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Abstract

Explicit upper and lower estimates for the speed of fronts for reaction- diffusion equation with a
convective shear flow are derived. The enhancement of the speed is proportional to the amplitude
of the convection and proportional to the square root of the amplitude of the reaction. Several
asymptotic regimes will be considered, i.e. large Peclet numbers, rapidly oscillating convection,
and small diffusivity.

1 Introduction

We consider the following reaction-diffusion equation with a shear flow convection in an infinite cylin-
der (z,y) € R x

Opu(t, z,y) = dAg yu(t, ,y) + b(y)dru(t, z,y) + f(ult, z,y))- (1)

For the cross section Q@ we either assume 2 = (0,L)™ and periodic boundary conditions or  is a

bounded domain in IR™ with Neumann boundary conditions. For the nonlinearity f(u) we always
require f € C1([0,1]) and f(0) = f(1) = 0. Tow cases will be considered:

A: KPP-type )
f(0)>0, f(u)>0, for0O<u<l.

B: Combustion type
f(0O)=0 for 0<u<é,

fw)y>0 for fH<u<l.

Let F'(u) denote the primitive of f(u). The shear flow is given by a Lipschitz continuous function b(y)
on ) with mean value zero. The amplitude of the flow is called the Peclet number.

It is shown in [8] that the large time behavior of (1) for a large class of initial data is described
by travelling waves. In particular the asymptotic speed of propagation is given by the speed ¢ of a
travelling wave. With the moving coordinate £ = z + ¢t a travelling wave u(,y) satisfies

cOgu(&,y) = dA¢ yu(€,y) + b(y)deu(§, y) + f(u(€,y)) (2)
u(o0,y) =0, u(oo,y) =1

In [2], [3] the existence of travelling waves is shown for ¢ > ¢g in case A and for a unique ¢ = ¢ in
case B. It is important to know how the speed depends on the diffusivity d, the convection b(y) and
the reaction f(u). Physically the convection results in an enlargement of the effective reaction zone.
Therefor an increase of the propagation speed is expected. Formal arguments in [1] indicate a linear
growth of the front speed with the amplitude of the shear flow. For shear flows a lower bound of the
speed of propagation growing linear with the Peclet number has been obtained in [4], [7]. Here we will
derive a simplified proof of this result with an explicit and easy computable lower bound. Furthermore
explicit upper bounds are derived, which have the same scaling with respect to the diffusivity, the
convection and the reaction.

The general estimates give bounds for the following asymptotic regimes:

strong convection (large Peclet number),



strong convection and weak reaction,

rapidly oscillation convection (homogenization),

small diffusivity.

The case of large Peclet numbers is the most interesting case in applications and is close to the regime
of turbulent combustion.

2 Lower bounds for the speed

An explicit lower bound for ¢y depending linearly on the amplitude of b will be derived. We will make
use of the solution with zero mean value of

Ayx =—by) in Q (3)

with periodic or Neumann boundary conditions. Observe that if  is a cube then this would be the
cell problem used in homogenization.

Theorem 1 The speed ¢ of any travelling wave solution of (1) is bounded from below by
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Proof: It is known [3] that the travelling waves above approach its values at +00 exponentially and
all derivatives of u tend to zero exponentially. This means, that all integrals below exist. Furthermore
Ozu > 0 and hence 0 < u < 1 holds.

Integrate (2) over R x Q:

= [ f(u)dSdy, (5)
A,

since b(y) has mean value zero. Multiply (2) by v and integrate:
e _ 2
= —d |Vu|® d¢ dy + wf(u) d€ dy

C
2
RxQ RxQ

< —d / |Vul|® d¢ dy + c|Q],

RxQ
since v < 1 and f(u) > 0. This implies
2 1
d [Vul|® d§ dy < ¢ 5 - (6)
RxQ

Since u(z,y) is monotone increasing we obtain from (5) and (6)

/\/2d f(s)ds = ﬁ / V2d f(u)oyu dz dy
0

RxQ
1/2

1
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This is the first inequality in (4). In order to derive a lower bound, which depends on the convection
the equation (2) has to be tested by some function, s.t. the resulting integral over the convective term
gives a positive contribution and the other integrals are bounded by a multiple of ¢. This is achieved
by the test function x(y)f(u(&,y)) where x(y) is defined in (3). We obtain

[ (~a1vuPxf d dy - d 9,xT,uf () + ) dedy+ FQ) [bxdy
Q
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or using the definition of y in (3)
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1/2
<difle [ VU d€dy+d |Vl (m/ VP dedy [ f dfdy)
RxQ RxQ
e [ £ de dy
IR
cVd|9|

|va|00|f|é</>2 + ¢ |x|oo| floos

< A el e +

where (5) and (6) have been used. Hence we get the result
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This completes the proof.

3 Upper bounds for the speed

We will derive upper estimates for the (minimal) speed showing the same asymptotic scaling with
respect to the diffusivity, the flow field and the reaction term as the lower bound.
We will need the one dimensional front w with (minimal) speed ~o:

Yow' = dw" + f(w). (7)

Theorem 2 The (minimal) speed is estimated by
. 1 N 1/2
¢o < min {2<d 11" 451 00), 2 (04 519,00%) 171 ) } , ®
y

where x(y) is defined in (3).



Proof: Upper bounds for ¢y will be derived from the variational characterization of ¢ given in [5],

[6]:
dAg,yU + f(’U) n b)
851;

(9)

with E = {v € C*(IR x Q) | O¢v > 0, v(—o00,y) = 0, v(oo,y) = 1}. Also v satisfies periodic or
Neumann boundary conditions. Choosing for v(&,y) the one dimensional front w(§) from (7) gives

co = inf su
" ver 55(

co < Yo + sup b(y). (10)
yeEQ

The bound for vy follows from the second estimate in (8) with x = 0.
For the second estimate it is convenient to perform a change of coordinates in (9):

n:=a&+ Bx(y),

where x(y) is defined in (5). The factors a, 8 will be chosen below. The variational formula (9)
transforms to

d(a? + B2V yx|?)Oyyv + 2dBV y XV yOnv + dAyv + (dBA, X + ab)dyv + f(v))

co = inf sup ( 3
adyv

vEE .y

With 8 = a/d the definition of x in (3) implies

¢o = inf sup <a2(d+ IVyx|?/d)Onnv2aV XV, 0pv + dA v + f(v)) - (11)
VEE gy a0,
Restricting v € E to functions with V,v = 0 we obtain from (11)
1 v 1]f(v)
co < ald+—|VyxlZ) [—| +—
d Y "N ] V|
Choosing the optimal «a gives
1 o f(v) 1/2
<2((d+=|Vyxl%) |— : 12
o <2 @+ gvo || [ (12
For 7 > 0 let v(n) be the solution on IR of
v' = f(v) + Tv(l —v) (13)

with v(—00) = 0, v(00) = 1. The perturbation of f is introduced in order to have the right hand side

positive in the combustion case. With v" = (f(v) + 7(1 — 2v))v" we get from (12)

f(v) >/

co <2 <(d+ %I%xlio) f) +1o(1 - v)‘oo ‘m

Letting 7 — 0 we finally arrive at

1 .
co < 2(d+ 2[Vyx[Z) I

Remarks:

If we assume sup f(u) = £(0), e.g. f(u) = u(l — u), then the speed is estimated by
0<u<1

o < 2(d+ 2 V) 2 (F(0) .



In this case the (minimal) speed of the one dimensional front is 21/df(0). Hence the estimate is exact
for x(y) =0, i.e. b(y) =

The proof above can be modified to cover also bistable nonlinearities, i.e. f changes sign. In (13) the
right hand side has to be replaced by any KPP nonlinearity g(v). This gives

co < 2(d+ = IVyXI2 )2 1g1k 2 F /9102,

which has the same scaling behavior as (8) with respect to the nonlinearity f(u).

4 Asymptotic results

We will consider different asymptotic scalings in the general estimates above.
At first assume a strong convection by replacing b(y) by Mb(y) in (2), i.e.

cOgu(§,y) = dAu(§, y) + Mb(y)deu(S,y) + f(u(§,y))- (14)

Since the lower bound on ¢ is homogeneous of degree one in x and therefor also in b we have a linear
growth of the front speed in the amplitude of the shear flow. We have specifically

Corollary 1 Let x(y) be the solution of (3). The (minimal) speed co satisfies for all M € IR the
following estimates

-1

co(M) > max /\/Qdf ds M'Vyx||5| O, (leoo <%|f|m+|f|m) +\/glvyxloo|fléé2> ,

. . M? .
¢o(M) < min {2<d|f|oo>1/2| + Msupb(y), 2(d + 7|vyx|§o>1/2|f|;42} -
ye

This shows the linear growth of the speed with the Peclet number. In [1] it was conjectured based on

some formal arguments that A}im Lj\y) should be equal to sup b(y). From the corollary we get
—00 yeQ

M 2 .
lim sup &J\l) < min {sup b(y), %|Vyx|oo|f|éé2} }

M—o0 yeN

Hence the conjecture can only be true if the first bound is smaller than the second, which is

VXl _( d )”2
s b(y) > |f|oo ) (15)
yeQ

The left hand side is a typical length scale of the convective flow and the right hand side corresponds
to the thickness of the reaction zone for the one dimensional front (7). Therefor (15) is precisely the
assumption on which the formal derivation in [1] is based.

Next we will show, that the estimates in theorem 1 and 2 remain useful even in the high oscillation
limit which corresponds to homogenization. Let = (0, L) and consider (2) with periodic boundary
conditions. Assume that the flow field b(y) in (2) is replaced by 7b(“) with a 1-periodic b(z). The

function x(y) in (3) can be written as x(y) = £¥(z) with z = Z£. Now ¥(z) is 1-periodic and satisfies

A.X(z) = =b(2).



With C' = (0,1)" this implies for the lower estimate in theorem 1:

F(1) [ 198G d:
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As m tends to infinity we arrive at

1 VEF() [ [9.RG)P ds
liminf ¢y (m) > max /\/Qd f(s) ds, ¢ — (16)
m=es / VA |71V Koo
The upper bound simply rescales to
1 " .
co(m) < 2(d+ Elvleio)mlflif- (17)
This can be compared to the homogenized problem:
chu! = dpu” + f(u). (18)

The effective diffusion coefficient is given by
1 SO [2
dp =d+ = | |V.X(2)|° dz.
dJc

The first estimate in theorem 1 and the second estimate in theorem 2 with x(y) = 0 give:

/1 V2T (E) ds < e < 2/ dn |flme. (19)
0

Hence the estimates (16) and (17) have the same scaling behavior with respect to the convection and
the reaction as the homogenized problem. This shows that homogenization gives qualitatively the
correct behavior of the wave speed for arbitrary convection and reaction.

Another scaling corresponds to a strong convection and a weak reaction, i.e.

Deu(E,y) = dAu(E,y) + Mb(y)deu(6,v) + 505 F(u(Ev)) (20)

Replacing x(y) by Mx(y) and f(u) by f(u)/M? in theorem 1 and 2 we get
Corollary 2 The (minimal) speed co(M) for (20) satisfies

V2 VX3 F(1)

lim inf ¢p (M)
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Heuristically this result means, that a strong wind still sustains a front with speed of order one for a
very weak reaction. Without convection the front velocity would be of order 1/M.

At last we let the diffusivity tend to zero in (2). This time the second estimate in theorem 2 explodes
but the first estimate stays bounded.



Corollary 3 The (minimal) speed co(d) for (2) satisfies

\Y

2
liminf ¢o(d) > 2 |Vy>§|2 F{) ,
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limsupeg(d) < sup b(y).
d—0 yeEQR

In particular cy(d) stays bounded from above and below. Without convection the speed would be of
order /d.
The formal limit problem as d — 0 is

(c0(0) = b(y)Peu = f(u)
Since u is nondecreasing and f(u) is nonnegative we obtain

co(0) > sup b(y).
yeQ

Therefor one expects

lim ¢(d) = sup b(y).

d—0 yEQ
With all these asymptotic estimates at hand it would be interesting to study the limits of suitably
rescaled solutions of (2) and to derive limit problems for the various asymptotic cases.
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