Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Data-sparse approximation by
adaptive H2-Matrices

by

Wolfgang Hackbusch and Steffen Borm

Preprint no.: 86 2001

Data-sparse Approximation by Adaptive
H2-Matrices

Wolfgang Hackbusch, Steffen Borm
Max-Planck-Institut Mathematik in den Naturwissenschaften
Inselstr. 22-26, D-04103 Leipzig, Germany
email: {wh,sbo}@mis.mpg.de

November 15, 2001

A class of matrices (H2-matrices) has recently been introduced for storing
discretisations of elliptic problems and integral operators from the BEM.
These matrices have the following properties: (i) They are sparse in the sense
that only few data are needed for their representation. (ii) The matrix-vector
multiplication is of linear complexity. (iii) In general, sums and products of
these matrices are no longer in the same set, but after truncation to the
H2-matrix format these operations are again of quasi-linear complexity.

We introduce the basic ideas of H- and H2-matrices and present an algo-
rithm that adaptively computes approximations of general matrices in the
latter format.

AMS Subject Classifications: 65F05, 65F30, 65F50, 65N38, 68P05, 45B05, 35C20
Key words: Hierarchical matrices, nested bases, full matrices, fast matrix-vector multi-
plication, BEM, FEM.

1 Introduction

For linear systems with a sparse n X m-matrix A, several optimal iteration methods
are known, where optimality is characterised by estimating the arithmetic operations by
O(n). Usually, it is a well-established rule to avoid any consideration of A~! for numerical
purposes because of the fill-in (usually, A~! is a full matrix). Under this restriction, one
tries to express all algorithmical steps by means of the non-zero entries of A or by the
action of the matrix A to a vector. ILU-decompositions or Krylov methods are typical
results. A particular problem arises for the iterative solution of Sx = y, where S is a
Schur complement. Since the exact calculation of S is “forbidden” because it involves
the inversion of a submatrix, only the action of S can be considered. There are cases
where this is not sufficient for constructing a fast iterative method.

The techniques introduced in [4] show that, nevertheless, one can handle full matrices
like A~ with (almost) linear cost. In particular, in [6] a class of matrices (called H?-
matrices) was introduced for discrete elliptic problems and discrete integral operators
from the boundary element method (BEM, cf. [3]). In the latter case, full matrices arise
directly. It is shown in [6] that H2-matrices have the following properties:

1. They are data-sparse in the sense that only O(n) data are needed for their repre-
sentation.

2. The matrix-vector multiplication is of linear complexity.
3. Sums of these matrices can be computed with linear complexity.

In the case of sparse matrices A resulting from finite element discretisations of el-
liptic boundary value problems, the inverse A~! approximated by the #2-format is the
interesting object. Depending on the accuracy of the approximation B ~ A~!, we have
(a) a new fast iteration z'*! := 2* — B(Ax' —y), if B is a rough approximation to A",
or (b) By can be considered as the discrete solution, if the error B — A~! is of the size
of the discretisation error for y.

The notation H? refers to two different hierarchical structures. The (first) hierarchy
of the underlying cluster tree leads to the definition of the H-matrices introduced in
detail in [4] and [5]. A second hierarchy concerns the nested bases used in the definition
of H?-matrices.

In Section 3, we review the definition of H?-matrices. The following Section 4 con-
siders the efficient implementation of some basic operations on this type of matrices.

The computation of an optimal H-approximation of a given general matrix can be
done in principle by using the singular value decomposition for all matrix blocks and
requires O(n?) operations. This trivial but costly algorithm no longer works if an -
approximation is desired. In Section 5, we present an algorithm that computes such an
approximation with only O(n?) operations. If the original matrix is given in H-format,
the algorithm can be modified to use only an almost linear amount of operations.

2 H-Matrices

In Subsections 2.1 and 2.2, we define the cluster tree and block cluster tree which,
together with an admissibility condition for matrix blocks described in Subsection 2.3,
form the basis of the H-matrix format introduced in Subsection 2.4. An introductory
example is presented in Subsection 2.5. These preparations will lead to the nested bases
H-matrices (H?-matrices) in Section 3.

2.1 The Cluster Tree

We use a tree structure with the following notations: A tree T (I) is described by a set
of nodes T(I) and a mapping S : T'(I) — P(T'(I)) satisfying

S(r):={oce€T(I):0isasonof 7} for T € T(I),

i.e., S(7) is the set of sons of a given node .

If for 7 € T(I) the equation S(7) = @ holds, 7 is called a leaf. The set of leaves is
denoted by L(T (I)).

Let I be the index set of the finitely many degrees of freedom. The elements of I may
be {1,...,n} or the nodal points of the finite element discretisation, etc. The precise
definition of the cluster tree T (I) is given in

Definition 2.1 Let I be an index set. A tree T(I) is called a cluster tree (based on I)
if the following conditions hold:

1. I is the root of T(I).
2. #S(1) # 1 for all T € T(I).

3. For oll 7 € T(I), we have

S(r)#0=r=|) T (2.1)

7es(r)
i.e., if T is not a leaf, S(T) is a partition of T.
4. There is a constant Cy, € N independent from I satisfying
S(r)=0=n,<Cp (2.2)
for all 7 € T(I) with n, := #7, i.e., the size of each leaf is bounded.

For technical reasons, condition 2 is sometimes omitted, but then two different vertices
of T'(I) may correspond to identical subsets of I (cf. (2.1)).
We define
level : T(I) - Ny by
level(I) ;=0 and level(7') :=level(r) +1 for 7’ € S(7).

The maximal level of the cluster tree 7 (I) is fmax := maxlevel(T(I)), i.e., the depth of
T(I). T(I) can be partitioned into

Lmax
(1) = |),
=0

where Ty(I) := {1 € T(I) : level(r) = ¢} for £ € {0,... , lmax}-

2.2 The Block Cluster Tree

Since we are dealing with matrices A = (a;;); jer, we have to consider the index set I x I.
A hierarchical partitioning of this set is given by the block cluster tree T (I x I) (with
nodes T'(I x I)) that is derived from 7T (I) by the following inductive construction:

Construction 2.2 The root of T(I xI) is I x I. Given a vertexb=71 xo € T(I x I)
with 7,0 € T'(I), the set of sons of b is defined to be

S) :={r"xdo : '€ S(r),0 € S(o)}. (2.3)
Note that b is a leaf if either T or o is a leaf.
Remark 2.3 A binary cluster tree T (I) leads to a quad-tree T (I x I).
The mapping level(-) defined on T'(I) is extended to T'(I x I) as explained in

Remark 2.4 For allb=171 x o € T(I x I), we define level(b) = level(7). Due to (2.3),
we also have level(b) = level(o). We can partition T'(I x I) into

Emax
T(IxT)= | To(I x 1),
£=0

where Ty(I x I) ={be T(I x I) : level(b) = £} for all £ € {0,... ,lmax}-

2.3 Admissibility

Each index i € T is associated with a subset X; C R?. This may be a grid point (i.e.,
X; = {x;}) or the support of the ith finite element basis function:

X; := supp(b;) (b; : i th finite element basis function). (2.4)
This notation is extended to clusters 7 € T'(I) by

X, = X;. (2.5)

1ET
We introduce the diameter and the distance of 7,0 € T'(I) by setting

diam(7) := max |z —yl| and dist(r,0):= xeXr?,iyneXa |z =yl

A block b = 7 x o € T(I x I) is called admissible, if b is a leaf or if the following
admissibility condition ! holds for a fixed parameter 1 < 1:

max{diam(7),diam(c)} < 2n dist(7, o). (2.6)

!'For general H-matrices the maximum on the left-hand side in (2.6) can be replaced by the minimum.
However, for some proofs in the context of 7{2-matrices we need the maximum.

2.4 Admissible Matrix Partitionings and #H-Matrices

We introduce the set-valued functions

cols : T(I) x P(T(I) x T(I)) — P(T(I)),
(r,P)—~{oce€T(Il) : Txo€ P},
rows : T(I) x P(T'(I) x T(I)) — P(T(I)),

(0,P) = {reT

—~

I) : Txo0€ P},

that associate a given cluster with all blocks in which it occurs.
A set P, € P(T(I) x T(I)) satisfying

IxI=J{b:beP} and P,CT(xI) (2.7)

is called a hierarchical partitioning of I x I. The subscript 2 in P, should indicate that
P, partitions the twofold product index set I x I. Note that the second condition implies
level(7) = level(o) for all 7,0 € T(I) with 7 X 0 € P.

For any P, there exists exactly one subtree Ty of T'(I x I) with root I x I satisfying

Sb)=0 < be P, forallbeT,. (2.8)
A partitioning P, is called admissible if all blocks b € P, are admissible.

Definition 2.5 (H-matrix) Let I be an indez set, let Py be a block partitioning of I x I
and let k € NP2 A matriz A € KI'*! is an H-matrix with respect to P, and the rank
distribution k, if for each b € Py the condition rank(A|y) < ky holds.

Here, Aly = (aij) (i ey denotes the block matriz with respect to b € P,.

The set of all these matrices is denoted by My (I X I, Py, k).

2.5 Example

To fix the ideas, we give a 1D example of what an admissible partitioning may look
like. We consider piecewise constant finite elements on the unit interval [0, 1] having the
supports X; = [(i — 1)h,ih] for i = 1,... ,n with the step size h = 1/n. Assume n = 2P.
Then an obvious recursive construction of the cluster tree is as follows: I = {1,... ,n}
is the root, and whenever

7= {irir+1,... iy +n,—1} (2.9)

is not a leaf (i.e., n, > Cp, cf. (4)), the sons of 7 are the two clusters 7/ = {i,,i, +
... ,ir+n;/2—1} and 7" = {i; +n;/2,... ,i; + n; — 1} of half the size. An equivalent
way would be to say that the support X is divided into equal parts X, and X,~». We have
7 € Ty(I) if and only if n, = 2P~!, where p = lay. Furthermore, diam(7) = 2P~/h = 2~
and dist(7,0) = max{0, |i; —is|h — 27!} for 7,0 € Ty(I), where the notation i, refers to
(2.9).

The partitioning P, defined by the admissibility condition (2.6) for n = 1/2 takes
the form outlined in Figure 1.

Figure 1: Admissible partitioning

3 7{%-Matrices

The H2-matrices, which we are going to explain in this section, were first introduced in
[6]. They are a subset of the general H-matrices My (I x I, Py, k). For A € My(I x
I, Py, k), we allow A|, to be any block-matrix of rank < k.

Now we will restrict A, to a certain subspace V} of matrices with rank < &, in order
to reduce the amount of work necessary for operations on this new type of matrix. This
restriction can be seen as a three-step procedure: The first step is to consider arbitrary,
but fixed, subspaces of the set of all H-matrices My (I X I, Po, k). The second step is to
restrict the spaces corresponding to the blocks b = 7 X ¢ € P> to tensor product form.
The last step is to consider nested spaces.

3.1 Restriction to a Fixed Subspace

The set My(I x I, Py, k) is, in general, not a vector space: Each block b € P, is in the
set

Ry:={A¢€ K - rank(A4) < ky},

and this set is not a vector space, not even convex. This is a disadvantage considering
the theoretical treatment of H-matrices, since standard linear algebra cannot be applied.

In order to remedy this, we fix a kp-dimensional subspace V, of Ry for each b € P
and define the space

My(I x I, Py, V) :={Ac K> . Al, €V},

where V = (Vp)bep, -
If we equip K'*! with the Frobenius inner product

(A, B)F := Z aijbij,

1,J€I

we get a Hilbert space with the standard Frobenius norm of which My/(I x I, P,,V) is
a subspace.

So the best approximation (with respect to the Frobenius norm) for any matrix A
in this subspace can be expressed by means of the orthogonal projection

IT: K> 5 My (I xI,P,,V) with
(TTA,B)p = (A,B) for all A€ K™ and B € My(I x I, P, V).

3.2 Uniform #-Matrices

In many practical applications, a certain 7 € T'(I) occurs more than once in the blocks
b € P, of the given partition. Therefore, it is desirable to do as much work on the
“cluster level” and as little as possible on the “block level” in order to reduce the total
amount of work.

One way of doing this is to fix spaces V,; (corresponding to rows of the matrix)
and V., (corresponding to columns), both with dimension &, and choosing V}, for b =
T X o € Py to be

H
Vp 1= span{u,v, : ur € Vi r,05 € Veo!,

i.e., the tensor product of V,, and V... As usual for tensor product spaces, the di-
mension of V, is k;k,. The rank of matrices in this space is obviously bounded by
ky = min{k;, ks }.

If for each b € P, the space V), is defined as above, My (I x I, P,,V) is denoted by
My (I x I, Py,V.,V,) and called the space of uniform H-matrices with respect to I, P,
Ve = (VC,T)TET(I)7 and V, = (VT‘,T)TET(I)‘

In standard applications, the spaces V; and V., will coincide for 7 = o, but this is
not required.

If we choose bases for V,; and V. ;, i.e., matrices V;.; € K™%k~ and Ver € K™%k of
full rank satisfying

V.- =rangeV,, and V., =rangeV, ,
we get the characterisation
Vo = (Vi SV o Sy € Khrxhoy, (3.1)

The tensor product structure can be used in the following way to reduce the total amount
of work per matrix-vector multiplication:

The computation of a matrix-vector product y, = Myz, with M, € V) is equivalent
to the computation of y, = W,TS(,VC{f,mU. The three matrix-vector products occurring in
this expression can be used to devise an algorithm consisting of three steps for computing
matrix-vector products with uniform H-matrices:

First Step: Forward Transformation Since %, := Vﬂ,mg does not depend on b, but
only on o, it has to be computed only once for each cluster. The procedure of computing
all z, is called forward transformation:

for o € T(I) do &, := Vx|,
Second Step: Multiplication The multiplication with S}, has to be done for each block

b € P», but it has only a complexity of O(k.k,), not of O((nr + ns)ks) as in the case of
original H-matrices:

for 7 € T(I) do g, :=0;
forb=7x0 € P, do 9 := §; + SpZs

Third Step: Backward Transformation The last step is the computation of y, by
multiplying by V,.r. As in the first step, this operation is performed only once per
cluster:

forT € T(I) do y|‘r = y|'r + V;",TQT

3.3 Nested Spaces

Although the amount of work per matrix-vector multiplication can be significantly re-
duced by using uniform #H-matrices instead of full H-matrices, it is, for standard appli-
cations with constant k; = k, still of order O(nklogn), i.e., not optimal.

The logarithmic factor is caused by the forward and backward transformations, while
the multiplication step typically has a complexity of O(nk). The basic idea for reaching
the same complexity for the transformations is to reuse data: For a given level £, k2¢
coefficients will be computed by the forward transformation. So there will be “more
information” on finer levels (i.e., Tp(I) with large ¢, corresponding to small clusters)
than on coarser levels, therefore there is a chance of devising a scheme that allows us to
use the coefficients computed on lower levels in order to compute those on higher levels.

We make two observations:

1. If the coarser bases cannot be expressed in terms of the finer bases, the approach
given above must fail since then information is lost when switching from finer to
coarser levels.

2. In order to get a reasonable complexity, the computation of Z, for a given 7 €
T(I)\ L(T(I)) should require no more than O(k2) operations.

A simple way to meet these criteria is to require that the sets V, and V. form a nested
hierarchy:

Definition 3.1 A hierarchy V = (V;),cr(r) of spaces is consistent, if for all 7 € T(I)\
L(T(I)) and all 7" € S(7) we have

Ve 24U =ulp : we€V,} and Ve D{v =0y : vEV } (3.2)

If, e.g., V, is consistent, the space V, , for a given 7 € T'(I) \ L(T'(I)) is spanned by
zero-extensions of vectors in the spaces {V,» : 7/ € S(7)} corresponding to its sons, so
the coefficients Z; can be computed using the coefficients Z,/ corresponding to the sons
of 7, i.e., to the next-lower level.

Definition 3.2 (H2?-matrix) Let a partitioning P, and consistent families of spaces
Vi = Vrr)rer(nys Ve = Ver)rer(n) be given. Then the set of H2-matrices is given by

Mo (I X I, Py, Vp,Ve) :={M € RI*I . M|, €V, for all b € Py}.
An immediate conclusion from (3.2) is

Remark 3.3 Let b =1 x o € Py. The restriction of M|, € V, to a subblock b = 7' x o',
b € S(b), yields a matriz M|y € V.

The consistency condition can be reformulated for the matrices V, -, V. ,:

Lemma 3.4 The families V, and V. with their corresponding bases (Vm)TeT(]) and
(VCJ)TGT([) are consistent if and only if there exist matrices By -, B. .+ € Kk xkr
satisfying

‘/;",T|T,><k-,— = V;",T’BT‘,T’,T and ‘/C,T|T’><k-,- = ‘/C,T’BC,T,,T (33)
for all 7 € T(I)\ L(T(I)), ' € S().

Using the matrices B,y , from Lemma 3.4, we can express %, in terms of Z,: Let

S(o) ={o1,...,0s} be the set of sons of 0. We find

‘/c,[lec,(rl,(r
‘/C,D' =) (34)
‘/C,D'SBC,O'S,O'
leading to
P
T = Vc{{fﬂff = (BeoroVeo - BeoooVeo)
o,
S S
= ZBgtri,ter{{anfi = Bgtri,tritfm (35)
=1 =1

i.e., the coefficient vector Z, can be indeed computed using only the coefficient vectors
T, corresponding to its immediate sons. This leads to an improved version of the
transformations introduced for uniform H-matrices:

Fast Forward Transformation In order to make use of (3.5), we compute the coefficients
Z, proceeding from the “finer” towards the “coarser” levels:

procedure FastForward(o);

begin
if S(o) =0 then &, := V] z|,
else
begin
Ty =0
for ¢’ € S(o) do
begin
FastForward(o'); &, := 5 + ng,,gﬁc(,/
end
end
end

Fast Backward Transformation In a similar fashion, we can represent ¢, in terms of
the coefficients j,» corresponding to the sons 7’ of 7, so by proceeding from the “coarser”
towards the “finer” levels and updating the coefficients according to (3.4), we get the
following algorithm:

procedure FastBackward(r);

begin
if S(7) =0 then y|; =V, ;0
else
for 7' € S(7) do
begin
Uz = Up + By +Ur; FastBackward(r')
end
end

In the case of constant k,, the “fast” versions of the transformations require only O(k?)
operations to compute the coefficients corresponding to a certain cluster.

Remark 3.5 (Relation to multilevel methods) There are similarities between mul-
tilevel methods and H?-matrices. For the sake of simplicity, we assume that Ty (I) =
L(T(I)) holds, i.e., that all leaves of T (I) occur on the finest level lyax.

We define the spaces

max (

Vi:={u€ K - ulr € Ve,r for all T € Ty(I)}

for each £ € {0,... ,lmax}. They form a hierarchy of nested subspaces of K!', similar to
the hierarchies of finite element spaces used in the context of multilevel methods.

As in finite element methods, a function y € Vy can be represented by a wvector
(Ur)remy(ry of coefficients in the bases (Ve,r)rer,(1)-

10

The inner loop of the fast backward transformation resembles the prolongation op-
erator of standard multilevel methods: If we start with a coefficient vector (QT)TET((I)
corresponding to a coarse grid, it will compute a coefficient vector (BT,TI7TQT)T/€TH1(I)
corresponding to the next finer grid.

The outer loop of the fast backward transformation and the corresponding accumula-
tion across all levels is an operation frequently used in the context of additive multilevel
methods.

Since the fast forward transformation is simply the adjoint of the fast backward trans-
formation, it corresponds to the restriction operator of standard multilevel methods: A
function, given on the “finest” level, is transferred to “coarser” levels.

3.4 Choice of k;

The simplest choice of the dimension &, is a constant k.onst. Since the dimension cannot
exceed the size n, of a cluster, the exact requirement is

kr = min{kconst, 77 }- (3.6)
In the case of the example from Subsection 2.5, k, depends only on the cluster level:
kr = kg == min{keonst, 2"~}

for all 7 € Ty(I).

If an H2-matrix has to approximate a BEM matrix up to the error O(h?) with
being the consistency order, the choice of kconst should be of the order logn, where
n = #I1.

As proved in [6], it is not necessary to use keongt = logn for all blocks. This size is
only needed for large blocks. A reasonable choice is

kr = lmax — level(T) + 1
or, more generally,
kr := min{n,, o + B(¢max — level(7))} for some o, 8 > 1. (3.7)

If n, depends only on level(7), also k, = ky is only a function of the level number. Note
that for small-sized clusters, k(7) is of order 1, while large clusters (with small level(r))
lead to k; = O(logn), since ¢max = O(logn).

3.5 Choice of the Bases in the Case of Piecewise Constant Functions

We consider the one-dimensional case of piecewise constant functions on X;, ¢ € I, where
X is an interval. We choose k. to be “constant” according to (3.6).
Given an integral operator with a kernel function x(z,y), consider the expansion

o
k(z,y) = Z svuly ()P (y) in the range of (z,y) € X, x X, (3.8)
v,u=0

11

with X, X, (cf. (2.5)) satisfying the admissibility condition (2.6). Here, {P] : p € No}
is the orthogonal system of Legendre polynomials; more precisely, P/ is the uth Legendre
polynomial transformed from [—1, 1] onto the interval X, such that

(PJ, P])12(x,) = 0u,u (Kronecker symbol).

We consider a finite part of the expansion (3.8) by setting K, := {0,... ,k, — 1} and

Kheko (T:9) 5= D > 5u,P) () PY (1) (3.9)

I/EKT MGKG'

In the Galerkin setting, the entry a;; of the discrete matrix A is given by the double
integral

aij = /X | /X o

(we recall that X; = suppb; and X; = supp b;).
We replace x by the approximation xj_j, and get

0% [[s o)t sy
X; JX;

= Z Z Sv,u /X P (z)b;(x)dz /Xng(y)bj(y)dy

veK, ﬂEKo'
=3 X s [Pl@bo)s [P0y,
veK- uek, X Xo
so by setting
Vir = < Plf(x)bz(x)dm> € R7*kr
Xr ieT,veK
V= ([ROB0a) eroh
Xo' jEO',ILEK
we have
kr—1ky—1 : 5
aij Y Y suu(Ver)iwVeo)jp = (VarSVE)yy foric€randjeo
v=0 pu=0

if we set S = (sy,), € RET >k We let
V, - = range Vm and V., = range Vc,(,,

and find that the approximation VT,TSYN/C:’C, is in Vy (cf. (3.1)) for b = 7 x 0. The
dimension of V,; (or V.s) i8 keonst for nr > keonst (0r ng > keonst) and n, (or ng)
otherwise, satisfying (3.6).

12

Now we consider the consistency condition (3.2) in the case of “constant” k according
0 (3.6). Let 7" € S(7).
For each polynomial P] of degree < k¢ongt, the restriction P | x,, 18 again a polyno-

mial of degree < kconst- Therefore, there are coefficients bZlT,: satisfying

P _ bT,T'PT'
v |X7J - v,V 1 |X7.l .
V’EKT/

We have

vmm:(PJ(x»Ax)dm) - [X wrr @
X ier! v Xery "eK

[N

_ 7! Y7 T,T
_ / PL@ia)dr | = Vi (077,)

V’EK/ . Wi//

i,V
::BQ,T,T,
SO
VT,T|T’ = range Vr,’r|’r’><k.r = range Vr,'r’Br,'r,T’ g Vr,'r’ (3'10)

holds, therefore the condition (3.2) is fulfilled.

Remark 3.6 In the case of variable k (cf. (3.7)), this simple polynomial-based con-
struction is no longer possible: The rank of a polynomial on a cluster T may be larger
than that of all the polynomials on one of its sons 7' € S(7), so the restriction property
of the spaces cannot be derived from the restriction property of the polynomials.

In [9], the polynomials are replaced by other functions that satisfy the restriction
property while still allowing a suitable approzimation of certain kernel functions.

4 Complexity and Storage Requirements

4.1 Storage Requirements

Assume the cluster tree from Subsection 2.5.

Remark 4.1 If k; is “constant” (cf. (3.6)), the restriction matrices By 1 -, B 1 Te-
quire not more than O(nkeonst) storage.

Proof. The number of clusters on level / is bounded by #Ty(I) < 2¢. We have to store
the kX kr-matrices B, and B, for each father-son pair 7 € Ty(I), 7" € S(7), so
the total storage requirement is

max 1

Seonst =2 Y > Y kkp

£=0 T€T,(I)7T'€S(T)

13

Let #1 = n = 2P and set

le:=min{l : YT € Ty(I) : n: < keonst} = |p — 1085 (kconst) |- (4.1)
Then we can split the sum as follows:
Le—1 fmax
)2 Dl SR USEES I DD ST
=0 T€Ty(I) T'eS(T) L=Le T€Ty(I) T'€S(T)
le—1 Lmax
<2 2T (Dl +2>, >, > neng
=0 0=Le 7Ty (I) T'€S(T)
le—1 Lrmax fmax
<4 2R 42>) (ng)? S AkZg 2% +2) 202
(=0 (=t T€T,(I) =1,
2 2p Zmax
< 4kzonst— 2 22p Z 27(< 8kconstn +4 22p 27[6
kconst r=¢,
kconst

< 8kconstn + 4 22p = 12kconstn.

In [6], a proof of the following estimate for the case of variable &, can be found:

Remark 4.2 If k. grows linearly (cf. (3.7)), the restriction matrices By ;v 7, Be -
require not more than O(n) storage.

Note that the matrices B, ;- - and B, ;s » describing the H2-format are to be computed
and stored only once for a subspace of H2-Matrices, since they are independent of any
individual H2-matrix.

Each matrix M € My (I x I, P5,V,,V,) is completely described by the matrices
(Sp)bep, from (3.1) carrying the entries s, , from (3.9).

Using a similar proof as above, the following estimate can be derived:

Remark 4.3 The storage needed for all block coefficient matrices (Sp)pep, is bounded
by O(n) in the variable case (3.7) and by O(nkeonst) in the constant case (3.6).

4.2 Complexity Bound for Arithmetical Operations
4.2.1 Fast Matrix-Vector Multiplication

As mentioned in Subsections 3.2 and 3.3, the fast matrix-vector multiplication algorithm
is performed in three steps: (i) a forward transformation computes the coefficients of
a given vector in the bases corresponding to each cluster, (ii) in a block-multiplication
phase, the “scaling matrices” Sy, are applied to these coefficient before the (iii) backward
transformation computes the result vector from the coefficients on all clusters.

It can be easily seen that in all the steps the arithmetical work is proportional to the
number of entries in the matrices B, ;, B. . and Sy (cf. [6]). Therefore, the previous
results about the storage show a respective complexity of O(n) or O(nkconst)-

14

4.2.2 Matrix Addition with matching Bases

Different from general H-matrices, the sum of two H2-matrices (with the same parti-
tioning and the same nested bases) can be performed ezactly. Since only the matrices
(Sh)pep, are to be added, the cost is clearly the same as the storage needed for the family

(Sp)beps-

4.2.3 Matrix Addition with arbitrary Bases

The sum of two H2-matrices A and B with different bases but identical P, and T (I)
can be represented ezactly by doubling the dimensions k,; and simply copying the data
associated with A and B, so this operation requires O(n) operations in the case of
variable rank and O(nkeons;) in the case of constant rank.

Of course, the potential doubling of the ranks leads to an unattractive complexity
when computing sums of a large number of matrices. To avoid this, the algorithm
introduced in Section 5 can be applied after each addition to reduce the dimensions by
removing unnecessary basis functions.

5 Approximation of General Matrices by #2-Matrices

The a priori computation of the bases for an H?-Matrix requires that the kernel x and
its expansion (3.8) are known. In many applications, this requirement is not met, so
another method of computing these bases is desirable.

In this section, we present an algorithm that computes an approximation of the
optimal nested bases from a given general matrix. Furthermore, a certain accuracy can
be guaranteed by applying a slight modification of the algorithm that will be discussed
in Section 7.

We assume that a suitable partitioning P; is given. Since we allow general matrices
with n? entries in the first stage, the following algorithm needs at least O(n?) operations.

5.1 Optimal Approximation on One Level

We fix a 7 € T},,,.—1 and want to compute an optimal V, .. Before we can do this, we
first have to investigate the meaning of “optimal” in this context. The space V; , will
be used in all blocks b € P, that have the form b = 7 x ¢ for a certain o € T(I), so it
seems straightforward to minimise

> lAl — Ty, Al 7 (5.1)
be P

with respect to all V, -, where IIy,_, is the orthogonal projection from R" to V; , and P;
is defined by

Pr:={beP, : IoeT():b=7xo0}={1x0 : o€ cols(r,)} (5.2)

15

This minimisation will not lead to a good approximation of A, since the space V, ; is not
only used for b € P;, but, due to the consistency condition (3.2), acts as a restriction
for the computation of V, . for all 7' € T'(I) with 7 C 7.

So we aim to minimise the quantity

> 14y =TIy, A7, (5.3)
be Pt
summed over all blocks from
Pr:={b:3ocT():b=1xocand " € P :b=b" N7 xT}, (5.4)

i.e., all blocks b that are subsets of a block b* € P, and that have the form b = 7 x o
foraoeT(I).
Note that the sets b € P are disjoint because P, is a partitioning of disjoint blocks.
Since all elements of P have the form 7 X o, we can introduce the sets of clusters
and indices corresponding to blocks in P}

Cr:={ceT) : Txo€ P} and I ::UCT.

Obviously, we have P, = {r x 0 : o € C;}, so the expression (5.3) can be rewritten as

bepPt
with
Ar = (xc, (U)ATXU)geT(I) € RTXIa (5.6)

where xc, is the characteristic function of C, i.e.,

1 ifoecC;
0 else

In Figure 2, the blocks in P; for a given partitioning P corresponding to different
clusters 7 are marked.

il il il
1] T 1]
T T il

7 7 7
1] 1] 1]
A A A

Figure 2: Blocks P for different clusters

16

It is well-known that approximation problems of this type can be handled by using
the singular value decomposition of A;: We let id,y, := ((5”-)];’ ’;-1:1 for all p,q € N.
Let | € N>g, be the rank of A;. Then there are U € K™/, V € K/"*! and a matrix
¥ := diag(o1,... ,07) with

A, =USVE, g1 >09>...>0,>0, UHU=VHV =1id,,.

To determine the optimal rank-k-approximation of A, we replace 3 by the truncated
diagonal matrix % := diag(oy,. .. ,0k.,0,...,0) € R*! and set A, =USVH, We still
have to show that A, is of the form ITy, . A, for a k;-dimensional subspace V;.; of R".
We let U := Uidg,, ie., U contains the first &, columns of U. Since UEU = idg, k.
the mapping Il := UUM is the orthogonal projection onto Vir = range(U) satisfying

;A =UU"USVY = Uidyy, idfL, U"Usv?
= Uidey, idfL), SV =USVH = 4,
Since A, is the optimal rank-k-approximation of A, Vir = range(U) is the optimal
choice.

Since we are only interested in V, ;, we can eliminate the computation of the matrix
V by characterising U and ¥ in terms of the Gram matrix

G, = A A = usypiyl = yy?yl
and thus arriving at a symmetric positive semidefinite eigenvalue problem.

Remark 5.1 (Adaptivity) The approzimation error is given by

l
HAT - HVT,TATH%? = Z O‘l%?
v=k,+1

so it is possible to choose k, adaptively in order to ensure that the approximation error
is below a given bound.

Applying this method to A" instead of A, we can find the optimal column-related spaces
Ve,r.

5.2 Global Approximation by a Greedy-Type Algorithm

Using the above procedure, we can compute optimal bases for all clusters, but they do
not necessarily satisfy the consistency condition (3.2). In order to compute consistent
bases, we start from the finest level ;.

We compute bases V; . for all clusters 7/ € Tj, . (I) using the method described in
Subsection 5.1. Let us now consider a cluster 7 € Ty(I) on the next level £ = £, — 1.
We want to compute a basis V; . of a space V. ; minimising

1A =TIy, , A [(5.7)

17

Since (A; —Ily, (A7, Ily, . A;)r =0, we get by the Pythagoras identity
|47 =Ty, As |7 = [|A- |7 = [Ty, . A7 ||

If we require the matrix V;.; to be orthonormal, we have IIy, . = VT,TVTE and find
My, . ArllF = Ve Vi As 7 = 1V AR5

Therefore, the problem of minimising the error (5.7) can be reformulated as the problem
of finding an orthonormal matrix V. - € K>k maximising

VA2, (5.8)

We do not only look for an optimal basis, but for a hierarchy of bases being consistent,
so we have to satisfy the condition (3.3). Therefore, we reformulate our maximisation
problem in terms of B, ,/ ;: We look for a family (B, ;/)z eg(r) of matrices maximising

H

H
Br,n)T Vr,n Ar|n xTI
H H 2 .
H (Brﬂ—l ;T‘/;',Tl st BT;TS ;T‘/T,Ts) AT HF - . :
H
BT,Ts ,T Vr,rs AT|TS><I
for S(t) ={r1,... ,7s}.
Since V., has to be orthonormal and
Ve By 7
‘/T‘,T = I)
V;":Ts BT';TS:T
we get
H
BT’TDT B?",Tl 3T
_1/H _ . .
1=viv,. =| |
Brﬂ'sﬂ' B7'77'S77'
so the combined matrix
Br)7-177—
Qr=| : |eK" (5.9)
BT;TS)T

with m, := ZT’GS(T) k- must be orthonormal, too. We set

A\T,T, = VH’AT|T’><I (510)

r,T

18

and
T,T1

~

AT,TS
So now we look for an orthonormal matrix Q, € K™ %= that maximises
Hf |2
1Q7 Ar[|p-

This problem has the same structure as the original problem (5.8) and can therefore be
treated in a similar fashion, i.e., by computing the eigenvectors of

~ ~I ~ ~I
AT,TI T,TL AT,TI AT,TS

AN ._ A AH _ . . .

G, = A AT = : . : . (5.11)
~ i ~ ~I
AT,Ts AT,Tl T AT,Ts AT,TS

Making use of (5.10) in combination with (5.6), we have

TH H § :
ATTlAT'rJ WTZAT|T,‘><IAT|T]-><I‘/7',T] = r'rlA |7' XO’A |T]><O"/T‘TJ
oc€eT(I

E XC’T TT,A |T1><0'A |TJ><0' rTj = g rTlA|T1><0' |T X0 T‘T]7
o€T(T ocCr

so we can rewrite the computation of éT in terms of single blocks by using

Gr=> Gy (5.12)
O'ECT
with @T,g = AT,(,Af{o_ for
A‘\Tl,o'
Ar = (5.13)
AATS,O'

with A, == V,ngH'm for all 7" € S(7).
The explicit computation of A, takes O(k,n.n,) operations. Once more, it is

possible to make use of the consistency condition in the form of equation (3.5) to get
the equation

H H
‘/T‘,Tl B?‘,Tl \T ‘/7',7'1 B?‘,Tl,T A|7‘1 Xo

n H
A = V A|T><0' = . A|T><0' = : :
‘/r,rs Br,'rs,'r ‘/r,rs Br,'rs,'r A|TS><0'

19

H H -~
Br,n T V;,TIA|71 Xo An N
- . . _ NH . _NH 1
- . . - QT . - QT AT,O’,
" ~
TyTssT ‘/r,'rsA|Ts Xo ATS 0

i.e., by using the matrices ;1\7/,[, corresponding to the sons 7’ of 7, we can compute ET,U
with only O(k;m;n,) operations.

Combining all the basic steps mentioned above with a recursive bottom-up strategy,
we get the following algorithm:

procedure ComputeRowBasis(7);

begin
if S(7) = 0 then
begin
G, :=0;

for 0 € C; do G, := G, + Al . A2, ;
Compute the Schur decomposition Q‘Tq G,Q, =D
with D = diag{oy,... ,0n, },00 > ... > 0op,;
Vr,'r = QT idnTXkT € RTXkT;
for o € C, do ET,U = VTEA|T><J
end
else
begin
for 7’ € S(7) do ComputeRowBasis(7’);
@T =0
for o € C; do
begin
Build A, , according to (5.13);
@T = éT + AT,J/H{U
end;
Compute the Schur decomposition Q‘Tq @TQT =D
with D = diag{o1,... ,0m, },01 > ... > Om.;
Qr:=Qr 1y, xk, s
for o € C; do ET,U = Qflflm,;
If necessary, copy B, from Q. according to (5.9)
end
end

5.3 Complexity

Now we aim to estimate the complexity of our algorithm. We recall the definition of C'r,
in condition 4 of Definition 2.1:

S(ry=0=n,<Cg

for all leaves 7 € L(T (I)).
We assume that there are sequences (k¢)pen, (my)een satisfying

kr < klevel(T) and m; < Mlevel () (5'14)

i.e., that k; and m, are bounded by constants depending only on the level of 7, and that
there is a constant C'x satisfying

oo o

Z 2t tmaxg, < O, Z 2w, < Ok,
=0 =0
o0 o0
D ot < Cand Y 20 fmenk} < Ok (5.15)

Usually, &k, and m, will be polynomials in £ and therefore fulfil this requirement.
We let wy := #Ty(I) and assume that 7 (I) is an “almost balanced” binary tree, i.e.,
that there is a constant Cyy satisfying

wy < Cyy b —bmaxy,

5.3.1 Computational Complexity for @T and G,

Let us first consider the number of operations necessary for the computation of the Gram
matrix G, for a leaf 7 of 7(I). The initialisation of G, requires O(n2) operations, the
computation of one of the increments A|,,A|Z requires O(n2n,) operations for each
o € C;. Since C; is a partitioning of a subset of I, we have

> ng<n, (5.16)

O'GCT

leading to a total complexity of O(n2n) for the computation of G. Since 7 is a leaf, we
have n, < Cp, so only a complexity of O(n) remains.

Let now 7 € T(I) be a node that is not a leaf of 7(I). We estimate the number
of operations necessary for the computation of G, from (5.12). The initialisation of G,
requires O(m2) operations, the computation of one of the increments ATUA takes
O(m?2n,) operations. Due to (5.16), we end up with a complexity of (’)(an) for the
computation of @T.

If we denote the number of operations for the computation of G, (for leafs) or G,
(for other clusters) by Fg ., we get the estimate

Eq, < C(;mzn
for a constant Cg. Summing up, we get the following estimate for the number of oper-

ations necessary for the computation for all 7 € T'(I):

max

Z Eqr <Can Z m; <C’an Z m

TeT(I TET(I =0 7€Ty(I)

21

lmax lmax

< Cgan Z wlm% < CGan2 Z 2é7€maxml2 < CGchK’n2. (517)
=0 £=0

5.3.2 Computational Complexity for Q,

Now, we will derive an estimate for the number of operations necessary for the compu-
tation of Q, i.e., for solving the symmetric positive definite eigenproblem. We assume
that an algorithm with cubic complexity is used, so the computation for a leaf 7 € T'(I)
takes O(n3) operations, while the computation for the other nodes 7 € T(I) requires
O(m3) operations.

If we denote the number of operations for the computation of Q. once more by Eg
we get the estimate

Eqr < Cqm;

for a constant Cg. We sum up and get the estimate

max

= > Eg-<Cq Z mi<Cod Y md

TET(I) TET(I =0 7€Ty(I)
éma.x Emax
< Cp Y wemj < CoCuny _ 27 mexmd < CoCy Cen. (5.18)
£=0 £=0

5.3.3 Computational Complexity for Em

To complete the complexity estimate, we consider the number of operations involved in
the computation of the transformed matrices A\T,(,. The computation for a leaf 7 € T'(I)
and a 0 € P+ (cf. (5.3)) takes O(k.n,n,) operations. By using (5.16), we get a
complexity of O(k,;n,n) for all updates corresponding to 7.

If 7 € T(I) is not a leaf of 7(I), the computation requires O(k;m,n,) operations.
By (5.16), the complexity for all updates corresponding to 7 is of order O(k,m.n).

We denote by E, . the number of operations for the computation of A\T,U for all
o € C; by C; and get the estimate

Ear < Cska msn

with a constant Csp,. For all 7 € T'(I), the complexity is therefore bounded by

Emax

Z Ear <Cypn Y ka<csan > kem,

TET(I TeT(I =0 7€Ty(I)

Zmax max
< Cpn Z wekpmy < CSpCWn2 Z ot tmax oo, < CSPCWCKn (5.19)
(=0 (=0

Summing up E¢, Eq, and E4, we find that the complexity of the algorithm is O(n?).

22

5.4 7H?-Approximation Error Estimate

In Subsection 5.2, we introduced an algorithm that computes consistent nested bases
V,. The algorithm can be applied to A" in order to get the bases V..

This leaves us with the question if using both bases we can control the error of the
H?-approximation of the matrix A.

We define Frobenius-orthogonal projections

Iy, : KX o KX (5.20)
A= (Ap)vep, = (Ly, Ap)o=rxoecps;
and
Iy, : KT - KT (5.21)
A = (Ap)pep, = (Aplly, ,)b=rxocp,-
They commute, and the product
H = HVT‘HVC = HVCHVT (522)

is the Frobenius-orthogonal projection onto My (I x I, Py, V., V,).
Due to the orthogonality of the projections, we get the following approximation error
estimate:

Lemma 5.2 Let A € K'*!. Then the inequality

JA = TTA3 < |4 — Ty, All% + |4 — Thy, AJ2
holds.
Proof. For a matrix A € K'*! we have

|A = TA|[7 = |A = Ty, Ty, Al[F = |A = Ty, A + Iy, A — Ty, Ty, A %
= [|(T = TIy,) A + Ty, (A — Ty, A) |7
= [|(T =TIy, A5 + [Ty, (A — Ty, A)||%
< | A =TIy, Al + [Ty, [[3:[|A — Ty, Al
<A =Ty, Alf7 + [|A — Ty, A 7.

|
Of course, we are interested in an optimal approximation. The following lemma states
that quasi-optimal row and column bases lead to a quasi-optimal H?-representation:

Lemma 5.3 Let A € K'*!. Then the inequality
max{[|A — Ty, A||%, | A = Ty, A3} < [|A - TTA|[%

holds.

23

Proof. Due to (5.22), we have
1A = Iy, Al = [All7 — 1Ty, All% < [|AllF — [Ty, | Z [Ty, All%
< A% — Ty, Iy, Al = Al — ITA|% = | A — TTA|[%.

Swapping the roles of IIy,, and II, completes the proof. [

6 Approximation of 7-Matrices

The complexity of the algorithm for the computation of nested row bases is optimal for
full matrices: Since we have to consider n? matrix entries, any algorithm will be O(n?).
Now we consider the computation of nested row bases for H-matrices. We assume
that the rank is “constant” (cf. (3.6)).
We require the partition P, to satisfy the condition

#P, < Cyp (6.1)

for a constant Csp, and all 7 € T'(I) (cf. (5.2)).
Since a cluster 7 € T'(I) can have no more than /.y father clusters, we conclude
that

#PF < Cspliax

(cf. (5.4)).

6.1 Efficient computation of @T

We fix a matrix A € My(I x I, Py, k). Since A, is a rank-k-matrix for each block
b= 1T X 0 € Py, there are matrices X, € K"**# and Y, € K”*¥# gatisfying

Alp = XY (6.2)

We will make use of this structure in order to speed up the computation of the Gram
matrices G, and Gr: We have

Gr= Z A|7'><0'A|7I:I><O' = Z (A|b)|TX”(A|b)|fX“

oeCr be Pt
H 0
= E Xplrxky Yo YoXbl 7k,
D'ECT

so we can compute Z, := Y;'Y} for all blocks P, in advance. Since #T(I) = O(n), we
can conclude from (6.1) that #P, = O(n), so the computation of all the (Z)pep, can
be accomplished in O(nk3,) operations.

By using

< H
Xrp =V, 2 Xplrxky,

24

instead of A\T,U (cf. (5.10)), we can rewrite (5.11) as

H H
ATTIATT1 . L
G, =A AT = :
H H
AT)Ts AT 71 T AT,Ts AT,TS
~ ~ b
Xn,beXﬂ,b s X pZpX T
= : : (6.3)
el \Xp w X2, o Xp W ZXH

for S(r) ={m1,... ,Ts}. R
As in (5.13), we combine the matrices X,/ to get

T1,b
X'r,b = , (64)
Ts,b
so we can rewrite (6.3) in the form
Zy
G.= Z Xrb X’fb, (6.5)
bEP;L 7

The computation of G, therefore requires only O(m,ky (mr+ky)lmax) Operations, while
in the case of the general matrlx (’)(m n) operations were necessary.

Due to the equation XT(, =QfX by We can use XT(, to compute XT(, efficiently,
i.e., in only O(k,m, k) operations, while in the case of a general matrix O(k,m,n)
operations are necessary.

6.2 Algorithm

The computation of the auxiliary matrices Z; is straightforward, so we only give the
recursive algorithm for the computation of a nested row bases for a given H-matrix:

procedure ComputeRowBasisHMatrix(7);

begin
if S(7) = 0 then
begin
G :=0;

for b e P+ do G, := G +Xb|7><kHZbXb|T><k:H’

Compute the Schur decomposition Q¥ G,Q, = D
with D = diag{o1,... ,0n.},01 > ... > op;

Vir = Qridy, i, € R¥F7;

for b € PT+ do)?T,b = V Xb|T><kH

25

end
else
begin
for 7' € S(7) do ComputeRowBasis(7’);
éT =0
for b € P} do
begin
Build X, ; according to (6.4);
Compute G, according to (6.5)
end;
Compute the Schur decomposition Q‘Tq @TQT =D
with D = diag{o1,... ,0m, },01 > ... > Om.;
QT = QT idm-,—xk-,—;
for b € P do)?r,b = Qfl)zm;
If necessary, copy B, from Q. according to (5.9)
end
end

6.3 Complexity

The computation of Q. in the H-matrix algorithm requires the same number of opera-
tions as in the full matrix algorithm, i.e., O(n) operations.

The computation of)?T,b takes O(k,;m. k3) operations in the H-matrix case and
O(krm,n) operations in the full matrix case. Proceeding as in Subsection 5.3.3, we find
that the computation for all clusters 7 € T(I) and all blocks b € P, requires O(nky)
operations.

As stated above, the computation of G, requires O(m,ky (m; + ky)fmax) oOperations,
i.e., there is a constant C{, satisfying

EIG’T < CleTk'H (mr + k) lmax,

where E’G’T denotes the number of operations involved in the computation of @T. Sum-
ming up, we get

Ey:= Y Eg, <Chkulmax Y, m2+ Chokilmax >, ms

T€T(I) TET(I) reT(I)
Zma,x Zma,x
2 2
< CIGkHEmax Z Z my + CIGkHEmax Z Z my
=0 TET[(I) £=0 TET[(I)
Lmax Lmax
2 2 2
< Cle’Hgmax Z wemy + C&kﬂfmax Z wemy
=0 =0
Zmax lmax
< CGCwhalmaxn Y 27 mf + CLOW kg maxn Y 20 mexm
=0 =0

26

< CIGCWCK/CH(l + k?—[)fmaxna

so the complexity of the entire algorithm is in O(nfmaxk3,)-

7 Adaptivity

As mentioned in Remark 5.1, it is possible to choose the rank k; in order to reach a
given precision €, i.e., to satisfy the condition

mr
JA, — Ty, A= 3 2=et<e (1)
v=k;+1

The following Lemma combines the cluster-oriented quantities e; to form the global
error:

Lemma 7.1 Let P be a partitioning and let V. = (Vr.r)rer(r) be a consistent family of
spaces. Then the equation

JA-Th Al = 3 e (7.2)
TeT(I)
holds for the Frobenius-orthogonal projection Iy, introduced in (5.20).

Proof. We consider auxiliary partitionings

Py:={beT(IxI) : (level(b) > LAbE P)V (level(h) =L AT € P, : bC)},

with auxiliary Frobenius-orthogonal projections
HVT,Z :KIXI —)KIXI,
A = (Ap)yepr = (v, Ap)yer e pyt-

The partitionings for a standard example can be found in Figure 3.

A A A
T T il
1] T T

1] T T
1] T T
A A A

Figure 3: Partitionings Py, PZ, P} and Py = P, for the example from Figure 2

We have P) = P, and PZZ‘“X = Ty,..(I x I) and, consequently, IIy, o = IIy, and
Iy, fmax = I. Since the family V. is consistent, the equation Ily, ¢, ITy, s, = Iy, minfe; 20}
holds for all £1,¢5 € {0, ... ,lnax}, therefore we get

|A —TIy, o3 = ||A =y, g1 A + Ty, o A =TTy, (A%

27

= (I = Iy, p41) A + Iy, g1 (I — Iy,) AlF
= ||A =Ty, o117 + [Ty, g1 A — Ty, oAl 7.

Since the error introduced by changing from the #?-matrix approximation corresponding
to the partitioning P2£+1 to that corresponding to Pf is given by the equation

Iy, e A =Ty, (AT = > €,
TET[(I)

we get the desired equality (7.2) by summing up these terms for all £ € {0,... ,£pax}-
[]

A straightforward approach to computing an H2?-matrix for a given matrix A € K</
would be to set

D - Van

for a fixed € € Ryg and choose k; in order to satisfy (7.1), leading to

=2
A-Ty A= 3 @< Y@= D _a)
reT(I) reT(I) #T (1)

Applying the algorithm for the computation of the column bases, we get
|A - TIA|I} < &

by Lemma 5.2.
Obviously, feeding any other vector € = (€;),¢r(r) satisfying

Z 2 <é/V2
TET(I)

into our algorithm will yield the same approximation error. Therefore, we are looking
for a vector € € RZE)I) with ||e|l2 < €/v/2 that minimises a certain cost functional.
If, for example, matrix-vector multiplications are very important for the application

in question, the functional

Cle) = > kr(e)

TET(I)

where k. (€) is the rank required to satisfy the condition (7.1), should be minimized.

The functions k;(€) depend not only on €,, but also on the values of €+ for any
descendant of 7 in the tree 7(I), so finding an optimal e usually means solving a com-
plicated nonlinear minimisation problem on the ball with radius £/v/2.

28

8 Examples

In this last section, we will investigate the properties of the adaptive H?-approximation
algorithm.

8.1 Approximation of an Integral Operator

Since the basic idea of the H2-matrix concept is the panel clustering technique for integral
equations, our first example investigates the approximation of the single layer potential
corresponding to Poisson’s equation in 2D. The kernel function

k(z,y) == log ||z — y|

is discretised on a polygonal closed curve using a Galerkin projection with piecewise
constant basis functions.

8.1.1 Constant Rank

We apply the greedy-type algorithm of Subsection 5.2 to the matrices corresponding to
the Galerkin discretisation and, for the first test, choose a fixed rank of kconst = 4. In
order to speed up the algorithm, the maximal size of leaves (', is set to 8.
The relative approximation errors
|A—TA[F A — T1A[],
Errorp := ———, FErrorg := ———~
IAllF 1All2

in the Frobenius and Euclidean norm are reported in the Tables 1 and 2, along with the
time? needed for the conversion from full to H?-matrix, the time required for one matrix-
vector multiplication, the amount of memory needed to store all the data corresponding
to the H?-matrix and the compression factor achieved in comparison to full storage.

8.1.2 Adaptive Rank

As outlined in Section 7, our algorithm cannot only select the #2-basis functions adap-
tively, but it can also be used to determine the ranks for each cluster in order to achieve
a given precision.

If we require the approximation to be accurate up to a relative Frobenius error of € =
10~% and apply the algorithm to the BEM matrices corresponding to an approximation
of the unit circle and to the boundary of the unit square, we get the rank distributions
listed in the Tables 3 and 4.

In both cases, we observe a slow monotonous growth in the rank when passing from
smaller to larger clusters. Since the large clusters on level £ = 2 appear only once in
the partitioning P, while all other clusters appear three times, a slightly reduced rank is

2 All computations are performed on a SUN Enterprise server with an UltraSPARC 2 processor running
at 248 MHz

29

n| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
Conv/s | 0.09 | 0.27 | 1.15 | 4.44 | 17.22 | 70.90 | 343.0 | 1415
(3.0) | (4.3) | 3.9) | (3.9) | (4.1) | (4.8) | (4.1)
MVM/ms | 1.11 | 2.22 | 4.54 | 9.67 | 21.12 | 42.78 | 107.6 | 219.9
(2.0) | (2.0) | 2.2) | (22) | 2.0) | (2.5) | (2.0)
MVM/MFlops | 0.03 | 0.06 | 0.12 | 0.24 | 0.48 | 0.96 1.92 3.84
(2.0) | (2.0) | 2.0) | (2.0) | (2.0) | (2.0) | (2.0)
Mem/KB | 142.7 | 288.9 | 581.4 | 1166 | 2336 | 4676 | 9356 | 18716
(2.0) | (2.0) | 2.0) | (2.0) | (2.0) | (2.0) | (2.0)

Comp | 0.28 | 0.14 | 0.07 | 0.04 | 0.02 | 0.01 | 0.004 | 0.002
Errp/1075 | 2.86 | 3.43 | 3.66 | 3.74 | 3.77 | 3.79 | 3.79 | 3.79
Emrg/lO’5 1.38 | 1.45 | 1.46 | 1.45 | 1.48 | 1.48 1.48 1.48

Table 1: H2-approximation of the Poisson single layer potential on the unit circle for
constant rank keongt = 4. The ratios of consecutive columns are given in brack-
ets.

sufficient to approximate the corresponding blocks leading to the only exception to the
otherwise monotonous growth.

Apparently, the adaptive procedure compensates the reduced “smoothness” of the
matrix corresponding to the boundary of the unit square by slightly increasing the rank
for the larger clusters.

Figure 4: Basis chosen for a level 3 cluster

The seven basis functions chosen by the algorithm for a level 3 cluster can be seen in
Figure 4: They resemble piecewise constant approximations of the first seven Legendre
polynomials.

30

n| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
Conv/s | 0.08 | 0.26 | 1.14 | 4.48 | 17.48 | 74.69 | 331.9 | 1391
(3.3) | (4.4) | 3.9) | (3.9) | (4.3) | (4.4) | (4.2)
MVM/ms | 1.06 | 2.23 | 4.53 | 9.59 | 21.05 | 43.24 | 107.1 | 216.4
2.1) | (20) | 1) | (22 | @1) | 25) | (2.0)
MVM/MFlops | 0.03 | 0.06 | 0.12 | 0.24 | 0.48 | 0.96 1.92 3.84
(2.0) | (2.0) | 2.0) | (2.0) | (2.0) | (2.0) | (2.0)
Mem/KB | 142.7 | 288.9 | 581.4 | 1166 | 2336 | 4676 | 9356 | 18716
(2.0) | (2.0) | 2.0) | (2.0) | (2.0) | (2.0) | (2.0)

Comp | 0.28 | 0.14 | 0.07 | 0.04 | 0.02 | 0.01 | 0.004 | 0.002
Errp/1075 | 7.85 | 8.01 | 8.01 | 7.98 | 7.96 | 7.95 | 7.94 | 7.93
Emrg/IO’5 5.10 | 5.12 | 5.10 | 5.08 | 5.07 | 5.06 | 5.06 5.06

Table 2: H2-approximation of the Poisson single layer potential on the boundary of the
unit square for constant rank k.onst = 4. The ratios of consecutive columns are
given in brackets.

8.2 Approximation of a finite elements inverse

For the next example, we consider the H?-approximation of the inverse of a finite element
matrix corresponding to Laplace’s operator discretised using piecewise linear functions on
a regular triangulation of the unit square. The discretisation typically leads to matrices
with dimensions that are much larger than those considered in the BEM case, so we
cannot store the entire matrix in a fully populated format and apply the algorithm
ComputeRowBasis.

Instead, we use the approximate inversion routines of Grasedyck [1] to compute an
‘H-matrix approximation A;{l of the matrix A~! (with blockwise rank of k = 8) which
is then converted to an H2-matrix A;ﬁ using the algorithm ComputeRowBasisHMatrix.

The rank for the 7?-matrix is not chosen by our adaptive procedure, but according
to equation (3.7) with & = 8 = 2. In Table 5, the time for the H-inversion, for the con-
version to H?-format, the number of flops for - and H?-matrix-vector multiplications,
the memory requirements for both matrix representations and the relative errors

erry := || — A Alls and erryp := || — A;{%AHQ

are reported. Obviously, the H2-matrices require less memory and allow faster matrix-
vector-multiplications compared with H-matrices.

31

n| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
2 Y Y Y Y Y Y 6 6
3 6 6 6 6 6 7 7 7
4 6 6 6 6 6 7 7 7
5 6 6 6 6 6 7 7
6 6 6 6 6 6 6
7 6 6 6 6 6
8 Y 6 6 6
9 5 5 6
10 Y 5
11 5

Conv/s | 0.11 | 0.38 | 1.54 | 5.91 |22.75|103.3 | 419.9 | 1627
3.5) | (41) | 3.8) | (3.8) | (4.5) | (4.1) | (3.9)
MVM/ms 1.28 | 2.88 | 5.62 | 12.08 | 22.63 | 53.88 | 119.5 | 243.3
2.3) | (2.0) | 2.1) | (19) | 24) | 2.2) | (2.0)
MVM/MFlopS 0.04 | 0.07 | 0.15 | 0.29 | 0.57 | 1.13 2.22 4.42
(1.8) | (1) | (1.9) | (2.0) | (1.8) | (2.0) | (2.0
Mem/KB | 167.8 | 347.0 | 705.5 | 1391 | 2703 | 5393 | 10606 | 21167
2.1) | (2.0) | 2.0) | (1.9) | 2.0) | (2.0) | (2.0)
Comp | 0.33 | 0.17 | 0.09 | 0.04 | 0.02 | 0.01 | 0.005 | 0.002
ErrF/lo_6 0.09 | 0.19 | 0.04 | 0.32 | 0.42 | 0.57 | 0.66 1.21
Emrg/lO’6 0.05 | 0.05 | 0.06 | 0.13 | 0.09 | 0.10 | 0.06 0.05

Table 3: Adaptively chosen rank distribution across cluster levels for the Poisson single
layer potential on the unit circle. The ratios of consecutive columns are given
in brackets.

32

n| 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768
2 6 7 7 7 7 7 7 7
3 7 7 7 8 8 8 8 8
41 6 7 7 7 7 7 7 7
5 6 6 7 7 7 7 7
6 6 6 6 7 7 7
7 6 6 6 6 7
8 6 6 6 6
9 6 6 6
10 Y 6
11 5

Conv/s | 0.11 | 0.38 | 1.59 | 5.94 | 23.04 | 104.5 | 424.1 | 1637
35) | (42) | 3.7) | 3.9) | 45) | (1) | (3.9)
MVM/ms 1.28 | 2.95 | 5.58 | 12.13 | 22.68 | 53.34 | 122.6 | 249.4
2.3) | (1.9) | 2.2) | (1.9) | (2.4) | (2.3) | (2.0)
MVM/MFlopS 0.04 | 0.08 | 0.15 | 0.29 | 0.57 | 1.13 2.22 4.41
(2.0) | (1.9) | (1.9) | (2.0) | 2.0) | (2.0) | (2.0)
Mem/KB | 173.6 | 356.6 | 716.8 | 1392 | 2734 | 5388 | 10627 | 21109
2.1) | (2.0) | (1.9) | 2.0) | 2.0) | (2.0) | (2.0)
Comp | 0.34 | 0.17 | 0.09 | 0.04 | 0.02 | 0.01 | 0.005 | 0.003
ErrF/lo_6 0.34 | 0.30 | 0.27 | 0.47 | 0.29 | 0.44 | 0.73 0.62
Errp/1076 | 0.19 | 0.16 | 0.13 | 0.14 | 0.09 | 0.10 | 0.06 | 0.06

Table 4: Adaptively chosen rank distribution across cluster levels for the Poisson single
layer potential on the boundary of the unit square. The ratios of consecutive
columns are given in brackets.

4096 10000 16384 40000 65536

Time for Inversion/secs 174 878.8 1360 5324 8426
Time for Conversion/secs 3.6 10.3 21.5 62.9 120
H-MVM/MFlops 10.8 25.7 59.2 133.7 293.4
H-Memory/MBytes 42.4 102.0 231.9 530.6 1151
‘H-Error | 0.000022 | 0.000054 | 0.000115 | 0.000382 | 0.000645

H2-MVM /MFlops 8.9 16.3 41.6 70.7 179.5
H2-Memory/MBytes 33.9 62.9 159.4 274.0 689
H?2-Error | 0.000076 | 0.000602 | 0.000139 | 0.000649 | 0.000646

Table 5: H2-approximation of the inverse of the discretised Laplace operator on the unit
square

33

References

1]

2]

[5]

[6]

[7]

8]

[9]

L. Grasedyck : Theorie und Anwendungen Hierarchischer Matrizen. PhD thesis, Uni-
versity of Kiel, Germany, 2001.

W. Hackbusch: [Iterative Solution of Large Sparse Systems. Springer Verlag, New
York, 1994.

W. Hackbusch: Integral Equations. Theory and Numerical Treatment. ISNM 128.
Birkhauser, Basel, 1995.

W. Hackbusch: A sparse matriz arithmetic based on H-matrices. Part I: introduction
to H-matrices. Computing 62 (1999) 89-108

W. Hackbusch and B. N. Khoromskij: A sparse H-matriz arithmetic. Part II: appli-
cation to multi-dimensional problems. Computing 64 (2000) 21-47

W. Hackbusch, B. N. Khoromskij, and S. Sauter: On H?-matrices. Lectures on
Applied Mathematics (Bungartz, Hoppe, Zenger, eds.), Springer Verlag, Heidelberg,
2000

W. Hackbusch and Z. P. Nowak: On the fast matriz multiplication in the boundary
element method by panel clustering. Numer. Math. 54 (1989) 463-491.

S. A. Sauter: Uber die effiziente Verwendung des Galerkin-Verfahrens zur Losung
Fredholmscher Integralgleichungen. Dissertation. Universitat Kiel. 1992.

S. A. Sauter: Variable order panel clustering. Computing 64 (2000) 223-261

34

