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Abstract

We prove a generalization of Rellich’s theorem for weakly differen-
tiable functions on curvature varifolds (see definitions below) and apply
it to prove regularity of minimizers of curvature integrals under certain
assumptions.

1 Introduction

Let M be a C?-submanifold of dimension n of the Euclidean space R, and let
B be the second fundamental form of M. One may assign to M the number

/M F(B)dH"

for some function F', where H" is the n-dimensional Hausdorff measure. This
defines a functional on the set of such submanifolds. Further one may ask
whether there are minimizing submanifolds or critical points of this functional
and what their properties are.

For the existence problem, a reasonably satisfactory answer has been given
by Hutchinson [8] (and by Mantegazza [9] in the presence of a boundary).
Namely, under reasonable assumptions, a minimizer of the functional exists in
the class of curvature varifolds (or curvature varifolds with boundary) defined
in those papers. It is no surprise that the space where the functional is defined
has to be enlarged, especially as the direct method in the calculus of variations
is used to find these minima. This however raises other questions, in particular
concerning the regularity of the solutions of the problem.

A very important tool for attacking such questions for variational problems
in general is the theory of Sobolev spaces. In this case however we do not have
it at our disposition, since the underlying structures are no longer manifolds
but varifolds, which furthermore may vary. On the other hand, the second
fundamental form does still behave like a derivative in many ways, indeed it
may be expressed in terms of approximate derivatives, as was shown in [9].
Moreover, various results for Sobolev spaces apply also in the varifold setting,
like e. g. the Sobolev inequality (see [10]).



The aim of this paper is to give a generalization of Rellich’s theorem for
the situation of functions on (varying) curvature varifolds, and to apply it to
the regularity problem mentioned above. We now give an outline of the con-
tent. In Sect. 2, we repeat some of the definitions and results of Allard [1] (on
which Hutchinson’s paper is based) and of Hutchinson [8] and Mantegazza [9].
More definitions and results of [8] are looked at in Sect. 3, along with a few
generalizations and new results. In Sect. 4, we give a definition of a notion of
differentiability with respect to a varifold. We prove some results for functions
with that property, including in particular a generalization of Rellich’s theo-
rem. We also show that the Sobolev inequality of Michael-Simon [10] holds for
that situation. We turn our attention back to functionals as discussed above in
Sect. 5. We obtain a regularity result for minimizers under certain assumptions.
However these assumptions are not easily verified in general, in fact we can only
prove them under very strong conditions. We will prove that they hold true in
a special situation in Sect. 6, namely for varifolds given as graphs of Lipschitz
functions. Of course this assumption is in general not justified a priori. The re-
sults of Sect. 5 and 6 are therefore to be considered either as preliminary results
of as a demonstration of how the previous results might be applied.

We would like to point out one special example of a functional as above.
The Willmore functional for a compact surface M in R is defined by

1
FOn =5 [ mEa

where H is the mean curvature vector of M. This can be written

1 A
F(M) = 5 /M IB|? dH? + 27 (1 — g)

by the Gauss-Bonnet formula, where g is the genus of the surface. If g is fixed,
we therefore have a functional of the form as described above. Existence and
regularity of minimizing surfaces of the Willmore functional have been studied
by Simon [12]. That paper actually provides tools to fill the gaps in our reasoning
to prove regularity for minimizers of the Willmore functional, but it also renders
our methods redundant in that case, for regularity is already proved there.

Other papers worth mentioning are [2], where similar problems are studied
in the context of currents rather than varifolds, and [4, 5, 6], which provide the
basic ideas for some of the concepts presented here.

2 Varifolds and curvature varifolds

We first repeat some of the definitions, ideas, and results of Allard [1], of
Hutchinson [8], and of Mantegazza [9]. Standard reference for unexplained no-
tation is [11] (see also [3]). We always work in an open set (! C RY as ambient
space.

By G(N,n) we denote the Grassmann manifold consisting of all n-dimen-
sional subspaces of RY. If S is a subset of RY, we write G,,(S) = S x G(N,n).
We may identify any P € G(N,n) with the orthogonal projection onto P and
therefore with a matrix in RV*Y . We will usually denote this matrix with the
same symbol, thus we may write P = (P;;).



In this paper we will often consider Radon measures on G,,(2). A special
role will be played by the following particular kind of Radon measures. Let
M C Q be a countably n-rectifiable (subsequently simply called n-rectifiable)
and H™-measurable set, and § : M — [0, 00) locally integrable with respect to
H"L_M. Then for H"™-almost every x € M, there exists a unique approximate
tangent plane T, M to M at z. Moreover the measure V on G,,(f2) characterized
by

/qﬁdV = / 0(z)d(z, T, M) dH" (x)
M
is a Radon measure. We write V = v(M, 9).

Definition 2.1 A Radon measure V' on G, () is called an n-varifold in Q. If
V = v(M,0) as above, then it is called a rectifiable n-varifold. If moreover 6
takes integer values, then V' is an integral varifold.

IfV is an n-varifold in ), then we denote by py = w4V the induced measure
by the canonical projection m : G,(2) — (.

By wvarifold convergence we mean convergence in the measure sense, i. e.
weak* convergence in the dual space of C3(G,(Q)), the space of continuous
functions on G, (Q) with compact support. We write Vi, — V if Vi, converges to
V' in the varifold sense.

Varifolds, in particular integral varifolds, are supposed to be generalizations of
submanifolds. When studying curvature integrals, one needs a generalization
of the second fundamental form, or at least the mean curvature vector, as well.
The latter can be defined as follows (cf. [1]).

Let V = v(M, ) be an integral varifold in €, and define its first variation

SV(X) = /divMde, X € C3(Q,RN),

where divy, X is the tangential divergence of the vector field X with respect to
M7
oX'!

Here and throughout the paper we sum over repeated latin indices from 1 to
N. (The first variation can also be defined for general varifolds, but we are
only interested in this case.) This is a linear functional on C§ (2, RY). If it has
a continuous extension to C§ (€2, RY), then it can be represented by a vector
valued Radon measure, which we can split into an absolutely continuous part
and a singular part with respect to py, using the theorem of Radon-Nikodym.
We obtain the representation

/diVMXd,uV:—/X-Hduv—/X~I?dav, (1)

divy X = (T, M)

where H € L{ (uy,RY), oy is a Radon measure on 2, which is singular with

respect to py, and 7 € Llloc(av,SNfl). Considering the integration by parts
formula on C?-manifolds, it is natural to call H, 7, oy respectively the gener-
alized mean curvature vector, the generalized inner normal and the generalized
boundary of V.

The notion of a second fundamental form was generalized to varifolds by
Hutchinson [8]. His definition was further generalized by Mantegazza [9] to

include varifolds with boundary.



Definition 2.2 Let V be an n-varifold in Q. We say that V is a curvature
varifold with boundary, if there exist functions A;jr, € Li (V'), called the gen-
eralized curvature of V., and an RY -valued Radon measure 0V on G, (), such
that

+ / o(z, P) d(3Vi)(z, P) = 0

for all p € CE(QA x RY*N) and fori=1,...,N. If OV =0, then V is simply
called a curvature varifold. A rectifiable curvature varifold is a rectifiable varifold
which is also a curvature varifold, etc.

Note that if we choose a ¢ which is independent of P, then (2) simply reads

/H’j%dv: —/¢Ajz'j dV—/(ﬁd(aVi)-

If V = v(M,0) is a rectifiable varifold, then any function f on G,(Q) agrees
V-almost everywhere with the function g(z, P) = f(x,T, M), which does not
depend on P. We may therefore identify functions on G, () with functions on
Q. Writing H = (H;) for H; = Aj;; and 0V = Doy, where oy is a Radon

measure on ) and 7 € L} _(ov,SN 1), we recover (1).

According to [8, 9], the functions A;;;, and the measure OV are uniquely deter-
mined by (2). Moreover, they have the following properties:

(i) Aijr = Airjs

(i) A;5; =0,

(iii) Ayjr = PjrAirr + PriAgjr.
If M is a C%-submanifold of Q with second fundamental form B(z) : T, M x
Ty M — (T, M)*, then they satisfy:

(IV) ij - PTinkra

(v) Aijx = BY + B,

where the BY; are given by extending B(z) to RY x RN by composition with
the orthogonal projection onto T, M and setting ij = ey - B(es, ej) for the
standard unit vectors eq, ..., ex in RY. Again we identify functions on {2 with
functions on G, (€2). All these properties are proved in [8].

In general we take (iv) as a definition for the generalized second fundamental
form B = (ij) The property (v) then follows as in [8]. Moreover, the following
holds true.

Lemma 2.1 The generalized second fundamental form B = (ij) of a curva-
ture varifold satisfies Prkaj = 0 almost everywhere with respect to V.



Proof. From (iv) and (v) we conclude that
ij = P,jAigy = Pr;j(Bj, + B}).
Thus we see that
P,iBY; = P.,PyBY; = P.(B, - P4B},) = P.,B], - P4B}, = 0,

using the fact that the P;; belong to orthogonal projections. |

3 Measure-function pairs

Another useful notion from [8] is that of measure-function pairs. We first recall
the definition. In the following, E is a subset of some Euclidean space, and
1<p< oo

Definition 3.1 A measure-function pair over E with values in R® is a pair
(i, f), where u is a Radon measure on E and f € Li (u,R?).

loc
Ezample. Let V be a curvature n-varifold in Q with generalized second funda-

mental form B, then (V,B) is a measure-function pair over G, (2) with values
in RNXNXN .

Definition 3.2 Let {(ur, fr)} be a sequence of measure-function pairs over E
with values in R® such that fi € LP(ug,R®). We say that (ug, fr) converges
weakly in LP to a measure-function pair (u, f), if

e L — 1 as k — oo in the sense of measures,
o urlfr = plf as k — oo in the sense of vector-valued measures, and

e the norms || fi|lLr(u,) are uniformly bounded.

In this case, we write (pg, fr) =R (u, ). We say that the convergence is strong
in L?, and write (u, fr) = (u, f), if

o limyoo [ 9, fi(@)) dui () = [ 9(e. (2)) du(a) for all ¢ € CY(E x B*),

and

o limj o fskj | fi|P dpr = 0 uniformly in k, where
S ={x€E: |z|>j or|fu(z) >j}.

When working with measure-function pairs, it is often convenient to consider
the graph measures associated to them.

Definition 3.3 Let (u, f) be a measure-function pair over E with values in R®.
The graph measure [u, f] on E x R® is defined by

[, f1= Gy,

where G : E — E x R® is given by G(x) = (z, f(x)).



Definition 3.4 Let I' be a Radon measure on E X R® and 7 : ExXR® — E
the projection. Then ||| = muD is called the weight measure of I'. If ||| is a
Radon measure, then the fiber measure T®) can be defined for ||T'||-almost every
z € FE by

1
[ 6t = o s /B e PV A (E9).

The following results are due to Hutchinson [8].

Proposition 3.1 Let 1 < p < co. Suppose that (ug, fr), k €N, and (u, f) are
measure-function pairs over E with values in R®.

(i) If (ug, fk) (,u f), then there exist a subsequence {k'} C N and a Radon
measure I' on E X R® such that [ug, fir] = T'. Moreover, |T|| = p and

f@ = [yar)
p-almost everywhere.
(ii) the following statements are equivalent:

o (s i) 5 (. f)
[Mk:;fk] [ 7f] and

[ 1o db. il 0

as j — oo uniformly in k, where
S; =A{(x, y) EExXRN: |z] > orlyl >j}-
Theorem 3.1 Let 1 < p < oco. Suppose that (ug, fr), k € N, are measure-
function pairs over E.

(i) If pe(K) and || fe|le () are uniformly bounded for any compact K C E,
then there exists a subsequence which converges weakly in LP.

(”) Suppose (p/kafk) ( 7f) Then

Wfllzeqn < 1ikrgi£f Il Lo () -

(iii) If equality holds, then the convergence is strong in LP.

This is one example which shows that weak and strong convergence in LP for
measure-function pairs behave in some aspects like weak and strong convergence
in the Banach spaces LP(u) for a fixed measure p, although we have not even a
vector space in this case. The next result provides another example.

Proposition 3.2 Let p,q € (1,00) such that zl) + % = 1. Suppose that py
and p are Radon measures on E and that fi, € LP(u,R®), f E LP(u,R%),

g1 € L1, B), and g € L', R). Suppose further that (i f1) 5 (1, f) and
Lq
(> gr) = (1,9). Then (pg, fr - gr) L (s f-g).



Proof. Consider the Radon measures fi, = [ug, fr] and the functions gi(z,y) =
gr(z) on E x R*. We have

/|§k|qdﬂk =/|gk|qduk,

which is uniformly bounded, hence (fix, §r) are measure-function pairs over E x
R® which satisfy the conditions of Theorem 3.1.(i). Thus for a subsequence
(which we denote the same as the whole sequence) there exists a weak limit
(@i, §) in L1. By Proposition 3.1, i = [u, f].

Now choose ¢ € CJ(E), and let ¢; € C§(R®) satisfy 0 < ; < 1 and
¥;j(y) = 1for |y| < j. Then we have

lim lim / &(2)%; (W)ie(z,y) diin (¢, y) = lim / (@i (@, y) diin (2, )

k—o0 j—00 k— o0

using Lebesgue’s convergence theorem, and

lim lim / ()3 ()i () diin () = Tim | S(@); (0)i(, ) dii(z, y)

Jj—o0 k—oo j—o0

[ @i, f@) duo).

‘ [ st i)~ [ 9@auta0) dm(:e,y)‘

Moreover,

‘/¢ o fr — 1)gk dp

IN

/ |} gi| dpor,
{e€E: |fu(a)]>4}

(s%p |¢|) i (supp & N {z € B+ 1fo@) = 31 gellzoqun.

IN

The right hand side converges to 0 uniformly in k£ as j — oo. It follows that
g(x) = g(z, f(x)) for y-almost every x € E.
Similarly we compute

i T [ 6(2)05(0)0  91(e.0) dia o) = Jim [ 6 fe- g diu

k— o0 j—o0

and
Jim i [ o) )y 3u(e.) din(o) = [ 6()f@) - gla, F(a) duta)
= [0 gan



That the convergence for j — 0 is uniform in & is proved like before, except that
we now have on the right-hand side of the corresponding estimate the expression

(sup|¢|) ( / |fk|pduk> g llzeon-
E {z€E: |fr(x)|>35}

According to Proposition 3.1, this also converges uniformly to 0, and hence

lim /¢fk - g dpg = /¢f'gdﬂ~
k—o0
The proof is thus finished. |

We now extend the definition of measure-function pairs to include multiple-
valued functions.

Definition 3.5 If S is a set, then we write S for the set of all sequences in
S. Let p be a Radon measure on E and 0 : E — N a u-measurable function. If
f =, fe),--): E— (R*)> is a multiple-valued function such that (uL{6 <
1}, fuy) is a measure-function pair for all 1 € N, then we call (i, f) a multiple-
valued measure-function pair over E with values in R® and with multiplicity 6.
We define the graph measure [u, flg on E x R® by

0(z)
/ o, y) dlu, fla(z,y) = / 6@) S b, fy () du(e).
=1

We use the notation

0(x)

[ ran= [ 6@y s @) duto)
=1

when it is clear what the multiplicity function is (which will usually be the case).
In this case we also drop the subscript  for the graph measure and write [, f] =

[/La.f]ﬁ-

If 1 < p < o0, then we write (using this notation)

£l = ([ 111 au)

Let (pk, fr), k € N, and (u, f) be multiple-valued measure-function pairs with
multiplicities 0y, and 0, respectively. We say that (g, fr) converges weakly in
L? to (p, f), if pu converges to p in the sense of measures, limg_yoo [ ¢ fr dpy =
Jof du for all ¢ € CJ(E), and || fi|lLr(uy) is uniformly bounded. The conver-
gence is strong in LP, if [uk, fr] = [, f] and

[ 1o dl fd(a) 0

as j — oo uniformly in k, where S; is defined as in Proposition 3.1.



Remarks.

e Given a (single-valued) measure-function pair over E and a multiplicity
function 6 : Q@ — N which is measurable with respect to p, we can (and
often will) regard f as a multiple-valued measure-function pair by consid-
ering the sequence (f, f,...).

e Let (u,f) and (u,g) be multiple-valued measure-function pairs over E
with values in R and with the same multiplicity #. Then the multiple-
valued measure function pairs (i, f + ¢) and (u, fg) can be defined by
component-wise addition and multiplication (the latter provided that the
product is in L, (#)). The same procedure works for other operations,

e. g. the scalar product.

We have the following version of Proposition 3.2 for multiple-valued measure-
function pairs.

Proposition 3.3 Let 1 < p < 0o and 1 < g < oo. Suppose that (uy, fr) are
multiple-valued measure-function pairs over E with values in R® and multiplicity

Ok, such that (., fr) Ly (1, f) for a multiple-valued measure-function pair (u, f)
with multiplicity 6. Suppose further that (uy,gr) are multiple-valued measure-
function pairs over E with values in R' and multiplicity 6k, such that ||gk||Ls(u,)
is uniformly bounded.

(i) There exist a subsequence {k'} C N and o multiple-valued function g :
E — (RY)> such that (u,g) is a multiple-valued measure-function pair
over E with multiplicity 6 and

[ ot @) - gta) duta) = tim_ [ 6o, fu(a) - g0 (@) e (@) )

for all ¢ € CY(E x R®,R). Moreover, (uy,gr) =R (1, g) and

19/l 22 < liminf{|ge{|zagu,)-

(i1) If (uk, gr) are single-valued measure-function pairs and if (g, gr) L (1, 9)
for a measure-function pair (u,g), then

/ (e, £(2),9(x)) du(z) = lim / (e, fel@), gu (@) dps (2)

k— o0
for all ¢ € CY(E x R* x RY).

Proof. Define fir = [uk, fr] and o = [u, f]. Further define on E x R® the
functions "

N x), ify= z),

Gu(@,y) = { (gr) @y (), ity = (fr) (@)

anything, else.

This is well-defined fig-almost everywhere only if for pg-almost every x € E we

have for all I;,1, € {1,...0(x)} either (fx)u,) (%) # (fr) ) (®) or (gr)@,)(7) =
(9r) (1) (x). However we may assume without loss of generality that this is true.



We have

/|§k|qdﬂk =/|gk|qdﬂk;

hence by Theorem 3.1 there exists a function § : E x R® — R’ such that
(ks s Grr) = (i1, §) for a subsequence.

To prove (i), set g(x) = g(x, f(x)). Then (3) and the inequality follow imme-
diately. For the weak convergence, use estimates like in the proof of Proposition
3.2.

Under the conditions of (i), define h(z,y) = g(z). It is easy to see that for
¢ € CY(E x R*,R"), the functions

Ok (z) 0(z)
m(2) = 0k (@)™ D e, (fi)oy(2)) and n(z) =0(x)™" Y é(a, fu(x)
=1 =1

satisfy (ug, k) = (u,m) for any r < oo. According to Proposition 3.2, this
implies (3) for the given function g. Hence § = h. We conclude that gl La(a) =
limg o0 |Gk || Le(z, ), and the convergence of (fix,gx) to (i, g) is strong in LY by
Theorem 3.1. This proves (ii). |

4 Weak derivatives

Using formula (2), we can integrate by parts C*-functions on a curvature vari-
fold. We want to generalize the notion of differentiability of a function based on
such an integration by parts formula. We will consider multiple-valued functions
however.

Definition 4.1 Let V = v(M,0) be an integral curvature n-varifold in Q with
generalized curvature A = (Aijr). A multiple-valued function f : Q@ — (R®)*>
is called weakly differentiable with respect to V, if (uy, f) is a multiple-valued
measure-function pair over Q) with values in R® and multiplicity 6, satisfying

|A(z, P)|0(x Z|f(z) )| € Lige(V),

and if there exists a multiple-valued function g : Q — (RV**)> such that also
(v, 9) is a multiple-valued measure-function pair with multiplicity 6, and such
that

d¢ 9¢
[ (Pigs . £@). P + 55 (@), Plgia(a) @
+ 8(12?]@( f( ) ) ka(iI;;P)+¢(w7f(m)JP)Ajij(mJP)) dV(:I::P) =0

for all ¢ = ¢(z,y,P) € CH(Q x R® x RV*N) and fori =1,...,N. (Here the
notation of Definition 3.5 is used, regarding the integrand as a multiple-valued
function on G, (). We sum over alpha from 1 to s.) We call g the weak
gradient of f with respect to V and write g = V" f.

10



Ezample. The function P(z) = T, M is weakly differentiable with respect to V'
with
V:/PJk(.CL') = Azjk(.fb',TzM)

Proposition 4.1 Let V = v(M,60) be an integral curvature n-varifold in Q
and f : Q — (R*)® a multiple-valued function that is weakly differentiable
with respect to V. If ¢ : Q@ x R® x RN*N — R 4s a Lipschitz map, then
g(x) = Y(x, f(x), P(x)), where P is defined as above, is weakly differentiable
with respect to V' and satisfies

Vig(z) = Pij(x)%(fc,f(x),P(w)) + T(évvf(m),P(x))V}/fa(x)

(e, @), P(2) A (2, P(a).
jk
Proof. If 1 is smooth and has the property |¢(z,y, P)| > |y| for y ¢ K, where K
is a compact subset of R®, then this follows simply by inserting ¥ (z, f(x), P(x))
into (4). Otherwise approximate 1 by such maps and apply Lebesgue’s conver-
gence theorem to compute the limits. |

Remarks.
e It is easy to verify that VV f is uniquely determined by V and f.

e If 4 is a Lipschitz function of G, (f2), then it defines a weakly differentiable
function with respect to V' by Proposition 4.1. It is therefore convenient
sometimes to think of functions on G, () rather than Q.

e The reason why we consider multiple-valued functions is that we want to
prove a generalization of Rellich’s theorem for pairs of integral curvature
varifolds and weakly differentiable functions. However the following ex-
ample shows that this is not possible for single-valued functions. Consider
the varifolds V; = v(R x {0, +},1) in R? and the function

1, ify>0,

Clearly f is differentiable with respect to V}, for any reasonable definition of
differentiability with VV* f = 0. On the other hand, V}, — v(Rx {0},2) in
the varifold sense, but the measure-function pairs (uy, , f) do not converge
in the strong sense unless we allow the multiple-valued function (0,1, ...)
as the limit.

e Weak differentiability with respect to integral curvature varifolds with
boundary can be defined similarly. For simplicity we do not consider that
case however.

Definition 4.2 Let 1 < p < oc and V = v(M,0) be an integral curvature
n-varifold in Q. We denote by WHP(V,R®) (or WYP(V) if s = 1) the set of
all multiple-valued functions f : Q — (R®)> that are weakly differentiable with
respect to V' and satisfy

1 llwrrvy = IVY Fllzrguy) + A llzeguy) < oo,

where A is the generalized curvature of V.

11



The Sobolev inequality of Michael-Simon [10] holds also for this situation.
Theorem 4.1 Suppose that V = v(M,0) is an integral curvature n-varifold in

Qand 1 < p < oo. Let f € WHP(V,IR®). Suppose further that supp f € Q.
Then

Il Laguyy < Cllfllwrevy

n41 -

for q = £ and C' = %, where wy, is the volume of the unit ball in
wn' " (n—p

R™.

Proof. Assume first that p = 1, s = 1, and f > 0 almost everywhere with
respect to p. From (4) we derive that

0= [ (Pugles +ovY 1+ orm,) duy
for all ¢ € C§°(12), where H = (H;) is the generalized mean curvature vector of
V. Moreover, a corresponding formula holds for ¢ o f for all Lipschitz functions

¥ : R = R. The proof of Theorem 2.1 in [10] now carries over to this situation
almost word for word and provides the inequality

n "T_l n+1
(froram) ™ < 50 [a5¥ a1+ s duy.

(n-1)
In general, insert |f |p"*P instead of f into this estimate and obtain

n—1

(/|f|%duv)7
4n+1

< W/(” D515
4+ p(n — 1)

< l/n" (/Ifl

The claim follows immediately. |

) dpy

= dﬂv) E ( / (VY 7P + | £ EPP) duv> ’

To prove our version of Rellich’s theorem, we need some preparations first. The
basic idea for the next lemma is due to Mantegazza [9] (cf. also [4, 5, 6]).

Lemma 4.1 Let V. = v(M,0) be an integral curvature n-varifold in Q and
f:Q = [0,00)* weakly differentiable with respect to V. Consider the set
M' = M x [-1,00) and the multiplicity function

0'(z,y) = [{l e {1,...,0(x)}: fu)(z) >y}], z€Q, y>-1

Set V! = v(M',8"). Then V' is an integral curvature (n + 1)-varifold with
boundary in Q x R. Its generalized curvature is

/ _ Az’jk(map)a if1<i,j,k <N and Q =P xR,
Aijk(wayaQ) - {0 , else,

12



where A = (Ayj) is the generalized curvature of V. Moreover, we have

OV (G2 (2 X R)) = Hm o

and for all ¢ € CJ(Q x R),

L (pv)

/ o(,y) IOV 11 (2,9, P)| = / bdluy, f] - / o(e, ~1) duy (). (5)

Proof. Obviously we have Ty, , M' = T, M x R for #"*!-almost every (z,y) €
M'. Hence

f(x)
/ oy, Q) dV' (2,9, Q) = / / 0l P xR dy V(. P)

for all ¢ € CJ(Gp+1(Q x R)). Thus we compute

¢ ¢ /
/(QZJ@(mayaQ) + 8ij (wayaQ)Aijk(l':y;Q)

+(2,9,Q) A%y (2,5, Q) ) dV' (2, Q)

f(=) ¢ f(=) ¢
:/ PZ‘]/71 @(mayapxR)dy+/il ﬂ(maghPXR)dyAzgk(m?P)

f(z)
+/ é(z,y, P x R)dy Ajz'j(map)> dV(z, P)

-1

_ / o(z, f(z), P x R)VY f(z) dV (z, P)

fori =1,...,N, owing to (4). As usual we sum all indices from 1 to N, even
in the first line. Note however that the corresponding terms for j = N + 1 or
k = N + 1 vanish.

Furthermore we have

0
/QN+1,N+16_Z)($;.'U;Q) dV’(m,y,Q)

f() ¢
- [ [ S xR ayavep)
-1 6y
= [0, 1@, P x B) = 6(2,~1, P x B) AV (a,P),
All claims now follow easily from these formulae. a

Now we are ready to proof the main result of this section.

Theorem 4.2 Let 1 < p < n and ﬁ < g < oo. Suppose that Q is
bounded, and that Vi, = v(Mjy, 0y) are integral curvature n-varifolds in Q and
fr € WHP(Vy,), such that we have the uniform bounds

/(|Ak|q +1)dVi, < C,
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where Ay, is the generalized curvature of Vi, and

| fkllwrr vy < Ci.

Suppose further that supp fr € Q for each k. Then for any r € (1 "Tpp), there

‘n
exist a subsequence {k'} C N, an integral curvature n-varifold V = v(M,0) in
Q with generalized curvature A, and a multiple-valued function f : @ — R

such that L Lo
(qunfk’) - (:U’Vaf) and (Vk’aAk’) - (V7 A)

If (Vie, Aw) 5 (V, A), then f € WHP(V) and

(v, VY fi) 2 (o, VY £).

Proof. We may assume that the fj take only non-negative values. Otherwise we
consider the functions max{f; + 1,0} and min{f; — 1,0} instead. If the result
holds for both of these sequences, then it holds also for fy.

Since we have a uniform bound on ||fk||L(np)/(n7p)(M) by Theorem 4.1, it is
easy to show that

[ o di e 0
uniformly as j — oo, where
S; = {(z.y) € A x R: [y| > j}.

Let V! be the (n 4 1)-varifolds associated to Vi, and f; by Lemma 4.1. Then
the quantities

@ x )+ [ LA 4V + 0V (Gt (2 X B)

are uniformly bounded for some ¢ > 1. Hence by Theorem 6.1 in [9], we may pick
a subsequence (which we denote the same as the original sequence), such that
Vi — V' for an integral curvature (n + 1)-varifold V' with boundary in Q x R.
We may also assume that Vi, — V, where V = v(M, ) is an integral curvature

varifold in 2, according to Theorem 5.3.2 in [8], and that (V}, Ay) = (V, A) for
the generalized curvature A of V.
Note that for any ¢ € CJ(Q x (—1,00)) with ¢ > 0, and for h < 0, we have

Therefore py+ must have the same property. It follows that V' is of the form
V' = v(M',8"), where M' = M x[—1,00) for an n-rectifiable and H"-measurable
set M C Q, and 0'(x,y) is decreasing in y. Hence there is a multiple-valued
function f : M — R® such that

0'(z,y) = {l € N: fuy(z) >y}

for H"1-almost every (z,y) € M'. From (5) we see that M = M and that
(v, fi] = [y, £1.

14



Now assume that (Vir, Ag) 5 (V,A). Choose ¢ € CE(Q x R x RV*N). By
Proposition 3.3, we have (uv,, (fx(z), T My)) L (v, (f(x),T,M)). Hence

[ i te s Py av e, P) = tim [ 220w ), P G ).

Moreover we see that for any ¥ € CJ(Q x R x RV*N) and for any ¢ < oo,

the functions fi,(z) = 6k (z)~2 04 4h(x , (fe) (@), To My) satisty (v, fr) =R
(v, f), where f(z) = 8(z)~* 9‘”” Yy (x, fu)(x), ToM). Thus

09
OPj, 55— (@, f(2), P)Aijm (2, P) dV (z, P)
= ]}i)Holo/ aifm (z, fr(x), P)(Ak)ijm(z, P) dVi(z, P),
/¢ z, f(z Ajij(xz, P)dV (z, P)

= Jlim [ 0, fula), P) (AR (0, P) dVi (e, P)

by Proposition 3.2. Owing to Proposition 3.3, there exists a multiple-valued
function g : @ — (RY)° such that (py,, V" fk) (MV; g) and

Ste S, Plas(a)aV (a,P) = Jim [ S (o, ), PV fu(o) V(o ),

Therefore f and g satisfy (4). Moreover,
ol + AL aoyy < Hmint [ F gy < o0

and we conclude that f € WHP(V) and VV f = g. ]

5 Minimizers of curvature integrals

In the following we sketch a possible application of the results obtained so far.

For simplicity we restrict the class of varifolds that we work with. Namely,
we assume now that V = n + 1, i. e. that we have co-dimension 1. Moreover,
we want the varifolds to possess a weakly differentiable normal vector.

Definition 5.1 Let V = v(M,0) be an integral curvature n-varifold in Q. If
there exists a function v : Q — (S™)* which is weakly differentiable with respect
to V', such that v (x) L Tu M for py-almost every x € Q and | = 1,...,0(z),
then such a v is called o differentiable normal vector of V.

Proposition 5.1 Let V be an integral curvature n-varifold in Q with gener-
alized second fundamental form B = (ij) and differentiable normal vector v.
Then

ij = "Vl

wy-almost everywhere. In particular, |B| = |VVv|.
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Proof. We have py-almost everywhere
0= VZV(ijl/k) = Aijkljk + ijV}/yk (6)

and ‘ '
0= VZV|I/|2 = QVJVZVVJ.

From the second identity we conclude that
V;/Vj = ijVZVV’“.

Hence '

B?j’/k = PrinkrVk = —PMVZVVT = —VZVI/].
Here the properties (i) and (iv) of Sect. 2 and (6) have been used. Since ij =
V’“VTB;]- by Lemma 2.1, the proof is finished. m|

Definition 5.2 Let Vi, k € N, and V' be integral curvature n-varifolds in Q0 with
generalized second fundamental form By and B, respectively. Let 1 < p < oo.

We say that Vi, converges to V weakly (strongly) in the W?P-sense, and write

2,p 2,p
R A}

(Vi,Br) 2 (V,B)  ((Vi,Bi) & (V. B)).

For any L > 0, let Wi’p(ﬂ) denote the set of all weak limits in the W?2P-
sense of sequences Vi = v(My, 1), where My, are oriented C2-submanifolds of
satisfying

| B+ nanr <L
My,
for their second fundamental forms By. Moreover, define

W2r(Q) = | Wir(Q).

L>0

Lemma 5.1 The sets Wi’p(ﬂ) are sequentially compact with respect to weak
convergence in the W2P-sense.

Proof. Let Vi € WiP(Q) be the weak limits in the W2P-sense of Vi, =
v(Mym, 1), where My, have the properties required in the definition above.
According to Theorem 5.3.2 in [8], there exist a subsequence (also denoted by

Vi) and an integral curvature n-varifold V' in Q such that Vj, W V. We have
to prove that V € W3*(Q).

Since C§(G,(f2) is separable, we can easily construct a subsequence of the
Vi that converges to V' in the varifold sense. Again by Theorem 5.3.2 in [8],
this convergence also holds in the weak W??-sense. Hence V € Wi’p (). O

Lemma 5.2 Any V € W*P(Q) has a differentiable normal vector.

Proof. The condition that V has a differentiable normal vector is equivalent to
requiring that V is an oriented integral varifold (cf. [8]) which satisfies (2) in
the sense of oriented varifolds. The claim therefore follows from the arguments
of [8]. m|
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Lemma 5.3 For V € W?P?(Q) with differentiable normal vector v we have

0 ; 0 ; .
8xi(lu’vl—yj)_@(uvl—yz):07 1SZ,]STL+1, (7)

in the distribution sense.

Proof. If V corresponds to a C2-submanifold M of €, then this follows from the
fact that py Lv represents locally the distributional derivative of the character-
istic function of a set having M as part of its boundary. The set of varifolds in
W2P(Q) satisfying (7) is clearly closed with respect to weak convergence in the
W2P-sense, and the claim follows. O

Now consider the functional

Fo(V) = / B av

for Ve W??(Q), where B denotes the generalized second fundamental form of
V.

If £ # 0 is a sequentially closed subset of W?P(Q) such that there exist
numbers C1,Cy > 0 satisfying

pv () < Cy

for any V € &£ with Fp(V) < C4, and if Cy > infg Fp, then we may apply
Theorem 6.1 in [8] and find a V* € £ with the property

Fo(V*) = inf F,.

Ezample. Suppose Q2 @ R"™! and 1 < p < n. Let V; be an integral curvature
n-varifold in R**! with compact support, and set W = Vo LG, (R*™1\Q). Let £
be the set of all V' € W??(Q) such that V + W is an integral curvature varifold
in R*"!. As in [8], we find that

=1

n—p

@) T < v @) <o [Bpaw+m)) ®)

for a constant ¢ = ¢(n, p), where B is the generalized second fundamental form
of V 4+ W. Therefore if £ contains an element such that the right hand side of
(8) is finite, then there is a minimizer of F, in &.

Next we want to compute the Euler-Lagrange equation for such a minimizing
varifold of F, or at least the leading term of it.

Choose a C?-diffeomorphism ® :  — Q such that supp (® — id) € Q with
inverse map ¥ = ® !. Then for any integral n-varifold V = v(M, ) in Q, the
varifold @4V = v(®(M),00¥) is also an integral n-varifold in Q. As a measure
in G, (1), the transformation reads

/¢d(‘1’#V) = /¢(‘1>($)7D‘1’($)P)|AnD‘I’(iE)IdV(éL“,P)-
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Here A,,D®(z) is the map A,,R*™* — A, R"*! induced by D®(z). The notation
D®(z)P refers to P as an n-dimensional subspace of R**! | not the correspond-
ing projection.

If V is generated by an orientable C2-submanifold M with second funda-
mental form B, then we can compute the second fundamental form of ®(M) as
follows. Let G°(n+1,n) be the manifold of all oriented n-subspaces of R*™! and
T :G%n+1,n) — S™ one of the two smooth maps assigning to every element
of G°(n + 1,n) one of its normal vectors. Define S : S™ x Gl(n + 1, R) — S™ by

S, Z)=T(ZT~ ' (v)).

Furthermore let Q(v, Z) be the orthogonal projection along S(v,Z). If v is a
differentiable normal vector of M, then » defined by

v(®(x)) = S(v(z), D®(z))

is a differentiable normal vector for M = &(M). Hence the second fundamental
form of M has the components

B (®(x)) =
Sk(a’/éf)aD‘I’(w))Qz'a(V(x),D@(m)) dSI 92er Ove(
. <w(v(m), D))" (2)By(2) - 5~ (v(z), DB()) Bmsa(;» (),

(9)

In particular
/A IBJ dH" < c/ (BJ” + 1) dH"
M M

for a constant C' = C(n, p,||®||c2). We see immediately that ®, maps WP(()
onto itself. By approximation with C?-submanifolds we also see that formula
(9) holds in general for varifolds in W??(Q).

Suppose now that we have a family of C2-diffeomorphisms ®;(z) = z+tX (z)
for X € C3(Q,R"™!) and -6 < t < 4. If V. € W*P(Q) is a minimizer of F, in
some set that is mapped onto itself by such diffeomorphisms, then we compute

from the condition p
<A@ =o,

t=0

that

o g 1 057 L 0%XT
[ 1B B (P i) 5+ a0 DB ) dy =0 (10

for functions a;;, depending smoothly on v and linearly on DX and B. (We are
not going to compute these functions.) Note that we have the representation

. i Z—l
(v, 2) = — )i
> WHZ )
k
for S and can thus compute
J .
88757,3(’/’ id)Z,s = —Zjv" + Z, V" vV
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Let now p = 2. We want to use the results from the previous section to gener-
alize a well-known method for certain variational methods to our situation and
prove a regularity result for minimizers of F,. We need however some additional
assumptions, namely generalizations of the Poincaré inequality and of a reverse
Poincaré inequality (Caccioppoli inequality) for the normal vectors of minimiz-
ing solutions of (10). The former is a well-known result for the usual Sobolev
spaces, but it is not clear if it holds for pairs of curvature varifolds and weakly
differentiable functions in general. The latter can be proved for a variety of
variational problems, but it is more difficult for the case that we consider here.
We are not able to prove either of these inequalities in general. For n = 2 and
if the varifold we consider is the strong limit in the W ?2'?-sense of smooth man-
ifolds, then both can be proved using the graphical decomposition lemma from
[12], but in that case there are easier methods to prove regularity than those we
will use. We will prove the Poincaré and the reverse Poincaré inequality for the
normal vectors of varifolds corresponding to Lipschitz graphs however.

Notation. Let B,(xo) denote the ball in R**! with center z¢ and radius r.

Definition 5.3 Let ¢g > 0 and Cy > w,, be given, where w, is the volume of the
unit ball in R*. For V. € W*2(Q) and B,(x¢) C Q, let C(V, B.(x¢),R®) be the
set of all multiple-valued functions fo : B, (o) — (R®)™® such that f(z,P) =
f(z) agrees VLG (By(z0))-almost everywhere with a locally constant function
onsuppV. Let f: Q — (R°)>® be weakly differentiable with respect to V. We
say that (V, f) satisfies the (€9, Co)-Poincaré inequality with constant C, if for
any ball B,(xo) C Q satisfying py (B (x0)) < Cor™ and

/ B dpy < &,
B, (zq)

where B is the generalized second fundamental form of V, the inequality

inf — 2
et ve 1f = Jollz2(uv LB, )2 (20))

< CT(HVVfHLQ(HVLBT('Jm)) + || |B| |f| ||L2(,uvI_B,~(w0)))

holds. We say that the reverse (eo,Co)-Poincaré inequality is satisfied with
constant C, if under the conditions above, we always have

v vy <Ot inf - :
IVY flle2(uyv LB, ja(z0)) < CT foEC(V,lJIS}T(mo),RS)Hf Jollz2(uy LB, (20))

Lemma 5.4 Let V € W?2(Q) with generalized second fundamental form B and
differentiable normal vector v be a solution of (10) for p = 2. Suppose there
exist constants €9,C1 > 0 and Cy € (wn,2wy), such that (V,v) satisfies the
(€0, Co)-Poincaré inequality and the reverse (eg,Co)-Poincaré inequality, both
with constant Cy. Then there exist numbers e > 0 and 7 € (0,1), both depending
only on n, €y, Co, and Cy, such that for any ball B, (x¢) C , the conditions

pv (Br(z0)) < Cor™,  pv(Ba2rr(20)) < Co(277)",

and
/ |B|2 dNV S 62’1“n_2
B, (z0)
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imply

. 1.
(TT)Z*”/ |B|2d,uv < 51"2*”/ |B|2d,uv.
B-r(z0) B (2o)

Proof. Tt suffices to consider the case B,(x9) = Bi(0), for we may rescale

everything otherwise. We argue by contradiction. If the lemma is false, then for

any fixed 7 € (0, 1), there exist integral curvature n-varifolds Vi = v (M, 0y)

in B;(0) C R*" with second fundamental forms By, and differentiable normal

vectors v, which are solutions of (10) and which satisfy the (eq, Cp)-Poincaré

inequality and the reverse (eg, Co)-Poincaré inequality with constant Cy and
1y, (B1(0)) < Co, vy (Ba7(0)) < Co(27)",

Bi|* duv, =: € =0 (k — 00),
B1(0)

but

1
7'2_"/ |Bk|2d,uv,c > 56% (11)
B, (0)

Choose vy € C(Vy, B1(0), R*™1) such that

lvi, — VOkHLZ(quI_Bl/z(O)) <2 ) vk — f0||L2(wk|_Bl/2(o))-

inf
fo€C(Vi,B1(0),Rn+1
We may assume that € < ¢g for all £ and thus
vk — vokllL2(uy, LB, 2(0) < 2C1€k

by the Poincaré inequality.
Choose ¢ € C§°(By2(0)) with ¢ =1 in By ,4(0) and |[V(| < 8. Define

fr= lC('/k — Vog)-
€k

These functions are weakly differentiable with respect to Vj with

1 15)
Vi fr(@) = o <(Tka),~j gg)

(ra(z) — vou()) + () Vo (m)) .

Thus
I fellwr2(v) < 16C1 + 5.
By Theorem 4.2, we may assume that (uy,, fi) N (uv, f) and (py,, VV* fr) N
(uyv, VYV f) for an integral curvature varifold V = v(M, ) with generalized cur-
vature A = 0 and a function f : B1(0) — (R"*1)> which is weakly differentiable
with respect to V. The results of [7] imply that V' is a union of hyper-planes.
Moreover, we have uy (B;1(0)) < Cy < 2wy, and we can therefore choose 7 so
small that at most one of these hyper-planes intersects Ba,(0).
Let ¢ € C§°(B1/4(0)). We compute

96 . o .
/65" vy, dpy,, = /Vk'v¢’/l::’/ék dpv;, —/¢V3kai dpv;,
= /l/k . Vq&y,i(l/gk - I/i) dpy, + /I/k . V(,Zﬁl/,il/i; duy,

_/¢(ng — v})Hyi dpy, —/¢V1’;Vi|Hk|duvk;
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where H, = (Hy;) is the generalized mean curvature vector of V. Thus by
Lemma 5.3,

9 ., 9
/<8x,flg_@fk> dpv,

1 o . o 4
- €—< / vie- Vo (1 — ) — v (vig — Vi) dp, (12)
k

- / $((vy, — vi)Hrs — (Vi — vi)Hy,) duvk).

We estimate

1 ) )
= [ oty = B

< ( sup |¢|> | fiell L2 ) Bl L2y, ) = O

By ,4(0

as k — 0o, and the same with i and j interchanged. Assume now that supp ¢
intersects only one of the hyper-planes generating V', and that v- V¢ = 0, where
v is the differentiable normal vector of V. Then

n+1

_ _py9e
/|1/k.V¢|2 duy, = ;/‘(5” P,j)amj

and therefore the whole right-hand side of (12) converges to 0. Assuming that
the hyper-plane in question is P = x1 + (R" x {0}) for some z1 € B1(0), we see

2
de — 0,

immediately that f"*1! is locally constant and ‘gﬁ . ng; = 0 in the distribution

sense for i, j ranging from 1 to n, on M; = (P N By/4(0))\(M\P1). Knowing
however that the derivative of f exists in the weak sense, we conclude that in
fact the function fi := f|g7, satisfies

e fI'"!is constant,
o (ff,... f1) =(2,. .., &%) for some function u: M; — R.

From (10) we derive the partial differential equation A*u = 0, where A
denotes the Laplace operator on M1, using the fact that the a;jx (v, DX, B) are
linear in B and observing the remark following (10). Since

[Aullp23z,) < nlim inf IVY* fillL2(uv, LBy a(0)) < (16C1 +5)n
and thus
||A“||L°°(W1031/8(0)) < 8™(16Cy + 5)n

by the mean value theorem, there is a constant C' = C'(n, Cy) such that
nt2

aei]g’fl‘+1||f _a||L2(HvI_B2,_(0)) S Cr—=.

Hence

n+2
inf ||lvg — vor — a2 <207 2 ¢
aeRn+1H k= Vok — | L2(uy, LB, (0)) < k

for all sufficiently large k. Now the reverse Poincaré inequality implies

||kaVk||L2(HVkI_BT(0)) < CClT%Ck.
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Choose 7 < (2CCy)™ 1, then we have a contradiction to (11). The lemma is
therefore proved. O

We want to apply Lemma 5.4 inductively in order to obtain a decay of the
L?-norm of B of the form

/ |B|2 d,uv S rn72+o<62
BT(.TQ)

for some « > 0. But for this we need to control the area contained in the balls
B, (x¢). This is done by the following lemma, which is an adaption of a result
of Hutchinson [7].

Lemma 5.5 Let 1 < p < oco. Suppose V is a curvature varifold in Q with
generalized curvature A satisfying

/ | AP dpy < p"TPTeP
G (B, (x0))

for all p € [ry,7m3], where B, (x¢) C B,.,(z0) CQ anda > 0. Lety € CHRV*N)
satisfy 0 < ¢ <1 and |V¢| < X\ for a constant A > 0. Then

1
(r;"/ wdv> < (r;"/ 1/1dV) FA+N 2872 /P)e,
G (Byy (z0)) G (Bry(z0)) @

Proof. We proceed as in [7]. Choose p € [r1,r2]. Fori € {1,...,n + 1} let
¢i(z, P) = y(r)z'(P), where r = |z| and v € CY(R) with () = 0 for ¢t > p,
y(t) =1fort < £, and 7' < 0. Inserting ¢; as test function in (2) and summing
over ¢ yields

o 9 ,
0= /(Piﬂ'(T)xjxlT_lw + Pijy(r)di + Aijw(r)xlaTw + Ajij’Y(T)'rlw> dv
jk

= /<7'(r)|Px|2r_1¢ + ny(r)y + Aijkv(r)mi% + Ajijv(r)xiiﬁ) av.
ik
Hence

/ (ny(r) + 7o/ ()Y dV < (1 +N) / |Aby(r)rp V.

Now let 7 € C*(R) such that n(t) =1 for ¢t <1, n(t) =0for ¢ > 1, and 5 < 0.
Set y(r) = n(r/p). Then

86 iG)en)
_ oyl / (ny(r) + 1+ (1)) AV

> -+ 0 [lahreav

o ([ ) (fr()o)
oo fo()om)
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Therefore

> —(14 N)ep®/P~,

i [ (G)ow)

Approximating the characteristic function of the interval (—oo, 1] by 1 and in-
tegrating over [ry,7o] finally proves the lemma. o

Proposition 5.2 Let V. € W*%(Q) be a solution of (10) for p = 2. Let B be
the generalized second fundamental form and v a differentiable normal vector
of V. Suppose there ezist constants €3,C; > 0 and Cy € (wy,2w,,) such that
(V,v) satisfies for p = 2 the (eo, Co)-Poincaré inequality and the reverse (eg, Cp)-
Poincaré inequality, both with constant Cy. Then for any ¢y < Cy, there exist
numbers €, a, C' > 0, depending only on n, €y, co, Co, and Cy, such that for any
ball B, (xo) C 2 satisfying py (By(zo)) < cor™ and

/' B dyy < 28, (13)
B, (z0)

we have
/ IB|? dpy < Cr=2hee. (14)
B, (20)

Proof. This follows by applying Lemma 5.4 inductively. Note that Lemma 5.5
with 1 = 1 provides the right bounds for the area at each step, provided that e
is chosen sufficiently small. |

Theorem 5.1 Under the conditions of Proposition 5.2, the number ¢ can be
chosen such that there exists a number 0 > 0 with the property that supp py N
Bj(xo) decomposes into a finite collection of smooth manifolds, provided that
1wy (Br(g)) < cor™ and (13) hold.

Proof. We may assume that the conditions of Proposition 5.2 hold with zg
replaced by any x € Bs(xo), if J is small enough. Therefore we obtain (14)
around any such point. Then C'P-regularity can be proved with the same
arguments as in [7], replacing the monotonicity formula 3.1 in that paper by
Lemma 5.5 and making the obvious adaptions. Higher regularity follows as in
Lemma 3.2 and the following arguments of [12]. (The proofs in [7] and in [12]
are rather involved, which is why we do not repeat the arguments here.) O

6 Lipschitz graphs

The purpose of this section is to show that the Poincaré and the reverse Poincaré
inequality can be proved in a special situation.

We assume that © = Q' x R C R**! and that V = v(M,1) € W*? for the
graph

M = {(z,u(@)): v €},

where u : Q' — R is a Lipschitz function with Lipschitz constant bounded by
L > 0. Suppose that V is a minimizer of F, in the following sense: For any
ball B,(zo) € ' and for any Lipschitz function 4 : B,(x¢) — R such that the
“combined” graph

M = (M\(B(z0) x R)) U {(2,a(x)): = € Br(zo)}
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defines an integral curvature varifold V = v(M,1) € W?2(Q), we have F»(V) <

Fa(V).

Lemma 6.1 For any ¢ > 0 and any Cy > w,,, and for any f € WH3(V), the
pair (V, f) satisfies the (eo,Co)-Poincaré inequality for a constant depending
only onn and L.

Proof. This follows easily from the fact that M is a Lipschitz manifold. o

Lemma 6.2 Under the conditions above, the pair (V,v) satisfies the reverse
(€0, Co)-Poincaré inequality for any ¢¢ > 0 and any Co > w, for a constant
depending only on n and L, where v is the normal vector of V' given by

i ox* 1_1, Vn+1_

T T NP T TE VR

Proof. We prove that for any A > 0, the inequality

/ |V2u|? dz < /\/ |V2u|? dz + Cyr~t / |Vu—o*dz  (15)
B,./2(x0) B.(z0)

B, (z0)
holds for any ball B,(zg) C ' and for a constant C; = Cy(n, L, \), where

1
/ Vudz.
wnr" Br(mo)

Then by a standard argument (see e. g. Lemma 2.8.2 in [13]) we can get rid
of the first term on the right-hand side, provided that we choose A sufficiently
small, and the reverse Poincaré inequality follows.

Fix B,(zo) C Q' and X € (0, ], and choose a radius p € [5,r — Ar] such that

g =

u|"dr < u|” dx.
V2u|*dx < CX Vul*d 16
B.(

.7)0)

/Bp(1+k) (z0)\ B, (z0)

Here and subsequently C' denotes indiscriminately several constants depending
only on n and L. Choose ¢ € C§°(B,(14x)(20)) satisfying ¢ = 1 in B,(zo),
0< (¢ <1, and |V(*+ |V < C(Ap)~2. We may assume that

/ udx =0,
B,«(zo)

so that
/ lu(z) —a-z|*dz < Cr? / |Vu — a|? dv (17)
B'p(.'l'[))

Br,«(.’l'[))

for all @ € R™ by the (ordinary) Poincaré inequality. Otherwise we add a
constant to u. Set

v(z) =C((x)o -z + (1 - ((2)u(z), ze€.
We have

V()] = [¢(z)o + (1 = ¢(2))Vu(z) + V((2)(0 -2 —u(z))] < C(Ap) ™
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and
[V20(2)] < (1 = ((2))|Vu(z)| + 2|V{(2)]|Vu(z) = of + |V?((2)||u(z) — o - z|.

Hence
/ |V2v)? dx < CA/ |v2u|2dx+cr*2x4/ |Vu — o|? dz
B,(14x)(20) B;.(z0) Br.(zo)

by (16) and (17). The minimality of F2(V) implies the same inequality with
I e (20) |V2u|? dz on the left-hand side (and with a different constant, still
,

depending only on n and L however). Replacing A by C~1' )\, we find that (15)
holds true. |

Combining this with Theorem 5.1, we find that we can prove C'*°-regularity for
minimizers of F» under certain conditions if we already have Lipschitz regularity.
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