0,1] such that h(0,-) = ¢(-) and h(1,-) = ¢(-). We denote by
Cq the set consisting of the homotopy classes of maps in Ciq(2) or equivalently
Wo(cid(ﬂ), ld)

For notational convenience in the sequel the product ¢ of two homeomor-
phisms ¢ and ¢ € AL () (respectively two continuous maps ¢ and ¢ € C;q(12))
refers to the homeomorphism v o ¢ € A2 () (respectively continuous map
Yo € Ciq(R2)). This convention will be particularly helpful in the proof of the
main result.

The mapping class group of Q is the quotient group of Ajq(2) subject to the
equivalence relation of homotopy of maps or equivalently m(Aiq(Q2),id). We
denote this group by Mq. Our aim in this section is to give a convenient char-
acterisation of this group in terms of certain topological invariants of the domain
Q. That this is indeed possible is the content of the following proposition.

Proposition 3.1. The mapping class group Mg is isomorphic to the group
P, & Z™ where n denotes the number of holes in ).

Before focusing on the proof of this proposition we develop some necessary
tools that are required for the subsequent arguments. In doing so we make
extensive use of Artin’s braid groups on n strings. We refer the interested
reader to the monograph by J. Birman [3] and the original paper of E. Artin [1]
for further reference.

The full braid group on n strings (with n > 1) is denoted throughout by B,
and the subgroup consisting of the pure braids is denoted by P,,. For notational
consistency we set By and Py to be the trivial group. According to the repre-
sentation theorem of E. Artin (cf. [1] or [3] pp. 18) when n > 2, the group B,
is isomorphic to the abstract group generated by the n —1 elements o1, ..., 0,1
and subject to the defining relations

0;0j =0j0; when |i — j| > 2,
0;0i410; = 0i410;0;41 when 1 <i<n-—2.

The trivial braid is represented by €,. We also recall a result of W. Chow (cf.
[4]) to the effect that for n > 2, the center of the group B, is infinite cyclic
and generated by the braid o, = (07 ...0,_1)". The braid o, has a simple and
interesting geometric interpretation corresponding to a simultaneous twist of
the n strings.

We denote by F,, the free (non-Abelian) group of rank n (and when nec-
essary refer to its generators as ¢, ...,qn). It is easy to see that this group is
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isomorphic to the fundamental group of any bounded Lipschitz domain with n
holes. Moreover any homeomorphism ¢ € A;q(Q2) (respectively any continuous
map ¢ € Ciq(Q)) induces in a natural way an automorphism (respectively an
endomorphism) on this latter group. A representation theorem of E. Artin (cf.
e.g. [3] pp. 30) characterises the braid group B, as being isomorphic to a suit-
able subgroup of the group of automorphisms of F,,. This observation would be
of particular relevance in the sequel.

It is technically more convenient to carry out much of the subsequent analysis
on circular domains first and then pass on to the general case of Lipschitz
domains by suitable homeomorphisms. To this end we define for each non
negative integer n an n-circular domain D, C R? obtained by removing n
smaller disks from the interior of the unit disk D, in such a way that the centers
of these disks {a!, ...,a"} lie on the horizontal axis, equi-distant from one another
and the boundary and that the radii of these disks are all r, = 1/(4n + 4).

Our initial goal in this section is to associate to each domain D), a family of
homeomorphisms in A°4(D,,) that are of fundamental importance in the study
of the mapping class group of D,,. First we introduce two basic homeomor-
phisms ¢ and ¥ on two fixed domains ; and ». Then we use these particular
homeomorphisms as building blocks to construct the stated family of maps.

The twist homeomorphisms: Let ; C R? denote the annulus A(1/2,1) and
choose a monotone function g; € C*(R) such that 0 < g1 < 1 with g1(r) =0
for r < 1/2 and p1(r) = 1 for r > 1. Set ¢ € C®(clsQ1,R?) to be the map
defined in the polar coordinates (r,8) via

o :(r,0) — (r,0 —2mwo1(r)). (3.1)

Simple calculations show that det V¢ = 1 everywhere in 2y and that ¢|sq, = id.
It is therefore clear that ¢ € Ajq(Q1). Indeed ¢ is a map that keeps the inner
boundary of 2, fixed while rotates the outer boundary by 27 in the clockwise
direction.

Assume now that Q C R? is given and let v be a closed Jordan curve in Q. Let
7 :cls ) = clsU, be an orientation preserving homeomorphism where U, is a
neighbourhood of v in 2. Then a Dehn-twist along ~y refers to a homeomorphism
#7 € Aia(Q) that extends the map 7o ¢o7~! from U, to clsQ by identity.

Dehn-twists are crucial instruments in the study of self-homeomorphisms of
surfaces (cf. M. Dehn [6]). In the context of planar domains, we recall that
when € is circular, any homeomorphism ¢ € A;q(€) is homotopic in Ajq(2) to
a product of Dehn-twists along closed Jordan curves in Q (cf. W. Lickorish [8]
pp- 537). A further observation in this regard is that isotopic curves in Q give
rise to homotopic twists in Ajq(2). We often use this fact to replace a twist,
up to homotopy, with another one by taking a suitable isotopy of the curve
corresponding to the initial twist.

In the case of Q being the circular domain D,, introduced above and with
n > 1, we consider the collection of circles {cy, ..., ¢, } where ¢; = ¢(a?, 3r,,/2) for
1 < i <n. Then every such circle bounds an inner component of the boundary
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and by taking as neighbourhoods U,, = A(a’,ry,2r,) with the obvious choice
of 7() = a' + :/(2n + 2), we get a collection of Dehn-twists along the latter
circles. For future reference we denote this set by ®,, = {é1, ..., on }-

The shift homeomorphisms: Put a™ = (1/2,0), a= = (—=1/2,0) and let
Qs C R? denote the 2-circular domain obtained by removing the closed disks
Dl[a*,1/8] from the unit disk D.

Choose g2 € C3°(R) with supp g2 C [1/4,3/4] such that g =1 on [3/8,5/8]
with ¢4 > 0 in (1/4,3/8) and o) < 0 in (5/8,3/4). Let ¢ € C*(cls Q2,R?) be
the map defined in the polar coordinates (r,6) via

Y (r,0) = (r,0 + mo2(r)). (3.2)

Simple calculations again show that det V¢» = 1 everywhere in - and that
Ylop = id. Thus ¢ € A°%q(f22). The homeomorphism ¢ corresponds to a half
rotation in a suitable inner strip of {25 that results in the interchange of the two
inner boundary circles.

We now construct for any n > 2, a family of homeomorphisms ¥, =
{1, ...;n—1} in AL (Dy) that are naturally associated to the simple braids
in ¥, = {01,...,0n—1}. For this put p =2/(n+1) and for 1 <i <n—1let af
denote the midpoint of the interval (a’,a’*!). Then ¢; € C*(cls D,,, R?) refers
to the homeomorphism that extends o’ + py((- — a?)/p) from cls D,, N D(c?, p)
to cls D,, by identity.

Following the terminology for simple braids, in the sequel we refer to any of
the homeomorphisms in ¥,, as simple shifts and similarly to any of the home-
omorphisms in ¢, as simple twists. It is easy to see that the simple twists
commute with one another and the simple shifts (indeed they lie in the center
of the group Af;(Dy)).

Lemma 3.1. Assume that ¢* and )* for i = 1,2 are arbitrary homeomorphisms
in A2, (Q) with ¢' ~¢? in A (Q). Then

(i) ¢* ot ¢* = ¢' ? §* in AZ(Q),

(ii) if in addition ¢ ' ¢ € Aiq(Q), then ¢t ' ¢? ~ ¢t % 2 in Aig (), and
(i) if ¢* ¢* ~ id in Ajq(Q) and ' ~ id in Ajq(Q), then ¢t ¢l ¢ ~ id in
Aia ().

Proof. The cases (i) and (i7) are easy. For the case (ii7) we first use (i7) to
deduce that ¢' ' ¢ ~ ¢' ¢? and then conclude. O

Lemma 3.2. The simple shifts in ¥, satisfy the relations
(’L) ’g[)ii,bj:’(,bj’gbi fOTlSi,an—l with |’L—]| 22,

(i1) s Vi1 Y5 = Vi1 YiYipr for 1 <i<n—2, and

(131) for any 2 < k <n —1,

k

k m m
Hl/ﬂi Hd’kfj ~ Hwkfj#l Hwi, (3.3)
=1 j=1 j=1 3

i1

where 1 <m < k— 1.
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Proof. The cases (i) and (i7) follow from the definition of the simple shifts
and by direct verification (notice the analogy with the defining relations for the
braid group B, ). To establish (i7¢) we fix k within the given range and argue
by induction on m. Indeed, when m =1

k
szk = Hzpz (ki1 i) = v [ s, (3.4)
i=1

where in the last two steps we have used (i) and (i¢) above followed by a repeated
application of Lemma 3.1. Assume now that the assertion holds true for 1 <
m < k — 2. Then we can write

m+1 m k
le Hwk i leﬂwk i Vkmo1 2~ [] e jon [] ¥ ¢kma
i=1 i=1 j=1 i=1
k—m—1 k
~ H¢k 1 H Vi Yhom Vrem || i
Jj=1 i=k—m+1
k—m-—1 k
~ Hzpk j+1 Phom H i veem [ i
Jj=1 = i=k—m+1

m—+1

H Yk j41 le, (3.5)

where again we have used (i) and (i) above and Lemma 3.1. This establishes
the assertion for m + 1. The proof is thus complete. O

12

The significance of the next lemma is that it allows us to transfer information
from braids in B,, to homeomorphisms in A{;(D,,) that are accurate up to a
homotopy.

Lemma 3.3. Assume that the product of a finite collection of simple braids
or their inverses coincide with the trivial braid in B,. Then the product of the
corresponding simple shifts or their inverses is homotopic in Aia(D,) to the
identity map.

Proof. We first recall that any product of simple braids or their inverses is
equal to the trivial braid e, only through the defining relations of the group B,
indicated earlier. Consider now the following simple cases:

(1) 0'i0';1 =g, Or 0’;10'1' =€,

foril<i<n-1

(i1) o;0; 0_1 0']_1 =g, Or 0'_1 O'J_I 0;0; = Ep

fOI‘].<7,]<TL—].W1th |z—]|>2

(ii1) 0, 0441 050 l+1 o; 1 z+11 =€, 0r 0, 0; 1 ;_11 0;0ir1 0; = Enp
for1<i<n-—2.

In view of (¢) and (i) in Lemma 3.2, it is immediate that replacing any occurance
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of a simple braids by the corresponding simple shift in the left-hand sides of all
the above cases results a homeomorphism in A;q(D,,) homotopic to the identity
map (indeed in the cases (i) and (i7) the resulting homeomorphism is the identity
map itself).

We argue by induction on the length m of the word in the expression for &,,.
Assume that the assertion holds true for any word with length not exceeding
m > 1 and take a word of length m + 1. As for any product of simple braids or
their inverses of length m + 1 and equal to the trivial braid €,, it must be that
one of the three possibilities listed above occur in the product, by removing the
corresponding word (which is of length either 2, 4 or 6) one arrives at a new
product again equal to the trivial braid but of length not exceeding m. Using
the basis of the induction, replacing the braids with shifts in this new word re-
sults in a homeomorphism, homotopic to the identity map. As for the product
that was temporarily removed the same result holds true, it follows from (7i%)
in Lemma 3.1 that putting the corresponding shifts back in their original place
also results in a homeomorphism that is homotopic to the identity map. Hence
the conclusion holds for words of length m + 1. The proof is thus complete. O

As indicated earlier, the collection of Dehn-twists along closed Jordan curves
in any circular domain 2 provides a convenient way of representing arbitrary
homeomorphisms in A;q(€Q) up to homotopy. In the study of the mapping class
group of D,, that constitutes part of our subsequent analysis, it is more useful to
go a step further and instead present the homeomorphisms in A;q(D,,) via the
simple shifts and the simple twists (together with their inverses). As a starting
point one could address the question of whether one can write a Dehn-twist
along a closed Jordan curve in D,, in the desired form.

Figure 1: Here two homotopic maps in Ajq(Dyy1) are illustrated. The one on the
left corresponds to a Dehn-twist along the dotted circle that bounds all the k+1
inner boundary components. The one on the right is a product of a Dehn-twist
along the first k£ boundary components and a homeomorphism that corresponds
to pulling the (k+1)-th boundary components in the counter-clockwise direction
once around the outer boundary. The shaded disk in each case corresponds
to the (k + 1)-th boundary component and arrows in the clockwise direction
represent, a positive twist.

For this let v be an arbitrary closed Jordan curve in D,, and let ¢" denote
the Dehn-twist along v. Let ¢;,,...,¢;, for 1 < k < n denote a sub-collection of
the circles introduced earlier that lie inside y (here we allow ourself to take any
suitable Jordan curve isotopic to 7y as by doing so we do not leave the homotopy
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class to which ¢” belongs). We now consider two cases.

Case 1. The circles ¢;,, ..., ¢;, bounded by the curve 7 are consecutive. For
simplicity we assume that after re-labeling these are ¢y, ...,cg. It is clear that
when k£ = 1 the homeomorphism ¢” is homotopic to the simple twist ¢; and
hence the assertion follows. Thus in the sequel we assume that k& > 2. We claim
that under these assumptions

2—k k

k k—1
P ~ <H ¢i> H i |, (3.6)

with ¢; € ®, for 1 <i <k and ¢; € ¥, for 1 < j <k —1. (Note that the
second brackets correspond to the braid o. = (o7 ... ak,l)k that generates the
center of By.) To establish the claim we argue by induction on k. Indeed when
k = 2 the homeomorphism ¢ is easily seen to be homotopic to 97 and thus
(3.6) holds true. Assume now that the assertion holds for some integer k > 2.
Refering to Figure 1 it is clear that the twist ¢” is homotopic to a product of the
form @7 ¢ where 7, is a curve bounding the boundary components {cy,...,cx}
and 1 is a homeomorphism that pulls ¢i4; once along the boundary 0D in the
counter-clockwise direction. It is easy to check that (e.g. by multiplying the
simple shifts involved in a step by step fashion and then adjusting the twists
along each boundary component)

k k
(U (¢’1_1 ¢1;1 ¢11H_-]1€) H¢k7i+1 H ;. (3.7)
i=1 j=1

Thus recalling that the simple twists commute with one another and the simple
shifts, we can write

7 = o7

. 2=k k k k
(H q§i> H b | (67" - dr dih) H Yr—it1 H ¥j
i=1 j=1 =1 j=1

1

1

k1 1=k /1 - k
(H ¢z> H ¥j H Yr—it1 H ;. (3.8)
i=1 j=1

=1 j=1

However ignoring the twists temporarily, the last three sequence of products
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can be written as

k-1 Mo k k-1 ™o m k hm
¢ ) TTvs—isn [T =~ (T1%) T [0¢e—s | I1 %
j=1 i=1 j=1 j=1 i=1 j=1 j=1
k-1 ™ k k hm
~ (TT%i | TIwe—ic [T | T] %
j=1 =1 j=1 j=1
i k41
~ H b; (3.9)

with m = k —1,..., 1. Substituting (3.9) into (3.8) gives the assertion for k + 1.

Case 2. The circles ¢;,, ..., ¢;, bounded by the curve v are not consecutive.
Then we can reduce the problem to the previous case using homeomorphisms
¥ € A9 (Dy) in the form of a finite product of simple shifts or their inverses such
that ¢ ~ ¢ ¢ 1 with ¢ € Ajq(D,,) being a Dehn-twist along a Jordan
curve v; in D,. The main idea being that by simultaneously pre and post
multiplying a twist by a simple shift or its inverse we arrive at a new twist that
includes or respectively excludes a boundary component associated to the latter
shift. Proceeding step by step we reduce to case 1 and easily conclude.

N AN
~ooeooo ~ ooelooo
> e

~ oolelojoo ~ oole[oloo

Figure 2: A collection of Dehn-twists along polygonal lines is illustrated. First
row: ¢% and ¢, second row: ¢¢ and ¢¢. The domain Q = D,, and the shaded
disk corresponds to the i-th boundary component. It is easy to see that here

¢® ~ 7 ¢, and similarly @b ~ ;0.

Lemma 3.4. Any homeomorphism in Ajq(D,) (respectively any continuous
map in Cia(D,)) is homotopic in Ajq(Dy,) (respectively in Ciq(Dy,)) to a product
of simple twists or their inverses and simple shifts or their inverses.

Proof. We focus only on the case where the continuous map ¢ € Ciq(D,,). The
case ¢ € Ajq(D,,) is similar (or one can argue as above). First observe that ¢
is homotopic in Ciq(D,,) to a map that is identity on a strip near the boundary
and which does not map any point in D,, outside this strip into the strip itself.
Indeed it is enough to extend ¢ by identity to a neighbourhood of clsD,, and
proceed with a construction similar to that in the first part of the proof of
Proposition 2.1 (along each boundary component) to get for any small § > 0
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and t € [0,1] an orientation preserving diffeomorphism 7 : clsD,,— Ky, where
Ks: = {x € R? : disty(z, D,,) < 6t}. The homotopy (¢, x) > 7, *opor(z) would
then lead to the conclusion. For convenience we continue to denote the map
corresponding to t = 1 by ¢. Note that we can make this latter map smooth
while maintaining the other properties via a standard mollification.

Consider now the pointed space (clsD,,,zo) where g = (—1,0) € dD. Un-
der the above assumptions, it is possible to check that the map ¢ induces an
endomorphism on 7 (cls D,,, zo) that verifies the hypotheses of the representa-
tion theorem of E. Artin (cf. [3] pp. 30). (Notice that since ¢ coincides with
the identity map in a strip near 9D, it does not change the orientation of the
closed curves representing the standard generators of 7 (clsD,,, zp)). Therefore
this endomorphism is indeed an automorphism of F;, and consequently can be
associated to a braid o € B,, (indeed in P,,). Rewriting o as a product of simple
braids or their inverses and letting ¢» € A;q(D,,) to be the corresponding product
of simple shifts or their inverses, it follows that ¢ = ¢¢p~' € Ciq(D,,) induces
the identity automorphism on F,,. Hence it remains to show that any map ¢
satisfying such assumptions should be homotopic in Ciq(D;) to a product of
simple twists or their inverses.

We argue by induction on the number of holes n. When n = 0, it is evident
that any map in Cijq(D) is homotopic in Cijq(D) to the identity map. Assume
now that the assertion holds for some n and pick a representative of the generator
q1 of my (clsD,,, zo). By considering the winding number of continuous curves or
otherwise, it is easy to see that for this curve to be mapped into a curve that is
again a representative of ¢q, it must be that the segment (xg,z,,) should wind
around the first inner boundary component and do so at most finitely many
times (finiteness follows from continuity of ¢). By multiplying ¢ by ¢¥ for some
k € Z we then arrive up to a homotopy in Ciq(D,,) at a map that coincides with
the identity in a strip near the segment (xg, ;). Cutting the domain D,
along this segment leaves us with a domain with n holes, homeomorphic to D,
and a map that coincides with the identity on the boundary. We use the basis
of the induction and conclude. a

Figure 3: A representative of the generator ¢; and its image under ¢ is illus-
trated. It is clear that the image is again a representative of g;. The inner
and outer arrows on the right show the direction in which the image curve is
traversed before and after it winds around the first inner boundary component
of D,.



14 Ali Taheri

Proof of Proposition 3.1. For convenience we present this in two steps.

Step 1. Here we consider the case where Q C R? is the n-circular domain D,,.
We define a group epimorphism H : AL (D,) — B, in the following way: pick
¢ € A (D,) and extend it to an element of Aiq(D). (If ¢ € Ajg(Dyp) then
simply extend it by setting ¢ = id in the inner disks, otherwise extend it by
assigning to each inner disk a homeomorphism that takes it to the interior of
the disk to which the boundary of the initial disk is mapped to. That such a
homeomorphism exists is an easy consequence of Schoenflies theorem). Let h
denote the homotopy obtained by the application of the so-called Alexander’s
lemma, that is

h(t,z) = x when t < |z| <1,
| té(%)  when 0 < x| <t

Thus h(t,:) € Ajg(D) for 0 < ¢ < 1 with h(0,z) = z and h(1,z) = ¢(x) for
every = € clsD. By restricting h to the centers a’ of the interior disks we obtain
a representative of an element o of the full braid group B,,. We put H(¢) = o
and note that H(¢;) = o; for every 1 < i < n — 1 (this clarifies the connection
between the simple shifts and the simple braids).

(A,)] ~ > Mg y A (Q)) ~ —— Aut(F,)
GJ{ ontol lonto lidentity
0 > P, > B, — Aut(F,)

That H is a group homomorphism is clear. We proceed by showing that it
is surjective. The cases n = 0,1 are immediate as in both cases B,, is the trivial
group, so we shall assume that n > 2. As the collection of the simple braids ¥,
is a system of generators for B,,, each braid o € B,, can be written as a product,
unique up to the defining relation of B,

o= H U:;j, e;; € {£1}. (3.10)

To associate a homeomorphism in A, (Dy,) to the braid o, it is enough to take
the product

k
o=1]v:" (3.11)
j=1

with e;; as in (3.10). It is clear that ¢ € A;(©?) and according to Lemma 3.3,
independent, up to homotopy of the particular representation of . Also it is
interesting to observe that the group epimorphism H when restricted to Aijq(Dy,)
gives a group epimorphism (again denoted by H for brevity) H : Ajq(D,) — Py.
As homotopic maps in Ajq(D,,) have identical images under H we are led to a
quotient group epimorphism G : Mp_  — P,. Thus to finish the proof in step 1
it is enough to identify the kernel of G.
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Let A, = {[¢1],...,[¢n]}, that is the collection of equivalence classes of
simple twists in ®,,. It is easy to see that for each 1 < i < n the equivalence class
[¢;] lies in the kernel of G. We claim that Ker(G) = (A,), that is the subgroup
generated by A,. To this end let [¢] € Mp, be an arbitrary equivalence class
with representative ¢. According to Lemma 3.4,

6] = I 601" T i1 .12

for a collection of simple twists and simple shifts with d; € Zfor 1 <j <m—1
and e;; € {£1} for m < j < k. Applying G to both sides of (3.12) and
demanding G([¢]) = &, it follows that

G([¢]) = H 0. =en. (3.13)

j=m

However in view of Lemma 3.3, this implies that the corresponding product of
simple shifts should be homotopic in Aiq(D;,) to the identity map. Hence

[¢] = 1:[ 63,17 (3.14)

and so Ker(G) = (A,). As this latter group is isomorphic to Z"™ we deduce that
Ker(G) = Z"™. This completes the proof for the case where Q = D,,.

Step 2. We now show that the general case can be reduced to that of the
previous step. Indeed let 2 be an arbitrary bounded Lipschitz domain with n
holes and let D,, be the n-circular domain of the previous step. According to
Proposition 2.2, cls 2 and clsD,, are homeomorphic and thus Mq =2 Mp,_ . The
conclusion now follows form that of step 1. The proof is thus complete. O

Proposition 3.2. The homotopy classes of maps in the space Cia(2) can be
indexed by the group P, ® Z™.

Proof. As by now clear we first establish the claim for the case where = D,,
and then conclude with the aid of Proposition 2.2. To this end it is enough to
prove that firstly every homotopy class of maps in Ciq(D,,) contains a home-
omorphism of Ajq(D,) and secondly that two homeomorphisms ¢! and ¢? €
Aia(Dy,) are homotopic in Aiq(D,,) if they are homotopic in Cig (D). The first
assertion was proved in Lemma 3.4, so we proceed with the second one. We
assume without loss of generality that ¢? is the identity map. According to
Lemma 3.4 we can write ¢! ~ ¢ in Ajq(D,,) where ¢ and v are each products
of simple twists or their inverses and simple shifts or their inverses respectively.
If 4 is not homotopic to the identity map in A;jq(D,,), then it corresponds to a
braid o # &, (via the group epimorphism constructed in step 1 in the proof of
Proposition 3.1). Appealing again to the representation theorem of E. Artin the
braid o is then associated to an automorphism of F;, different from the identity
automorphisms. Observing that the following diagram commutes
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Afa(Dn) —— (¥n)

] [
Aut(Fp) +—— B,

we arrive at a contradiction as ¢! and 1 induce the same automorphism on Fj,
and by assumption ¢! is homotopic to the identity map in Ciq(D,). Hence to
complete the proof we need to establish that the product of the simple twists,
that is ¢ is homotopic to the identity map in A;q(D,,). But this is easy as ¢ is
homotopic to the identity map in Ciq(D,) and therefore can not contain any
twist without its inverse (as otherwise the base point preserving map associated
to ¢ from the pointed space (S!,zo) to itself and the constant map of (S, z)
associated to the identity will be homotopic in (S!,z¢) while having different
Brouwer-Hopf degrees). Hence ¢' is homotopic to the identity map in Ajq(Dy,).

We have therefore established that the homotopy classes of maps in Ciq(D,,)
are in a one-to-one correspondence with the homotopy classes of maps in A;jq(Dy,).
Thus the conclusion follows by an application of Proposition 3.1. O

4 Proof of the main result

The purpose of this section is to finalise the proof of the main theorem stated
earlier in the introduction (cf. Theorem 4.1 below).

Recall that Q C R? is assumed to be a bounded Lipschitz domain and that
the integrand F : Q x R2*? — R is bounded from below and for £- a.e. € Q
polyconvex in £. More specifically we assume that F' satisfies:

(H1) there exists & : O x R — R such that

(i) ®(-,J) is L£2- measurable for every J € R?,

(ii) ®(x,) is continuous and convex on R® for £2- a.e. x € Q,

(iii) for L2~ a.e. z € Q, ®(x,&, det €) = oo if and only if £ ¢ R3*?,

(iv) F(z,&) = ®(x, &, detf) for £?-a.e. z € Q and every ¢ € R?*2,

(H2) there exists a locally bounded function G : R2*? — R such that F(z,¢) <
G(€) for £2- a.e. x € Q and every ¢ € R7*?, and finally that

(H3) there exist f € L'(Q2) and constants ¢ > 0, p > 2 such that

F(z,§) > f(z) + gl

for £2- a.e. x € Q and every £ € R7.

It is an immediate consequence of (ii¢) and (iv) in (H1) that any map u €
Wia’p(Q,]RQ) with Flu] < oo verifies the condition det Vu(z) > 0 £2- a.e. in
Q. In view of a result of S. Vodopyanov & V. Gol’dshtein [16] any such u can
be represented by a continuous map in C(cls Q, R?) with monotone coordinate
functions. The boundary values of u would then imply that u can be represented
by a map in the space Ciq(Q2).

We now fix the domain ) and let n denote the number of holes in Q2. Then
according to Propositions 3.1 and 3.2, the mapping class group Mg and the set
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Cq both can be indexed by the group P,, & Z". For each X in this latter group,
we let C»(2) and Ay () denote the corresponding homotopy classes of maps in
Ciqa(Q) and Aiq(Q) respectively and put

WA(Q) := {u € WP(Q,R?) : Flu] < co,u € C5(Q)}.

Notice that we have taken advantage of the earlier comment that any Sobolev
map u € WP (Q, R?) with Flu] < oo can be represented by a map in Ciq(Q2).

It is clear from the above definition that every class Wy (Q) corresponds
to a component Cy(Q) and hence A)(2). We now intend to show that this
correspondence goes in the reverse direction as well. Indeed fix Ay () C Aja(Q2)
and let Ay (D)) C Aja(Dy) be the component associated to the latter via the
homeomorphism 7 : cls Q2 — clsD,, of Proposition 2.2. In view of the discussion
preceeding Lemma, 3.4, Ay (D,) admits a representative, say ¢, that can be
written as a composition of finitely many Dehn-twists along closed Jordan curves
in D,, (notice that we can take these curves to be smooth by isotopy). Since each
such twist corresponds to a smooth map with a positive determinant (cf. (3.1)
and the discussion subsequent to it) and as the latter curves are away from the
boundary of D,, appealing to Proposition 2.2, it follows that composing with
7 and 77! respectively also gives a smooth representative ¢ of the component
A () with a positive determinant. (This can be easily checked by setting
¢(x) = 7 Lopor(z) for z € cls Q and using the chain rule for the derivatives and
the product formula for the determinants). Thus det V¢ (z) > 0 for z € cls{2 and
hence the latter provides us with a representative of a Sobolev map u € W/ (Q2)
that in view of (H2) verifies Flu] < co.

Theorem 4.1. Let the integrand F satisfy (H1), (H2) and (H3). Then the
functional F]:] admits a set of L' local minimizers that can be indexed by the
group P, & Z".

Proof. For each A\ € P,, ® Z" let uy € Wy () be defined via

Fluy] := inf F[-].
wa] = jnf, B
The existence of a minimizer to the above problem follows from the direct
method of the calculus of variations. Indeed let {u/)} C W, (Q) be a minimizing
sequence for F[-]. Tt follows from the coercivity of F that {u()} is bounded
in W P(Q,R?) and that det Vul®) > 0 for each j and L*ae. = € Q. As
p > 2 this implies that there exists @y € VVih’p(Q, R?) such that by passing to
a subsequence, u(/) — @y in W'P. Moreover since F[-] is sequentially lower
semicontinuous with respect to W' P-weak convergence we deduce that
Flay] < liminf Flu)] < oo.
j—o0
Thus @y is a minimizer of F[-] on W) (Q) once we show that @) € W,(2). To

this end we claim that the sequence {u(j)} can be represented by a relatively
compact sequence in C(clsQ, R?). When p > 2 this is an immediate consequence
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of the Rellich-Kondrachov’s compactness theorem. In the borderline case p = 2
we appeal first to the result of Vodopyanov & Gol’dshtein mentioned earlier
to infer that the sequence {u())} can be represented by a bounded sequence in
C(cls 2, R?) and secondly to a theorem of C. Morrey (cf. [9] pp. 110) to deduce
that the corresponding sequence is equicontinuous. The assertion then follows
from the Arzela-Ascoli theorem. Therefore in both cases, by passing to a further
subsequence if necessary we have (for the corresponding representatives) that
ul) — 4y in C(clsQ,R?). As by the assumption u) has a representative in
C(Q), the latter convergence implies that the same holds true for 4. Thus
ax € W ().

It therefore remains to justify the assertion that such a uy is an L' local
minimizer of F[-]. Indeed if this were not the case there would exist a sequence
{uD} in WLP(Q, R?) such that u9) — @y in L' and

Flu] < Flay] < oo.

It then follows from the coercivity assumption on the integrand F' that the
sequence {u/)} is bounded in Wild’p(ﬂ, R?) and therefore by passing to a sub-
sequence u(/) — @y in WP, Applying an argument similar to the above, we
deduce by passing to a further subsequence (again for the corresponding repre-
sentatives) that u(/) — @y in C(cls 2, R?) and therefore for sufficiently large j it
must be that u(/) has a representative in Cy(2). This however is a contradiction
to @y being an absolute minimizer of F[-] over the class Wy (). The proof is
thus complete. a

Remark 4.1. The restriction on the Sobolev maps to coincide with the identity
on the boundary is to a large extent for convenience. Indeed without much extra
effort it is possible to show that the same result holds true for any boundary
data that is the restriction to 9 of an orientation preserving homeomorphism
of cls 2 into R*. We refer the interested reader to [15] for further results in this
direction.
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