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Abstract

Morphogenetic processes like� for example� neurulation and gastru�

lation involve coordinated movements of cells� It is assumed that these

processes happen due to long range signaling� although the detailed mech�

anisms are not completely understood� Therefore� one is interested in bi�

ological �model�systems� where self�organization of cells and in particular

the mechanisms of signaling can be analyzed in greater detail� A major

question is whether or not also short range signaling or local interaction

of cells can be the cause of coordinated movement and morphogenetic

processes� As a model problem we analyze ripple formation of myxobac�

teria due to purely local interaction� a hypothesis which is discussed in

the biological literature� These ripples can be observed before the �nal

aggregation of the bacteria and fruiting body formation takes place�

Our basic mathematical model is a one�dimensional hyperbolic system

of Goldstein�Kac type with density dependent coe�cients� Conditions for

the existence of traveling waves are discussed by means of linear analysis

and the construction of invariant domains�

� Introduction

Myxobacteria are ubiquitous soil bacteria which show several forms of social
behavior� Vegetative cells evolve from myxospores and grow under suitable
conditions� The bacteria are elongated cells which glide in the direction of their
long axis� They produce slime trails on which they prefer to move� They may
also move faster on these trails� During their movement they can stop� and
then either reverse or choose a new direction� Individual cells form groups in

��utscher�math�ualberta�ca� Present address� Department for Mathematical and Statis�
tical Sciences� University of Alberta� Edmonton� AB� Canada T�G �G�� Partially supported
by the Max�Planck�Institute for Mathematics in the Sciences� Leipzig

ystevens�mis�mpg�de� partially supported by the Research Institute for Mathematics in
the Sciences� Kyoto University� �	��
�	� Kyoto� Japan�

�



which they align their long axes in approximately the same direction and move in
swarms and streets� Under starvation conditions the cells aggregate� and several
kinds of patterns can be observed� Finally� fruiting bodies are formed which lift
o� the two dimensional surface� Within these fruiting bodies myxospores are
formed� waiting dormantly for appropriate external conditions to restart the
developmental cycle�

In the laboratory� one can often observe a long phase of rippling behavior
before the onset of aggregation� We summarize the results in ����� �The observ	
able pattern consists of a series of equally spaced ridges which move as traveling
waves� It covers large areas but does not spread� It can last for days but still
there is no net transport of cells� Two ripples interpenetrate one another with	
out interference� The long axes of cells within ripples and particularly at ripple
crests are oriented approximately perpendicular to the movement direction of
the crest�


A great deal of biological research has been devoted to the study of inter	
cellular signaling and coordinated movement in order to explain the observed
social behavior� C	factor is one of several di�erent extracellular signals which
have been identi�ed as playing a major role during this process� In contrast to
A	factor� which is known to di�use� C	factor is bound to the cell surface ����
and hence its transmission requires cell contact� It was shown that C	factor
is best transmitted in end	to	end contact of cells which form� at most� an ob	
tuse angle ����� Sager and Kaiser propose the following mechanism for rippling
in ����� End	to	end collision between cells initiates C	signaling� which in turn
increases the reversal probability of individual cells� If two ripple crests meet�
they re
ect one another point by point such that the overall shape travels on�
Individual cells� however� move back and forth on the order of one wavelength
�on average� and reverse direction upon contact with countermigrating cells� A
somewhat similar phenomenon is found in water waves where the shape of the
wave travels� but single drops merely move back and forth�

Evidence for this hypothesis comes from the following experimental results
given in ����� Arti�cial addition of C	factor increases reversal in cell cultures�
Cells in ripple crests have a higher reversal frequency than in troughs� Mutant
cells �csgA�� that are incapable of C	signaling but respond to C	factor were
introduced into the cell culture� As the proportion of csgA� increased� the ripple
wavelength and width increased� and the ripple velocity remained constant� If
the fraction of csgA� exceeded ���� cells did not show rippling any more�
Another mutant type �frz� is known to be unable to ripple� It had been shown
that these mutants have a very low �frzA�B�C�E�F� or very high �frzD� reversal
frequency compared to the wild type ����

If rippling would be a phenomenon comparable to the behavior of coupled
oscillators� then these mutants should also show rippling behavior� but possibly
at di�erent frequencies� Therefore� Sager and Kaiser suggested that the C	
signaling in frz	mutants is decoupled from cell movement� Finally� by the use
of 
uorescence markers� they followed paths of individual cells in ripples� They
found that single cells moved back and forth while the ripple crest moved over
the whole area of observation�
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In this paper we present a hyperbolic model for the e�ect of local interaction
on individual movement and apply it to the rippling phenomenon as described
above� The model is simple in that the only mechanism we assume is that end	
to	end contact of cells triggers cell reversal� Before we formulate the model�
however� we have a closer look at the behavior of a single cell when two ripple
crests meet �Figure ��� Black cells move to the left� white ones to the right�
We follow the grey cell which initially moves right and is a little ahead of the
right moving crest� As it comes into contact with countermigrating �black�
cells it reverses direction� Then it is ahead of the left moving crest and should
reverse upon contact with the white right moving cells� In a grid point model
described in ��� it was assumed that after C	signaling has induced the reversal of
cells they undergo a rest phase during which they do not respond to the signal�
During this �insensitive phase� the grey cell� after the �rst reversal� would
�tunnel� through the right moving crest without reversing direction� It could
then travel one wavelength and reverse direction again once it has encountered
the next crest� The duration of the insensitive phase in
uences the wavelength
of ripples� A similar idea is used in ����� The ratio of the length of the insensitive
and sensitive phase has to be tuned well to get the rippling pattern�

Here we propose a di�erent model which does not make any assumptions
about an insensitive phase� The grey cell in between the two countermigrating
ripple crests reverses its direction frequently� namely� upon encountering cells
from an oncoming crest� Once the crests have passed� the shapes travel on
whereas the formerly white cells now move to the left and the formerly black
ones to the right� and the grey cell can continue its path� Thus� in the model
presented here� a single cell will typically not move one wavelength and then
reverse� but will have a more complicated path� On average� however� cells will
move one wavelength in one direction�

Various mathematical models for the gliding behavior and aggregation of
myxobacteria have been derived and studied� In ���� ��� ��� a two	dimensional
grid point model for trail following and �nal aggregation due to a di�using
signal was simulated �compare also the last section in this paper�� This model
was set into context with an interacting stochastic many particle system� from
which parabolic continuum equations for the dynamics of the cell density were

Figure �� Two countermigrating ripple crests meet� The grey cell initially moves
to the right �left plot�� then reverses direction due to an encounter with �black�
left moving cells� Later it will have a new encounter with �white� right moving
cells �right plot��
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derived� ����� In ����� a one	dimensional integro	di�erential equation system was
considered to model the swarming behavior of myxobacteria� Bacteria move on
the line either to the right or to the left with average speed �� The density of
cells u � u�t� x� is split accordingly into the right and left moving fraction u��
Bacteria are assumed to have a perception range of length �R in a neighborhood
of their position� They change direction with rates �� which are dependent on
the densities in the perception interval� The resulting model is the following
system of hyperbolic equations�

u�t � �u�x � ���u� � ��u��

u�t � �u�x � ��u� � ��u��
���

where the turning frequencies are de�ned for a function F and weight functions
�� � as follows

�� � F

�Z R

�R

��r�u��t� x� r� � ��r�u��t� x� r�dr

�
�

The model is non	local in space� To obtain a local model� the integrals are
approximated by local Taylor series� With this approximation� the turning
rates are functions of the densities u� and their gradients u�x � It is not known
whether cells can perceive such population density gradients� It was argued�
for example� that myxobacteria move too slowly to detect gradients of chemical
signals �����

A two	dimensional model for cell orientation due to cell	cell interaction �i�e��
surface bound signals� was derived and investigated in ��� ��� A detailed bifur	
cation analysis yielded a rich variety of patterns that can evolve depending on
the interaction� Movement in space� however� was not considered�

If � � �� � �� � constant� system ��� is the Goldstein	Kac model for
a correlated random walk ����� This system was a starting point for many
models of spatial spread� interaction� alignment and chemotaxis of biological
species ��� �� �� ��� ���� Here we generalize this model� We consider ��� with
turning rates depending pointwise on the densities� since we want to analyze
the possible e�ects of purely local interaction� The qualitative analysis of the
model is done by linear stability analysis� the construction of invariant domains
and by determining limit sets� It is shown that the model supports traveling
wavetrains in opposite directions and hence is capable of describing rippling
behavior in myxobacteria� Numerical simulations of rippling behavior are given
for various choices of turning rates� Finally� the model is also applied to describe
the formation of aggregates� Slight changes in the parameter values switch the
system from one behavior to the other�

� The one dimensional hyperbolic model

We start with a model of Goldstein	Kac type where the turning rates are al	
lowed to depend on the densities of the right and left moving populations� We
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distinguish between autonomous turning and turning induced by interaction�
The model reads

u�t � �u�x � ���� ���u� � ��� ���u��

u�t � �u�x � ��� ���u� � ��� ���u��
���

where � � � is the rate of autonomous turning and �� � ���u�� u�� � � are the
turning rates due to interaction� In the notation of ��� the total turning rates
are �� � � � ��� But here the rates depend pointwise on the cell densities�
Naturally� the interaction process can be assumed symmetric with respect to
interchanging left and right� therefore we have

���u�� u�� � ���u�� u�� �� ��u�� u��� ���

We impose Neumann boundary conditions on the interval ��� l� �

u��t� x� � u��t� x� for x � f�� lg� ���

These conditions re
ect the observation that rippling patterns can form over
the entire surface of a developing mat ����� Also� if rippling patterns evolve only
locally� then they do not spread in time� In the second case� ideally� one would
include into the model conditions of how cells behave as soon as they glide at
the edge of the colony� Since no biological details are known about cell behavior
at the edges� we do not consider this problem here�

System ��� preserves positivity for u�� Furthermore� the total density u �
u� � u� satis�es ut � �vx � �� where v � u� � u� denotes the 
ux� Hence�
the total density is preserved� In ���� ��� a system similar to ��� was derived
and investigated with respect to alignment of individuals� Some of the proofs
presented there can be carried over to our model� In particular� we get the
following existence result�

Theorem ��� Let the turning rates �� � R�� � R be continuously di�erentiable
with locally Lipschitz continuous �rst partial derivatives� Then for all initial
data u� � C����� l�� which satisfy the compatibility conditions ��� there exists a
unique solution

�u�� u�� � C����� T �� ��� l���

of ���� ��� for some time T � �� Furthermore� system ��� on ��� l� with bound�
ary conditions ��� is equivalent to system ��� on ��� �l� with periodic bound�
ary conditions� i�e�� u��t� �� � u��t� �l�� and the initial symmetry condition
u���� x� � u���� �l� x�� which is preserved in time�

The stationary states of ���� ��� are given by u� � u� � c �const� De�ning
u� � c� w� we obtain a linear system for the perturbations w� �

w�
t � �w�

x � ��� ��c� c� � ����c� c�c� ����c� c�c��w
� � w���

w�t � �w�x � ��� ��c� c� � ����c� c�c� ����c� c�c��w
� � w���

���
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Lemma ��� A stationary solution u� � c � � of ��� is linearly stable if and
only if

� �� �� ��c� c� � ����c� c�c� ����c� c�c � �� ���

At the bifurcation point all eigenvalues cross the imaginary axis�

Proof� Setting w � w� � w� and using the so	called �Kac trick� ��� one can
reduce ��� to the single equation

wtt � ��wt � ��wxx�

Hence� the state u� � c is stable if ��wt is a damping term� i�e�� if � � ��

Remark�

From the stability condition ��� we get an explanation as to why mutant cells
with high autonomous reversal frequencies do not show rippling behavior� Sup	
pose that these mutants react to C	factor in the same way as the wild type does�
i�e�� according to the same �� Then for increasing � condition ��� will eventually
be satis�ed and hence the homogeneous stationary state is stable� so no patterns
evolve�

During the rippling phase of myxobacteria one can observe that cell densities
stay well below the densities found in aggregation centers before stalk formation�
In our model we �nd an upper bound for the cell densities u�� which depends
on the speci�c interaction kinetics�

Lemma ��� The domain ��� s�� is invariant for the system ��� if

��w� s�w � ��s� w�s

s� w
� � for � � w � s� ���

Proof� Application of the invariance principle in ����

Now we combine our results in order to obtain conditions on the qualitative
behavior of the turning function � such that ��� s�� is invariant for ��� and at
the same time u� � c is unstable for

� 	 c� 	 c 	 c� 	 s� ���

This will give a hint as to when traveling wavetrains might occur� First� we
rewrite ��� as follows�

I�w� � � ��w � s� � ��w� s�w � ��s� w�s � � for � � w � s� ���

Note that I��� � ��s� ��s� ��s 	 � and I�s� � �� If ��� is to be satis�ed in a
neighborhood of s then I ��s� � �� which is

�� ��s� s� � ����s� s�s� ����s� s�s � ��
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which is the stability condition ��� for c � s� So� if ��� s�� is invariant then u� � s
cannot be unstable� For the invariance condition to be satis�ed it su�ces that
��� holds for all maxima of I � The condition I ��w�� � � substituted into ���
results in

��s� ��s� w��s� ����w�� s�w
�
� � ����s� w��sw� � �� ����

��� Two examples of possible turning functionals

Formulating the model above� we allowed for general turning functions ��� Now
we specify some properties of these turning functions� These properties re
ect
the biological hypotheses described in the introduction� Since turning is induced
by C	factor� and C	factor is best transmitted by end	to	end contact of cells �����
we �rst investigate the case that �� depends only on u�� i�e�� the turning rate
for right moving cells depends only on the density of left moving cells� Like
many other phenomena of coordinated behavior in myxobacteria� rippling may
depend on the total mass of bacteria ����� Therefore� in a second step we con	
sider the case that �� depends on u� and the total density u � u� � u��

Case �� ��u�� u�� � f�u��
The state u� � c is unstable if

�� f�c�� f ��c�c 	 �� ����

and the domain ��� s�� is invariant if for � � w � s we have

��w � s� � f�s�w � f�w�s � �� ����

From ���� we see that for u� � c close to zero� the homogeneous state is always
stable as long as f ���� is bounded� This behavior corresponds well to the fact
that a critical mass of cells is required for rippling to occur� Instability of u� � c

for c � �c�� c�� requires f
��c� � f�c���

c
� Let g ful�ll

g��c� �
g�c� � �

c
for c � �c�� c�� and g�c�� � f�c��� ����

Then g � f � Solving the equality we obtain

f�c� � g�c� � �

�
c

c�
� �

�
�

f�c��

c�
c ����

or respectively
��� f�c��c� � ��� f�c���c� ����

Hence f must be superlinear in the interval of instability �c�� c���
The invariance condition ���� can be rewritten as

��� f�s��w � ��� f�w��s ����
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and is supposed to hold for � � w � s for s su�ciently large� Since the right
hand side of ���� is linear in s we see that f must be sublinear for large ar	
guments� In the critical case f�u�� � u� the interaction terms cancel and ���
becomes the simple Goldstein	Kac model� We see that f does not need to sat	
urate or be bounded in order for the model to have invariant domains�

Case �� ��u�� u�� � a�u�f�u��
We extend Case � by allowing the turning rate to depend on the total density
u � u� � u� with a � �� We assume a separation of variables� The instability
condition becomes

�

a��c�
� f�c�� f ��c�c 	 �� ����

and the invariant condition reads

��w � s� � a�w � s� �f�s�w � f�w�s� � � for � � w � s� ����

In this case we �split� the two e�ects of instability and invariance� We choose
f as to satisfy ���� according to the superlinearity condition from Case � above
with �
a��c� instead of �� Then� by choosing a�u� small enough for u � s we
can ensure ���� to hold� �Of course� the choices of a and f are not independent��

In a di�erent setting� system ��� was derived with ��u�� u�� � a�u�f�u��
and f�u�� � �u��� ���� ���� The equations then read

u�t � �u�x � M�u�� u���u� � u���

u�t � �u�x � M�u�� u���u� � u���
����

where the net turning rate is given by M�u�� u�� � � � a�u�u�u�� By using
an appropriate Lyapunov functional in case � � � the following was shown�

Lemma ��� Consider system �	
� with Neumann boundary conditions� Sup�
pose � � � and a�u� � �� If �u�� u�� � L� is in some ��limit set� then the
right hand side of �	
� vanishes a�e�

If the right hand side of ���� vanishes a�e� then the density pro�les of u� are
simply traveling to the right and left with constant speed �� In order for the right
hand side of ���� to vanish a�e� we see that for almost all x in ��� l� we must have
u��x�� u��x� � f�� Cg for some C � �� i�e�� u� assume� at most� one nonzero
value� A similar result for � � � could not be proven� but simulations �see next
section� suggest that on limit sets we have u��x�� u��x� � fC�� C�g for some
C��� � �� i�e�� u� assume� at most� two di�erent values� These values are given
by the condition M�C�� C�� � �� These spatially piecewise constant functions�
traveling at speeds ��� are weak solutions of ���� in the sense of conservation
laws ����� Hence� the model does support rippling	like patterns� We consider
a particular choice of a in detail� Motivated by the modeling assumptions in
���� ���� the special case a�u� � a�
�� � u�� was studied� In this case� the
existence of invariant domains was shown�
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Lemma ��� Consider system �	
� with Neumann boundary conditions� Let
M�u�� u�� � �� a��u

���
�� � u�� for some constant a� � �� Then there exist
thresholds � 	 �� 	 �� 	� such that ����j �

� is invariant�

If u�� 	 �� then u� tend to a spatially homogeneous distribution� In this
case� �� is the critical mass below which no patterns form� The interaction
induced turning rate � in the preceeding lemma decreases to zero as the density
increases to in�nity� In our model� the maximal height of a ripple crest is �xed
by the upper bound of the invariant domain� In the case of myxobacteria it
is not known how the turning rates behave for extremely high densities� It is
conceivable that the turning rates approach a positive constant� It would be
helpful if more experiments about this behavior were carried out� Below� we
introduce a turning functional which generalizes the one above and allows for a
wider range of behavior�

Traveling wave patterns can be observed before the aggregation phase� and
it was suggested that �rippling waves and the morphogenesis of fruiting bodies
could both depend on the modulation of cell movement patterns by intercellular
C	signaling� ����� Therefore� we consider an example of a �critical
 turning rate
where a slight change of parameters has a strong e�ect on the pattern forming
behavior� We choose

��u�� u�� �
a��u

��p

� � b��u� � u��q
� ����

which for p � �� q � � and b� � � gives the situation studied above and for
p � q allows � to approach a positive constant as the densities become large�
The instability condition ���� becomes

� 	
a��p� ��cp

� � b���c�q
� ����

which can be satis�ed only if p � �� So henceforth we assume this to be given�
The domain ��� s�� is invariant if for � � w � s we have

spw � wps

s� w
� �

a�
�� � b��s� w�q�� ����

The left hand side of ���� can be written as

sp�� � wp��

s� w
� �sp � wp�� ����

By the mean value theorem we �nd

sp�� � wp��

s� w
� �p� ���p � �asp ����

for some � � �w� s� and � 	 �a � p� �� So ���� is equivalent to

��a� ��sp � �

a�
�� � b��s� w�q� � wp� ����
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The left hand side is bounded by psp� and hence� if q � p then for all choices of
parameters �� a�� b� the invariance condition can be satis�ed for large enough
s� In case p � q a necessary condition for invariant domains is �a � � � �b�
a�
or equivalently p � �b�
a�� Next� suppose q 	 p and let w � s
�� Then ����
becomes

sp � �

a���� ���p�
�� � b���
��

qsq� � ����

This inequality is satis�ed only for small s �and we already know that for small
densities no rippling occurs�� but cannot be satis�ed for large s since sp grows
faster than sq if p � q� The invariance condition does not hold in this case
and we expect solutions to be unbounded� In the last section we use numerical
simulations to investigate the behavior of the system for di�erent parameter
values�

��� Numerical simulations

Here we discuss simulations of ��� using the two types of turning functions as
discussed above� First we consider

��u�� u�� � f�u�� � � tanhu�
p
u�� ����

This function grows superlinearly for some intermediate range of u� and sub	
linearly for large arguments� but it is not bounded� It is plotted in Figure ��
Simulations are done using an explicit upwind scheme of �rst order which sat	
is�es the CFL	condition ����� Instead of taking Neumann boundary conditions
we use the equivalent formulation given in Theorem ��� and consider periodic
boundary conditions together with the symmetry condition for initial values� In
particular� the implementation of boundary conditions does not in
uence the
order of the scheme� Dropping the symmetry condition for the initial values
�which is the same as dropping the no 
ux boundary conditions in the original
formulation and results in enlarging the state space for the system� leads to dif	
ferent behaviors of the system� some of which have been described in ����� We
use ��� grid points� The value of autonomous turning is � � ���� Initial values
are random perturbations of maximal value ���� of the constant homogeneous
state u� � ���� They are plotted as the zig	zag lines in Figure � �b�� The shapes
of u� after �� ��� time steps are also shown in Figure � �b�� Each of the den	
sities shows two peaks� The evolution of the ripples in time from the randomly
perturbed homogeneous initial state can be seen for u� and u� separately in
Figure �� Next we choose � as in Lemma ��� with a� � �� i�e��

��u�� u�� � a�u�f�u�� �
�

� � u�
�u���� ����

The setting is as above� i�e�� we have ��� grid points� � � ���� and initial values
as random perturbations of the constant homogeneous stationary state� Only
this time we use the Lax	Wendro� scheme which is formally of second order �����
Figure � shows the initial and �nal ��� ��� steps� pro�les of the two densities
u�� This time �ve peaks develop in each direction� Figure � gives the time
evolution of u� for �� ��� steps �a� and �� ��� steps �b��
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Figure �� The shape of f from ���� and the shapes of the two densities u� at
the beginning and the end of the simulation�
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Figure �� The evolution of ripples from a perturbation of the stationary state
with � as in ����� The densities u� �a� and u� �b� are plotted every ���� steps�
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Figure �� The evolution of ripples from a perturbation of the stationary state
with � as in ����� The pro�le of u� is plotted for the �rst �� ��� time steps �a�
and for �� ��� steps �b�� The ripples appear stationary because of the choice of
time steps between each plot�

� A model for two di�erent cell types

Here we extend the previous model to incorporate a second cell type� The two
cell types di�er in their intercellular signaling response behavior as described in
biological experiments� compare ���� � We assume that the two cell types have
the same average speed � and the same rate of autonomous turning �� �It is
obvious how to extend the model for di�erent average speeds and autonomous
turning rates�� We denote the two densities by u�� z� respectively� The model
reads

u�t � �u�x � ���� ���u� � ��� ���u��

u�t � �u�x � ��� ���u� � ��� ���u��

z�t � �z�x � ���� 
��z� � ��� 
��z��

z�t � �z�x � ��� 
��z� � ��� 
��z��

����

where ���u�� u�� z�� z�� and 
��u�� u�� z�� z�� are the respective turning
rates induced by interaction�

We consider the case where the z�	cells are genetically modi�ed such that
they are incapable of C	signaling� as described in ����� Thus� contact with these
cells does not induce reversal in other cells� One way to express this C	signaling
de�ciency of z�	cells mathematically is to simply supress the z�	dependence in
the turning rates� We formulate a slightly more general approach which allows
us to incorporate the total density of cells� Even though these mutant cells
cannot induce reversal in other cells� their mere presence alters the probability
of contact with a C	signaling capable cell at any point� Mathematically� saying
that the turning rates depend only on z � z�� z� is the same as imposing the

��



following symmetry conditions�

���u�� u�� z�� z�� � ���u�� u�� z�� z���


��u�� u�� z�� z�� � 
��u�� u�� z�� z���
����

The symmetry condition ��� still holds and also applies to 
� �


��u�� u�� � 
��u�� u�� �� 
�u�� u��� ����

We investigate the stability of the spatially homogeneous stationary state
u� � c�� z

� � c�� The linearized equations �the perturbations are also denoted
by u�� z�� read

u�t � �u�x � ��u� � u���

u�t � �u�x � ��u� � u���

z�t � �z�x � N�z� � z�� � !�u� � u���

z�t � �z�x � N�z� � z�� � !�u� � u���

����

where

� � �� �� ���c� � ���c��

N � �� 
�

! � c����
 � ��
��

����

and all coe�cient functions are evaluated at �c�� c�� c�� c��� The �rst two equa	
tions decouple from the last two� Therefore� the stability condition is similar to
���� The equations for z� can be used to determine the relation between the
perturbations in u� and z��

Lemma ��� The stationary solution u� � c� � �� z� � c� � � of ��� is linearly
stable if and only if

��c�� c�� c�� c�� � �� ����

At the bifurcation point all eigenvalues cross the imaginary axis�

We now assume that the total density of cells is �xed but the relative amount
of the two cell types varies� Let c� � �c� c� � �����c such that � is the fraction
of cells which are capable of C	signaling� We furthermore assume� like in Section
��� case �� that ��u�� u�� z�� z�� � a�u� z�f�u��� �We do allow for a constant
function a� i�e�� Section ��� case ��� Then the condition for instability is

a��c� �f��c�� f ���c��c� 	 ��� ����

By the modeling assumption we have f��� � �� If f ���� is bounded� then as
� decreases to zero� condition ���� cannot be satis�ed and hence the state is
stable� This behavior corresponds well with the absence of rippling patterns for
high densities of mutant cells� as observed in experiments ���� �compare also the
next section�� For f�u�� � �u���� the instability condition is

�� �
�

a��c�c�
�

��



� Ripple wavelength and viscosity

The linear analysis of ��� shows that when the homogeneous solution becomes
unstable� all eigenvalues cross the imaginary axis� If in our original model we
add some viscosity with parameter � � �� we can study the bifurcation behavior
more closely� Viscosity terms are often used to account for terms of higher order
�e�g� friction� which were neglected when deriving the equations � Equations ���
become

u�t � �u�x � �u�xx � ��u� � ��u��

u�t � �u�x � �u�xx � ��u� � ��u��
����

This system is of parabolic type� Standard theory gives �global� existence of
�smooth� solutions ���� under relatively mild conditions on the turning rates�
We �rst derive the dispersion relation which indicates a Hopf bifurcation� We
also get a formula for the expected ripple wavelength� Then we show that
limit sets of ���� are compact under suitable conditions on the turning rates�
Instability of the homogeneous stationary state together with compactness of
limit sets indicate that some kind of regular persisting patterns form� as was
seen in the simulations�

The linearized equations with u� � c� w� are

w�
t � �w�

x � �w�
xx � ��w� � w���

w�t � �w�x � �w�xx � ��w� � w���
����

where � is as in ���� Here we consider the interval ��� �l� with periodic boundary
conditions and symmetry as before� We only allow perturbations with zero mass�
An exponential ansatz for the perturbations w� results in eigenvalues ���� as
eigenvalues of the following matrix�

��k����l� � �� ik���l �

� ��k����l� � �� ik���l

�
� ����

Lemma ��� The dispersion relation of system ���� on the interval ��� �l� with
periodic boundary conditions is given by

���� � ��� �
k���

�l�
�
r
�� � k�����

�l�
�

Hence� the stationary state u� � c is linearly stable if and only if

� � ����
�l�� ����

We always assume � � �� For � � � the stationary state u� � c is stable
as it was for � � �� As � decreases below zero the �rst bifurcation point is
� � ����
�l� at which �� � "�� is purely imaginary� Hence� we expect a Hopf
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Figure �� The wavelength l of ripples as a function of the fraction of C	signaling
capable cells � given in ���� with a � c � �� � � ����� ��� � �����

bifurcation� The minimal length of the interval for which such a bifurcation
occurs can be interpreted as the wavelength of ripples� It is given by

l� �
���

�� � ����

Now we are interested in the wavelength of ripples for the model with two
cell types introduced in the previous section� We use the standard example
� � a�u� z��u��� and denote by c� � �c the fraction of cells which are capable
of C	signaling� Then the ripple wavelength is

l� �
���

a��c�c��� � �
� ����

Qualitatively� the shape of l � l��� is given in Figure �� It closely resembles
the curve found in experiments� �����

Lemma ��� Suppose the products ��u� are globally bounded� Then for all
� � � the limit set of any solution of ���� is compact in C���� l���� The case
� � �u���
�� � u�� is an example which satis�es the boundedness condition�

Proof�

We write ���� in the new variables u � u� � u�� v � u� � u� as

ut � �vx � �uxx�

vt � �ux � �vxx � ��v � h�u� v��
����

where� by assumption� h�u� v� � �����u� � ��u�� is bounded by M� say� We
work on ��� �l� with periodic boundary �and symmetry� condition� By successive
use of partial integration we get

d

dt

Z �l

�

u�x�v�xdx � ���
Z �l

�

u�xx�v�xxdx���

Z �l

�

v�x��

Z �l

�

h�u� v�vxxdx� ����

The last integral on the right hand side is estimated by the Cauchy	Schwarz
and the Young inequalityZ

h�u� v�vxxdx �M

Z
jvxxjdx �M

p
�l

sZ
v�xxdx �

M�l

��
� �

Z
v�xxdx� ����

��



Integrating

ux�y�� ux�x� �

Z y

x

uxx�s�ds

over ��� �l� and using the Cauchy	Schwarz inequality we get

jux�y�jl �
Z �l

�

Z y

x

juxxjdsdx � �l

Z �l

�

juxxjdx � �l
p
�l

sZ
u�xx�

A similar estimate holds for v� Integrating again with respect to x and multi	
plying by �� gives

���l�
Z

u�xx � v�xxdx � ��
Z

u�x � v�xdx� ����

Inserting ���� and ���� into ���� results in

d

dt

Z
u�x � v�xdx �

M�l

��
� �

�l�

Z
u�x � v�xdx� ����

Therefore the integral
R
u�x � v�x is bounded independently of t� The absolute

values of u� v can be estimated by

jv�x�j � ju�x�j � "u

l
�
p
l

sZ
u�x � v�xdx�

The imbeddings of H��#�� into L��#�� and C�#�� are compact so that trajec	
tories are precompact in these spaces� Hence� the limit sets are nonempty and
compact�

� Formation of aggregates

In this last section we give an example of how our model ��� can be applied to
another stage in the myxobacterial life cycle� namely to the aggregation phase�
Under starvation conditions a large number of cells aggregate and form stalks
which lift o� the surface on which the bacteria had been moving� Finally�
fruiting bodies develop� During the aggregation stage one �nds bands of cells
circling and spiralling around the center� These spiral patterns persist during
the development of fruiting bodies� The formation of stalks is often preceeded
by the rippling period� Starvation conditions induce di�erentiation of cells�
which changes the pattern of protein synthesis ����� The question of how such
aggregates are held together and which forms of intercellular communication
are necessary has been studied intensively�

One hypothesis is that trail following� together with the use of A	factor
signaling� leads to stable aggregates� A	factor is not bound to the cell surface
but di�uses from the cell and is supposed to act as a chemoattractant ����� In a

��



cellular automaton model� ���� ���� it was shown that trail following is essential
but not su�cient to keep aggregates together� Assuming that A	factor acts as
a chemoattractant� the model accounted for stable aggregates of high densities�

In ���� it was suggested that instead of a chemoattractant there is a signal
which �locks� cell motility to circling and spiralling behavior� once a cell is close
to an aggregate it receives a signal which makes the cell stick to circling� Such
a signal could be bound to the cell surface and transmitted by cell	cell contact�

The one dimensional model presented here can� of course� be only a cari	
cature of the two or even three dimensional phenomenon� Analogous to being
locked into circling� we consider here the possibility that cells become �locked
into reversing� while moving in one space dimension� We suggest that due
to di�erentiation� cells have a di�erent response to cell	cell interaction and C	
signaling� This response is captured in a turning function � for which system
��� has no invariant domains� Hence� the densities can grow unboundedly� A
cell which moves at the front edge of a small peak comes into contact with cells
from a di�erent peak moving in an opposite direction� It reverses its direction
of movement due to C	signaling� It then moves opposite to the cells in the peak
of which it was a member initially� C	signaling with those cells leads to revers	
ing direction again �Figure ��� Repeated reversing makes cells almost immotile
while new cells move towards the aggregate� A very simple turning function
which captures this idea and gives blow	up like behavior is

��u�� u�� � a��u
��� ����

for some su�ciently large parameter a�� Note that ���� is a special case of the
turning functional in ���� if we set q � � and rename the parameters� We
use this function for simulations in Figure �� We choose the special form for
the initial values �� �a�� so that one can follow the evolution of a single peak
in detail� All simulations in this section are made using an upwind scheme�
periodic boundary and the symmetry conditions�

We have seen two di�erent behaviors of the system for the turning functional
introduced in ����� existence of invariant domains for q � �� p � � in Figure �
and evolution of sharp peaks for q � �� p � � in Figure �� For the rest of this
section we present some simulations on what happens when q varies between
these two values and in particular around the critical value q � p � � discussed
in Section ����

We �x parameters a� � �� b� � �� � � ��� and p � �� Initial values are
random perturbations of maximal height ���� of the constant values u� � ��
Figure � shows the formation of a sharp aggregate comparable to the one in
Figure �� but this time with arbitratily perturbed initial data and parameter
q � ��

Figure � shows the pro�les of u� at the beginning of the simulation �the
almost straight line of height one� and at the end �the peaks and patterns� for
increasing q and increasing number of time steps of the simulation� In �a� we see
the formation of a high aggregate for q � ��� after ���� time steps� in �b� with
q � ��� we still see the e�ect of �locking into turning� but even after �� ��� time
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Figure �� The pro�les of u� during the development of a peak with � as in �����
An upwind scheme with ��� grid points is used� Parameters are a� � �� � � ����
The plots are initial values �a�� after �� �b�� �� �c� and �� �d� time steps� The
time evolution of the total density u � u� � u� is given in �e��
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Figure �� Formation of aggregates with � as in ����� Parameters are a� � �� � �
��� and p � �� ���� steps are computed� Initial values and �nal shapes of the
densities are given in �a�� The evolution of the total density u � u� � u� is
shown in �b��

steps the densities are much lower than before� For q � ��� and q � ��� in �c�
and �d� the densities after �� ��� time steps are clearly much lower than above�
and in particular in �d� one sees the formation of plateaus� which indicates the
existence of an invariant domain�

As we have seen� a slight change of parameters of the turning frequencies
can change the behavior of ripple formation to the regime where aggregates are
formed�

� Discussion

The complex social behavior observed in myxobacteria requires intercellular
signaling� C	factor is supposed to play an essential role in signaling and also in
controlling movement behavior of individual cells� Since C	factor is bound to
the cell surface� cells need to come into direct contact in order to transmit the
signal� The question is what kind of behavior can be accounted for by direct
interaction as opposed to long or moderate range of interaction through� for
example� chemotaxis�

A simpli�ed mathematical model for cell movement and local interaction was
derived and investigated� Movement is con�ned to one spatial dimension� The
model supports patterns which resemble rippling behavior� Qualitatively� the
outcome of the model supports many experimental results like the critical mass
of cells which is needed for rippling� and the in
uence that cells have on the ripple
wavelength which are incapable of C	signaling� Finally� numerical simulations
were shown to demonstrate the e�ect of �locking into turning�� With a small
parameter change in the turning frequencies� the rippling behavior could be

��



0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200

�a


0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180 200

�b


0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

�c


0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

�d


Figure �� Emerging patterns with � as in ���� for increasing q and increasing
time interval� Parameters are a� � �� b� � �� � � ��� and p � �� �a� has q � ���
and ���� time steps� �b� has q � ��� and �� ��� time steps� �c� has q � ���
and �� ��� time steps and �d� has q � ��� and also �� ��� time steps� Note the
di�erent scales on the vertical axis� Whereas the maximum in �a� is almost ��
and in �b� almost �� it is only about ��� in �c� and merely ��� in �b��
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changed into the formation of aggregates� This is of special interest since the
same genes in the C	signaling system are responsible for the stages of rippling
and aggregation�

To describe rippling of myxobacteria� other models ��� ��� suggest the ex	
istence of an insensitive phase for each cell after reversal� If there is no such
phase� as assumed in the present paper� then the average free path length in
crests should be smaller than in troughs� Sager and Kaiser indicated in their ex	
periment of tracking 
ourescently labelled cells whether these cells were in crests
or troughs� The results are shown in Figure �B� ����� On �rst sight� paths in
crests cover less distance� but no analysis was done to con�rm this impression�
Further detailed statistics on the length of the paths would be desirable�
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