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1 Introduction

We consider the Cauchy problem for the three-dimensional Navier-Stokes
equations

ov+divi®uv—Av+Vp=0, dive =0

in R?*x]0, oo[, with v(x,0) smooth (or “sufficiently regular”) and decaying
sufficiently fast at infinity. Our main goal is to study the regularity of so-
lutions of to the Navier-Stokes equations under certain assumptions on the
pressure p. The pressure p is a relatively well-defined quantity in real fluids.
In the Navier-Stokes system, p is determined only up to an arbitrary function
of t, due to the idealized assumption of incompressibility. A way to remove
this ambiguity is to specify p at infinity. In the context of this work there will
be no loss of generality in assuming that p vanishes at infinity. (See Section
2 for a precise definition.) The pressure defined in this way will be called
the normalized pressure. In what follows p will always denote the normalized
pressure.
Our work was motivated by the following question.



(Q) If a solution to the Navier-Stokes equations develops a singularity, must
the normalized pressure become unbounded from below?”

One of the main results in this work is a positive answer to this question
(Theorem 2.2).

Considering a flow of water under some standard conditions, one can
speculate that if p becomes very low, one will encounter the phenomenon of
cavitation. This means that in areas of very low pressure bubbles of water
vapor will form in the fluid. Since the areas of very low pressure must have
small volume, one can expect that eventually the bubbles will be carried into
an area where the pressure is not so low, and will collapse. The collapse
of even very small bubbles should create observable effects (e. g. popping
sounds). As far as we know, cavitation is not observed in reasonable flows,
such as flows in pipes under normal temperature and pressure, even when
the Reynolds number is high. Therefore, for such flows one can expect that
p does not become exceedingly low. Hence, by the result above, v should be
smooth. One can further speculate that this means that all singularities of
solutions to the Navier-Stokes must be unstable, if they at all exist. This
was conjectured in [14].

We prove a slightly stronger statement than suggested by (Q), in that we
do not need a point-wise condition p(x,t) > —C to get regularity, but only
a weaker integral condition is necessary (see (2.7) and (2.8)).

It turns out that our method also gives a proof of the following statement,
which is of independent interest. If the quantity |v|? + 2p is bounded from
above, the solution must be regular. This is related to the works [6] and [19]
on the five-dimensional steady-state Navier-Stokes equations.

We briefly outline the main idea of the proof. The key is the following
identity:

I o (el ) + [, ) dy =

ly—zol
B(xo,

Lol (e + et dy =
B(zo,R)

=RrR* VZ(‘yfIO‘) : (v(y,t) ® v(y,t)) dy,

R3—B(zo,R)

where 0% (z, t) is the orthogonal projection of v(z, t) into the two-dimensional
subspace of R® perpendicular to z — xy. One can see that bounds for the



negative part of p or the positive part of |v|*> + 2p give non-trivial estimates
for v. A key feature of these estimates is that the controlled quantities are
invariant under the natural scaling of the equation v(z,t) — Av(Az, A?t). In
the language of regularity theory, under our assumptions the above identity
gives estimates which move the equation from the realm of “super-critical”
to the realm of “critical”. This makes the problem manageable.

Other papers where regularity for weak solutions to the Navier-Stokes
equations is studied under various assumptions on pressure include [1], [2],
(3], [5], and [16] .

2 Notation and Main Results

We denote by M the space of all real 3 x 3 matrices. Adopting summation
over repeated Latin indices, running from 1 to 3, we shall use the following
notation:

u-v=uw;, |ul=vu-u, u=(u)€R v=(v;) € R
A:B=trA*B = A;;B;;, |Al=VA:A,
A* = (Ay), trA=A; A= (A;) e M, B=(B;;) € M?;
u®uv=(uv;) € MP, Au= (Aju;) €eR®, wu,veR, Ae M.

Let w be a domain in some finite-dimensional space. We denote by
Ly (w;RY) and W (w; R) the known Lebesgue and Sobolev spaces of func-
tions from w into R'. The norm of the space L,,(w;R') is denoted by || - ||n.-
If m = 2, then we use the abbreviation || - ||, = || - ||2.0-

Let T be a positive parameter, 2 be a domain in R*. We denote by
Qr = Qx]0,T] the space-time cylinder. Space-time points are denoted by
z = (z,t), 20 = (w0, 1), etc. Let Ly, (Q7;R') be the space of measurable
R'-valued functions with the following norm

T :
([1FCDad)", 0 e 1 +oo]
/1 :

maanT =

ess sup [|f(-,?)]
te[0,7T7]

m,Q n = +00.



In the special case Q = R® and T' = +o00, we abbreviate
LR =L, Wy(QR)=H' L,.(Qr;R*) =L,
L (0, T3 Wy (G R)) = L (H").

For integrable in )1 scalar-valued, vector-valued, and tensor-valued func-
tions, we shall use the following differential operators
ov v

Ov=—, v;= ,
e T oy

Vp = (pi), Vu=(uy),

dive = Vi iy divr = (Tij,j); Au= dinu,

which are understood in the sense of distributions. Here z;, ¢« = 1,2, 3, are
the Cartesian coordinates of a point x € R, and ¢ €]0, T'[ is the time variable.
For balls and parabolic cylinders, we use the standard notation:

B(w():R) = {I €R’ || |I - .’E0| < R}7 Q('Z():R) = B(l‘():R)X]tO - R27t0[7

where zy = (o, o).
Let us formulate the main results of the paper. To this end, we recall to
the reader that for the initial data satisfying the conditions

vo € H', divyg=0 in R, (2.1)
the Cauchy problem

Ow+div(v®v) —Av+Vp=0,
in R®x]0, +oo], (2.2)
dive =0

v(-,0) =1e(:) in R (2.3)

always has a so-called Leray-Hopf weak solution (see [12], [8], [9], and [10]).
This means that there exists at least one function v with the following prop-
erties:

UELQ,ooﬂLQ(Hl), divv(-,t) =0 in R® forall ¢ > 0;

the functiont — [ v(-,t)-w(-)dz is continuous on [0, +o00]
R3
for all w € Ly;
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f {—U'atw—v®v:Vw+Vv:Vw}dx:0

R3x]0,00[

for any w € C§°(R® x]0, oc[; R?*) such that divw(-,¢) = 0 for all ¢ > 0;

lo(-,t) —vo(-)||lgs = 0 as ¢t —=040;

i |v(m,t)|2dw+2ftf (Vo(z,t)]?dedt! < [ |vg(z)|*da

R3 0 R3 R3

for all ¢ > 0.

In this formulation, no information about the pressure p is given.

However, using the uniqueness theorem and the coercive L, -estimates of
solutions to the Cauchy problem for the Stokes equations (see, for example,
[7], [15] and [9], [10], and [18] in the case s = [), one can introduce pressure
in a natural way. More precisely, one can prove (see, for instance [4] and
such that, for O < 6 <T < +o0,

[11]) that there exists a function p € L, 15
Vp € Ly (R*x]6, T[; R?), (2.4)
where
3 2
-+ >4
s
Moreover,

O € Ly (R*x)8, T[; R*), V?v € Ly, (R*x]5, T[; M? x R?),
and the equation
Oww+diviv®@v) —Av+Vp=0 (2.5)

holds a.e. in R®x]0, oo].
The pressure p is determined up to an arbitrary function of ¢. We fix a
representative for p by setting

plz,t) = ﬁ / Timdiv div(v(y,t) ® v(y,t))dy. (2.6)
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To show that this function satisfies (2.5), let us denote the function on the
right hand side of (2.6) by py. It is known that

Apo(z,t) = —div div (v(x,t) ® v(z, t)).
Differentiation in = gives us:
1
Vpo = gG + T(G),

where G' = vpvy = (vgviy) and

T(G)(z,t) = —ﬁ Vi(m i y|)G(y,t)dy

()

is a singular integral. According to the boundedness of singular integrals in
L, we have the estimate

/|vp0(x,t)|%dxg c1/ (I D] [V vz, 1)) da
R3 R3

for all positive ¢ and for some absolute constant ¢;.
Next, by Holder’s inequality and by the multiplicative inequality, we ob-

tain . ,
/|v|%|vy|§dx§ </|Vv|2dx> 16</|v|1_78dx> *
RS R3 R3
8 8
< 02</|VU|2dx)4(/|U|2dx)2.
R3 R3
Thus,
va(at) S L%
fora.e. t>0

On the other hand, it follows from equation (2.5) that
Ap(x,t) = —divdiv (U(l‘, t) ®v(x, t))
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Therefore, ¢ = p — py is a harmonic function in x for a.a. ¢ > 0. But, by
(2.4),
Vpe L%%(R?’x]d,T[;R?’).

This means that
V(1) € Ly(B'xJ5, T B?)

for a.a t > 0. Since ¢ is harmonic in z, we obtain that V¢(-,¢) = 0 in R
and, therefore, ¢ is a function of ¢ only.

Definition 2.1 We say that a function g : R®x]0, +oo[— [0, +oo[ satisfies
condition (C) if, for any to > 0, there exists a positive number Ry = Rq(ty)
such that

g(x,t)

dx < +00 (2.7)
|z — x|

A(tg) = sup  sup /

zoER3 to—R%StSto ( )
B(zo,Ro

and,

for each fized xg € R® and for each fized R €]0, Ro],
the functiont — [ 9@ g0 s continuous at to from the left. (2.8)

|z—x0|
B(zo,R)

Our main result is as follows

Theorem 2.2 Let v be a Leray-Hopf solution to the Cauchy problem (2.1)-
(2.8) and let p be the normalized pressure associated with v. Assume that
there exists a function g satisfying condition (C) such that

lo(z, 1) + 2p(x,t) < g(x,t) € R, t€]0,+o0] (2.9)

or
plz,t) > —g(x,t) v € R, t€]0,4+o0]. (2.10)

Then v is Holder continuous on R x]0,+oc| and therefore smooth and
unique.

Remark 2.3 Obviously, conditions (2.7) and (2.8) are satisfied if g = con-
stant > 0 in R*x]0, +o0.



3 Remarks on suitable weak solutions to the
Navier-Stokes equations

In this section, we are going to discuss some facts about the so-called suitable
weak solutions to the Navier-Stokes equations:

ov+diviu—Av=f—-Vp

in Qr, (3.1)
dive =0

where Qr = Qx]0,T[, Q is a domain in R*, and T is a positive parameter.
We always assume that f lies in the Morrey space

Moy (Qri®®) = { [ € Ly(Qri B || dy(f: Qr) < +00
for some positive number v, where

t,:0r) = w0 { s ([ 157a2)" N Qo € r, B> 0},

Q(zo,R)

We say that a pair of functions v and p is suitable weak solutions of the
Navier-Stokes equations if the following conditions hold (see [17], [4], [13],
and [11] for details):

V€ Lyoo(Qr; R?) N Lo (0, T; WS (S R?)), pe L%(QT); (3.2)

equations (3.1) are satisfied in Q1 in the sense of distributions;  (3.3)

[ v(z,t)P(z, t) dw+2ftf|Vv(x,t’)|2¢(x,t’) dxdt’
0 0 0

< of({ {|v z, 1) (8t¢(x,t') —I—A(b(x,t’)) (5.4)
+2 f(z, ') - v(x, ') ¢z, t')
—I—(|v(x,t’)|2 + 2p(1’,t'))v($, t) -V ¢(a:,t’)} dzdt’

for a. a. ¢t €]0,T[ and for all ¢ € C§°(R® x R) vanishing in a neighborhood
of the parabolic boundary 0'Qr = Q x {t =0} U9Q x [0, T.
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Asin [11], we call a point zy € Qr regular for v if there exists a non-empty
neighborhood O,, of this point where the function z +— v(z) has a Holder
continuous representative. It can be proved that there exists a representative
of v such that (see [17], [4], [13], and [11] for details)

HI(Z) =0, (3.5)

where ¥ is the set of all singular points of v and H! is the one-dimensional
parabolic Hausdorff measure. By definition,

H (D) —hmmf{ZR ||ECZQZZ, , 0 < Ry <5}
In what follows, we shall fix a representative of v such that

lim inf/ lv(x, 1) do > / lv(z,to)|*dr forall 0 <to < T (3.6)

t—to

and, for each w € Ly(Q, R?),

€0, 7T »—>/ v(z,t) - w(x)dr is a continuous function. (3.7)

To see that this is possible we note that, by (3.5),
H (Qx{t=t}NT)=0
and, according to the definition of regular points,
v(x,t) = v(x,ty) for a.e. z € (3.8)

Therefore (3.6) follows from Fateau’s lemma. On the other hand, by (3.2),
we have

[0 to)ll20 < [lv]l2,00.0x (3.9)
for all ty €]0, T, and thus, by (3.8) and (3.9),
v(-,t) = v(t) in  L.(;R?) (3.10)

for any 7 € [1,2[. In turn, (3.9) and (3.10) imply (3.7).



Remark 3.1 Following the arguments in [11], one can see that all the above
statements remain to be valid for to =1T.

Lemma 3.2 Let v be as above. Given Qy € Q, 0 <ty < T, and 0 < §y <
Vo, assume that

a(@,to,00) =sup {& [ Jule P do | w0 € D,

B(xo,R
(ot (3.11)
t€fto— 02 ta], 0< R < dy= Ldist(9Q, QO)} < +00.
Then,
: 2
t_l)ltgno/w z,t) — v(z, t)|  dx = 0. (3.12)

Proof Taking into account (3.7), we see that it is enough to prove

lim /|v x t|2dm—/|v x,to|* d. (3.13)

t—to—0

We first note that (3.5) implies the following fact. For each v, there exists a
countable family of sets of the form

b = B(z], R,) x {t =to}
such that
R, <dy, XN (go x {t = to}) - ZbZ’tO, ZRW <. (3.14)

Let us fix € > 0 and let -

8 a(S2,t0,d0)
Then, by (3.11) and (3.14), we obtain

'7:

] ltPdi— [ el t)Pd] <

> B(z] ,Ry:) > B(z] Ryi)

<Y [ h@oPdtY [ Julet)Pde < (3.15)
t B(z] Ryi) ¢t B(z],Ryi)

< 2a(80,%0,00) D Ryi < 27va(So, b0, 00) < §
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for all ¢ € [ty — 02, to]-
We let

v Eﬁo X {t = to} — ZbZ’tO.

For each 2z € w7, there exists a non-empty neighborhood O, such that the
function z — wv(z) is Holder continuous on O, N Q. Since w” is compact,
there exists a non-empty neighborhood O of the set w” such that

W C O

and the function z — v(z) is continuous in (’) N Q. Hence,
/|vxt|2dx—/|vxt0 |2dx <— (3.16)

for all 0 < ty —t < pu = pu(e, Qo to,00) < d2. Combining (3.15) and (3.16),
we obtain

dx—f|vx to |2dac‘ <

dx—f|vxt0| dx‘+

o @O [ et da| <
3 B(x] Ryi) 3 B(x] ,Ryi)
for all 0 < ¢ty —t < p. Therefore (3.13) and Lemma (3.2) are proved.
In what follows, we going to use the following condition for local Holder
continuity of v.

Lemma 3.3 Let a pair of v and p be an arbitrary suitable weak solution to
the Navier-Stokes equations in Qr with external force f € My (Qr;R?) for
some positive number . There exists a positive number €., depending on -y
only and having the following property. Assume that, for some positive R,,
Q(20, Ry) € Qr and
sup A(z, R) < 4, (3.17)
0<R<R,

where .
A(zp,R)= sup — / lv(x,t)|* d.

0—R2<t<tg R
B(zo,R)

Then, zy is a reqular point of v.
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Proof. Our proof is mostly based on the method developed by F.-H. Lin in
[13] (see also [11]). As in [11], we introduce the following functionals:

Ap) = Alop). Bz [ VePds
Q(z0,p)
_ 1 3 _ 1 3
co)=s [ bPdn De)= [ bl
Q(z0, Tho) Q(z0,p)

We have assumed that Q(zg, p) C Q.
In [11], the following decay estimates involving the above functionals are
proved:

ams@KQU%m+@fﬁ@wﬂM (3.18)

for all 0 < r < p (see Lemma 5.1 in [11]),

Wl

A() + B(§) < a[CH(p) + CH(p)DE(p) + C(p) + Bp?7*D|  (3.19)

(see inequality (5.4) in [11]),

3

zxr>s(a[gzxp>+-(ﬁ)Z(A4o»Bﬁ<p>+wép3“+”)} (3.20)

for all r €]0, p| (see Lemma 5.3 in [11]). Here d, = d,(f;Qr) and ¢ is an
absolute positive constant.
In contrast to [11], we focus on the functional

F(R) = C(R) + D(R).

Let 6 €]0,1/2] and Q(z9,p) C Qr. We shall fix numbers 6 and p later.
From Young’s inequality and from (3.19), we can derive

A(§) + B(8) < & | Fi(p) + Flp) + d2p20D)] (3.21)

where ¢, is an absolute constant. Combining estimates (3.18) and (3.21), we

obtain
3

o <a(2) 229+ (£) AQEN Q)] <af(2) At)

3

(p) + F(p) + dipz(“”) 1

Wl

()t (7
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for all 0 < r < p/2, with ¢;3 an absolute constant. The same can be done
with estimate (3.20). As a result, we have

Py < 570+ (&) (410 (F50) + £+ )’ 3.23)
3.23

+d§p%(v+nﬂ ,
for all 0 < r < p/2, where ¢, is an absolute constant.
Setting § = r/p, we observe that from (3.22) and (3.23) it follows the

following estimate:

3
F(0p) < 5|0 (p) + 6343 () + d; p )+

(073 +0°2) At (p) (f (p) + F(p) + dgpﬂvﬂ)) Z] <

3 3
< o [0 (p) + gt (A3(p) + AL (p) + AX(p)d3 p30Y) 4 d] 01|

(3.24)
Here, ¢5 and ¢g are absolute constants and 6 €]0,1/2].
Let us fix 6 €]0,1/2[ and p, €]0, R,] in such a way that
1 3 3
bcs < . &p2" <, (3.25)

Without loss of generality, one may assume that ¢, < 1. Then, (3.24) and
(3.25) imply the bound

1
F(0p) < 3 F(p) + crey, (3.26)
for any p €]0, po], with ¢; an absolute constant. Iterating (3.26), we obtain

1
F(&) < o Flo) +20re,

for all natural k. The last estimate implies

liminf F(R) < 2¢7¢,. (3.27)

R—0+0
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According to Proposition 2.8 in [11], there exists Zy(7y) such that if

Wl

liminf{(%C(R))é + ( ) D(R))

R—0+40 A7

b < E(), (3.28)

then zj is regular point. Choosing ¢, in an appropriate way, we deduce the
statement of the lemma from (3.27) and (3.28). Lemma 3.3 is proved.

4 Proof of Theorem 2.2

First, let us prove that, for functions v and p connected by relation (2.6), and
for any zo € R3, for any ¢ > 0, and for any R > 0, the following identities
are valid:

J m (2p(y, t) + |6$0(y,t)|2) dy =
B(zo,R)

-0 L(3p(9 1) + [o(y, D)?) dy = (4.1)

=r [ viiks) (v @) dy

R3— B(zo,R)
where

v(y,t) - (y — 20)(y — )

vy, t) = v(y, t) — o™ (y, t), v°(y,t) = F——

To this end, we take a sufficiently regular function g :]0, +oo[— [0, +00[ and
observe that, by (2.6),

[ g(|o — yl)ply, t) dy
B(a?o,R)

= [ @) [ g(lzo—yl) gty dy da,

R3 B(zo,R)
where f(z,t) = divdiv (v(x, 1) ® vz, t)) It is easy to check that

/g(lxo—yl) ! dy =

[z —y]
B(zo,R)

14



( |z—o|

R
\a:—_lx0| [ pPalp)dp+ [ pglp)dp if |z —ax0] <R
0

|z—x0|

= 47 4

R
s [ PP9(p)dp it |z — x| > R
0

\

Integration by parts in (4.2) leads to the identity

/ 9(lzo — yl)p(y, t) dy

B(zo,R)
. ly—o|
— / (U(y,t)@w(y,t)) :V§<|y_w0| / p*g(p)dp
B(zo,R) ’
R
- / pg(p)dp)
ly—o|
R 1
+/p29(p)dp / (vt) @ v(0:0) 3V§(|y_$0|) "
0 R3—B(zo,R)

Taking g(p) = % and then g(p) = 1, we arrive at identities (4.1).

Arguing by contradiction, let us denote by tq the first moment of time
when singular points of v appear. It is known that ¢, > 0 and for any
0 < T < tg, our solution v is smooth on R*x]0, 7] (see [12]). In particular,
for any domain  C R?® and for any 0 < § < tg, the function v together with
the associated pressure p forms a suitable weak solution to the Navier-Stokes
equations in the space-time cylinder Qs = §2x]0,%5[. Moreover, for any
0 <t < ty, the following two identities hold:

t
/|v(x,t)|2dx—|—2 //|Vv(x,t')|2dxdt':/|Uo(x)|2dx
R3 R3

0 R3

and

/|v(x,t)|2q§(x) da + 2 /t/|Vv(x,t')|2¢(x) dadt’

15



t

_ / o ()2 (x) i + / / lv(z, ) [PAd(x) dudt’

R3

¢
+ // (|v(x, ))? + 2p(x, t'))v(m, t') -V é(x) dadt’
0 R3
for any ¢ € C$°(R3). They imply

S o)1= 0(0)) dr+2 [ [ 1900 (1= b(0)) dei

0 R3

= [ug(2)? (1 - 6(2)) dz — [ [ Jo(e, O)[2A(2) dudt (4.3)

0 R3

-

(|U(x, ) + 2p(x, t'))v(x, t') -V ¢(x) dzdt’

R3

for any ¢ € C§°(R?) and for all 0 < ¢ < t5. We note that, by the multiplica-
tive inequality, we have

2 1
50, < citg lluollzg,, (4.4)

U,
lull3q,, < ertllull3 g, IV 4

where Q;, = R3x]0,%y[ and ¢, is an absolute constant. Dividing (4.1) by
AT R? and taking the limit as R — 0+ 0, we obtain

3p(z,t) + Ju(x, t)]* = 5 /V;( ! ) : (U(y,t) ®v(y,t)) dy.

A |y — |
R3

The theory of singular integrals and (4.4) tells us that
1712 q,, < +oo. (4.5)

Thus, by an appropriate choice of the cut-off function ¢, we obtain from
(4.3)-(4.5) that

lim sup / lu(z,)|* dz = 0.

R—040 0<t<to
R3—B(0,R)

16



Finally, since

lim inf / u(z, )2 da > / u(z, to) 2 de,

t—tog—0
R3—B(0,R) R3—B(0,R)
we have
lim su / w(z,t)|*dx = 0. 4.6
Jim sip. u(z, 1) (1)
R3—B(0,R)

Assume first that condition (2.9) holds. Then, (4.1) can be transformed
to the form

_% / |U(x,t)|2dx+% / (lo(r. )P +2p(a.1)) da

B(zo,R) B(zo,R)
1 2 1 ~To 2
= m(|v(w,t)| +2p(:1:,t)) dx — |x—x)||v (x,t)|" dz
B(a?o,R) B(mo,R)
_ R / K(z, o) : (U(x,t) ® v(x,t)) dz, (4.7)
R3—B(0,R)
where
_ o2 1
K(w,xo)sz< )
|z — x|
From (4.7), it follows that
L / o, |2 dr = / (Jo(a. O + 2p(a, 1)) d
2R v .I', €T = 2R ) p )
B(zo,R) B(zo,R)

1 1
0"z, 1)|* dz — >+ 2p(z,t) ) d
s [ Eenta - [ = (@R + 2 n) do

B(zo,R) B(zo,R)
1
— t)d t)d
<op [ send— [ ——na
B(zo,R) B(zo,R)
1
n / 5 (2, 1) d
|z — x|
B(zo,R)



/ % [g(x,t) - (|U(x7t)|2 + 2p($,t))] dz

x — To|
B(a?o,R)

and thus

_1 2 1 1
<= L
oR / (@, t)]* do < 3 / Tl

B(zo,R) B(zo,R)

v [ e )

|z — o ’
B(zo,R)
1 2
+ 7[9(3@25) — <|v(3c,t)| + 2p(x,t))} iz
|z — o
B(zo,R)

In addition, we are going to use the identity

1 / 1 1 N 2
9 g(x,t) de + / 75 (2, t
2 |z — @0 (=) |a€—x0|| (,1)]

B(Z’O;R) B(l’o,R)

+ / m [g(x,t) - (|U(x,t)|2 + 2p(w,t))} dz (4.9)

B(zo,R)

= g / " _1x0|g(x, t) dz — R / K(x,xo) : (v(m,t) ® v(z, t)) dx.

Hleof) R B0, )

According to (2.7), we can obtain from (4.8) and (4.9) that, for any o € R?
and for any R €]0, Ry(to)], the following bound is valid:

1 1 .

on to)|>dx < = et d

2R / |U($, 0)| = 2 / |l‘ _ Z‘O|g($7 0) x
Blwo, ) B(ao,R)

1 o )
t
/ |x—x0||v (2, t0)|

B(zo,R)

+ / B _1$0| [g(af,to) - (|U(x,t0)|2 + 2p(aj,t0))] dx

B(mo,R)
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1 1 1
< - to) d 0™ (2, to) |
<3 [ peaprewat [ e

B(zo,R0) B(zo,Ro0)

+ / Iz _1x0| [9(95,250) - <|v(3c,to)|2 + 2p(x,t0))} da

B(zo,Ro)

1
= - ty) d
2 / |z — x0|g(x, o) dz

B(zo,Ro)

—R? K(z,20) : (v(a:,to) ® U(w,to)) dx

Cy 2
Alt 1
() + o - 20

where ¢y is an absolute constant. The last estimate together with the state-
ment of Lemma 3.2 implies that

lim lv(2,t) — v(z,t)]* dz = 0

t—to—0
B(0,R)

for any R > 0. Using (4.6), we see that

t—to—0

lim / lv(z,t) — v(z,t)|* dz = 0. (4.10)
R3

Let &, = £,(0) be the number of Lemma 3.3. Fix an arbitrary x, in R®.
There exists a positive number R, < Ry(ty) such that

Ex 1 1 1 ~ 9

= > — - to) d o t d

9 9 / |$—l‘0|g(x, 0) T+ / |l‘—fL'()||U (l‘, 0)| T+
B(zo,Rx) B(zo,Ry)

+ / |x_17x0|[9($7750)_<|v(x,t0)|2+2p(x,t0)>]dx

B(IOaR*)

3 1
= EE— ty) d
2 / |z — I0|g(w, 0) dz

B(zo,Rx)

19



—R? K(z,x) : (v(x,to) ® v(x,to)) dz.
R3—B(zo,R+)
But, by the continuity condition (2.8) and by (4.10), the function

3 1
T - t)d
5 / |x_w0|g(w, ) dz
B(zo,R+)
—R? / K(z, ) : (v(a:,t) ® v(x,t)) dx
R3—B(z0,R.)

is continuous from the left at the point #;. Therefore there exists a positive
number §, < \/%y/2 such that

e 1 1 1 ,
= ) do + (g, t
/ |x—xo|g($ ) da / |x—:1:0||v (z, %)l

2 79
B(zo,R+) B(zo,R+)
1 2
+ (2, 0) = (lo(e, ) + 2p(2,1)) | da
|z — x|
B(zo,R+)

for all ¢t € [ty — 02, ty]. Then (4.8) leads to the estimate

1 ) 1 1
< —
| weoparss [ =g

2R
B(a?o,R) B(a?o,R)
1
+ / 77 (z, 1)|?
—
B(zo,R)
1 2
+ () = (lo(w, ) + 2p(2,1)) | da
|z — x|
B(zo,R)
1 / 1 1 -
<= g(x,t)dr + / 7% (z, 1)|?
5 | et =
B(zo,Rx) B(zo,Rx)
+ / = [ (1) — (|v(x 2 + 2p(z t))]dx< x
|:L'—"L'0| g ) ) p ) 2
B(zo,R.)
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being valid for all R €]0, R,] and for all ¢ € [ty — 62, ty]. The last bound and
Lemma 3.3 imply that 2y = (x¢, %) is a regular point. Since z, was chosen
arbitrarily we get a contradiction with the definition of ¢,.

Assume now that conditions (2.10) holds. This case is treated more or
less in the same way as the previous one. In particular, it follows from (4.1)
that

1
I / (|v(w, H]? + 3(p(x,t) + g(z, t))) dz
B(a?o,R)
3 1
=5 t)dx — 2 S 1) d
w [ swna-z [ e
B(zo,R) B(zo,R)
1 mxo 2
+ 7 — 2] (|“ (z, )" +2(p(z, 1) + g(z, t))) dz (4.11)
B(zo,R)
< [
x,t)dz
- |z — x0|g
B(a?o,R)
1 o 2
+ 7 — o] (|U (@, 1)] +2(p(ar,t)+g(x,t))) dx
B(mo,R)
and ,
x,t)dx
/ |z — $0|g( )
B(a?o,R)
1 mnTo 2
+ 7 = ao] (|“ (z, )" + 2(p(2, ) + g(z, t))) dx (4.12)
B(zo,R)
1 2
=3 |x—x0|g(x’t) dr+ R K(x,xg) : (U(x,t)@v(x,t)) dzr.
Blwo.F) 25— B(a0,R)

Next, by (2.7), (4.11) and 4.12) that, for any zy € R® and for any R €
10, Ry(to)], the following bound is valid:

1

C
7 P ds <3400 + Zos ot ) e

B(zo,R)

This estimate, Lemma 3.2, and (4.6) imply (4.10).
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Let e, = £,(0) be the number of Lemma 3.3. Fix an arbitrary x, in R®.
There exists a positive number R, < Ry(ty) such that

Ex 1
5 7 eE—— to) d
2 / |z _$0|g(:1:, o) du
B(‘TO:R*)
1 N
+ / Tz |(|va:o(:c,to)|2 + 2(p(z, to) +g(:c,t0))) dx (4.13)
— o
B(zo,Rx)
1
|z — o
B(wo,R*)
+R? K(z, ) : (v(w, to) ® U(ﬁv,to)) dr.
RS*B(IQ,R*)

By continuity condition (2.8) and by (4.10)-(4.13), the function

1
t—3 / (x,t) dx

g
|z — x|
B(zo,R+)

+R? / K(z,x) : (v(x,t) ® U(x,t)) dx
R3—B(zo,R+)
is continuous from the left at the point £y. Therefore there exists a positive

number &, < 1/%y/2 such that

1 1
— HI2de < t)d
R / |U({L‘, )| T > / |I_I0|g(flf,) X

B(a:O:R) B($07R)

+ / #Oﬁm(x,t”? +2(p(z,t) + g(x,t))) dr <

|z — x|
B(zo,R)
< / ! (x,t)d
~ g\, a
|z — x|
B(zo,Ry)
1 ~L0 2 Ex
)2+ 2(p(a, t t )d <=
+ [ e (e + 20w + gl )) do <
B(zo,Ry)
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for all R €]0, R,] and for all t € [ty — 02,t9]. And, again, this estimate
together with Lemma, 3.3 leads to the same contradiction with the definition
of ty. Theorem 2.2 is proved.
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