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1 Introduction

A famous theorem of H. Lebesgue states that a Lipschitz function f : [0, 1] → R is differentiable

at almost every point. Approximation by linear functions at the scale r is measured by

βf(x, r) = inf
a,b∈R

sup{1

r
|f(y)− (ay + b)| : y ∈ (x − r, x + r) ∩ dom(f)}. (1)

Thus Lebesgue’s theorem implies that

lim
r→0

βf(x, r) = 0,

for almost every x ∈ [0, 1]. This conclusion was profoundly strengthened by C. Bishop and P.

Jones who proved in [J, B-J] that

∞∑
k=1

β2
f(x, 2−k) < ∞,

for almost every x ∈ [0, 1]. They also showed that this result is optimal within the class of

estimates that hold almost everywhere. This however does not rule out the possibility that

a better estimate holds on a small subset of [0, 1]. In particular, the question remains open

whether for an arbitrary Lipschitz function f : [0, 1] → R the estimate

∞∑
k=1

βf(x, 2−k) < ∞ (2)

holds in at least one point x ∈ [0, 1].

This problem is linked to the ongoing efforts to provide geometric understanding for J.

Bourgain’s results ([B-1], [B-2]), that there exist points x ∈ [0, 1], at which bounded harmonic

functions have finite radial variation. That is, when u is bounded and harmonic in the unit

disk then there necessarily exists x ∈ [0, 1] such that

∫ 1

0
|∇u(re2πix)|dr < ∞.

The link is P. Jones’ estimate [J1] that

∫ 1

0
|∇u(re2πix)|dr ≤ C

∞∑
k=1

βf(x, 2−k),

where f is the Lipschitz function obtained by integrating the boundary values of u, in other

words

f(x) =
∫ x

0
u(e2πiy)dy.
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In this paper we exhibit a Lipschitz function f : [0, 1] → R for which
∑∞

k=1 βf (x, 2−k) = ∞ at

every x ∈ [0, 1]. The feedback to the result on radial variation is the clarification that Bourgain’s

proof does not find points where the Lipschitz functions f is particularily flat, but rather it

exhibits points around which f is remarkably symmetric. Indeed, by our example points where

f is flat might not exist; by Bourgain’s results (see [B-1],[B-2]) points of symmetry do exist,

and they even form a set of Hausdorff dimension one.

Beside this connection with the radial variations of harmonic function, our estimate (2) is

also closely related to the original result about differentiability. In fact, it is the only sufficient

condition in terms of decay of the βf(x, ·)’s as we notice the following

Remark

i) Given an arbitrary function f and a point x from the interior of its domain. Then the

condition (2) implies that f is at x differentiable. This is a consequence of the estimate
∣∣∣∣∣
f(y) − f(z)

y − z
− f(y′) − f(z′)

y′ − z′

∣∣∣∣∣ ≤ 16 βf(x, R)

if 0 < R
4

< (y− z), (y′ − z′) and y, y′, z, z′ ∈ [x−R, x + R], which is in turn implied by
∣∣∣∣∣
f(y)− f(z)

y − z
− aR

∣∣∣∣∣ ≤ 8 βf(x, R)

where aR is an optimal slope in the definition (1) of βf (x, R).

ii) If βk+1 ∈ (0, 2 βk), |sk −sk+1| ≤ βk and supk |sk| < ∞ then the Lipschitz function f which

satisfies f(x) = skx for |x| = 2−k and is affine on any of the intervals ±[2−k−1, 2−k] also

fulfills βf(0, 2
−k) ≤ βk for all k.

2 The construction of a rough Lipschitz function

The result of this paper is the following

Theorem 1 There exists a Lipschitz function f on [0, 1] such that

∞∑
k=1

βf(x, 2−k) = ∞,

at every x ∈ [0, 1].

We deduce Theorem 1 from the following seemingly weaker statement. In fact we show that

most (in the topological sense) Lipschitz functions satisfy the conclusion of Theorem 1.
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Theorem 2 For any K there exists a Lipschitz function h on [0, 1] with Lipschitz constant

≤ 1/K such that
∞∑

k=1

βh(x, 2−k) ≥ K,

at every x ∈ [0, 1].

We will first present the reduction of Theorem 1 to Theorem 2. Here we employ a general

scheme based on Baire’s category theorem. We work with the complete metric space formed

by imposing the constraint Lip(f) ≤ 1 on the unit ball of L∞.

Proof of Theorem 1: Assuming that Theorem 2 has been proven we obtain from it Theorem

1. Obviously, that the metric space

X = ({f ∈ L∞[0, 1] : Lip(f) ≤ 1}, || · ||∞)

is complete. Moreover, notice that on the product [0, 1] × [0, 1] × (X, || · ||∞), the mapping

(x, r, f) → βf (x, r),

is continuous due to the compactness of the slopes for which the βf ’s are realized. We show

first that for each K ∈ N the set

BK = {f ∈ X : ∃x ∈ [0, 1],
∞∑

k=1

βf(x, 2−k) ≤ K}

is a closed subset of X. To this end we let fn be a convergent sequence in BK , such that fn → f

in the || · ||∞− metric. We prove that then f ∈ BK . Let xn ∈ [0, 1], such that

∞∑
k=1

βfn(xn, 2−k) ≤ K.

Then, let x ∈ [0, 1] be a cluster point of the sequence xn. Without loss of generality we may

assume that xn → x. To show that f ∈ BK , we will verify that,

∞∑
k=1

βf(x, 2−k) ≤ K.

Select any N ∈ N and ε > 0. Recall now that βf (x, r) depends continuously on x and f. Hence

we find n = n(N), such that

|βf(x, 2−k) − βfn(xn, 2−k)| ≤ ε

N
,
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for any k ≤ N. Thus we estimate,

N∑
k=1

βf (x, 2−k) ≤
N∑

k=1

βfn(xn, 2−k) +
N∑

k=1

|βf (x, 2−k) − βfn(xn, 2−k)|

≤ K + N
ε

N
.

As N ∈ N and ε > 0 are arbitrary we showed that f ∈ BK .

Next we prove that none of the sets BK , K ∈ N, has an interior point in X. Indeed, let

K < ∞, let f ∈ BK and let ε > 0. Next we choose f1 ∈ C∞ such the Lip(f1) is strictly (!) less

than 1, and

||f − f1||L∞[0,1] ≤ ε/4.

Clearly, as f1 ∈ C∞ we find a constant C1 such that

sup
x∈[0,1]

∞∑
k=1

βf1(x, 2−k) < C1.

By Theorem 2, there exists f2, so that Lip(f2) ≤ (1 − Lip(f1))/2, and ||f2||∞ ≤ ε/4, and such

that, for any x ∈ [0, 1],
∞∑

k=1

βf2(x, 2−k) ≥ K + C1 + 1.

Now define

g = f1 + f2.

Then we have that Lip(g) ≤ 1, and ||f − g||∞ ≤ 3ε/4, and for any x ∈ [0, 1],

∞∑
k=1

βg(x, 2−k) ≥ K + 1.

Summing up, we showed that g ∈ X is ε−close to f ∈ BK and g /∈ BK . Thus BK ⊆ X does not

contain an interior point. The union of the sets BK , is then a first category set in the complete

metric space X. By Baire’s theorem we obtain that,

X \ ⋃
K∈N

BK 
= ∅.

This proves Theorem 1 since each f ∈ X \ ⋃
K∈N BK , is a Lipschitz function for which,

∞∑
k=1

βf(x, 2−k) = ∞

for any x ∈ [0, 1].
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Comment: The use of Baire’s Theorem shortened this paper considerably. Indeed, without

Baire we would be forced construct a Lipschitz Function h in Theorem 2, which satisfies also

sup
x∈[0,1]

∞∑
k=1

βh(x, 2−k) < ∞.

The modifications necessary to obtain this are quite unpleasant, technically, and more impor-

tantly they are obscuring the nature of the problem at hand.

Before entering the proof of Theorem 2 we would like to point out that in 1980 M. Talagrand

constructed a collection E of pairwise disjoint intervals in [0, 1] covering a set E of measure

1/100, and for almost every x ∈ [0, 1] \ E there exists a sequence of intervals In ∈ E such that,

∑
n

|In|
|In| + dist(x, In)

≥ K >> 1.

The proof below is based in Talagrand’s method of construction, as presented in [J-M-T]. Here

we have to review it carefully, since we need to iterate it, to handle an exceptional zero set and to

describe the path from Talagrand’s collection to the Lipschitz function required in Theorem 2.

Proof of Theorem 2: In this proof and the rest of the paper we abbreviate
⋃A by A∗.

Step 1. We fix a large constant K ∈ N, and a sequence εp > 0 of small positive constants

such that
∞∑

p=1

εp ≤ 1

100

and
∞∑

p=1

εp| log εp| = ∞.

We start defining a collection D of disjoint closed subintervals of [0, 1]. Let D1 be a collection

consisting of equidistant closed intervals in [0, 1] of equal length l1 such that 0, 1 ∈ D∗
1, |D∗

1| = ε1

and define the function

b1(x) =
l1

dist(x,D∗
1) + l1

.

After p steps of the construction we have arrived at collections

D1, · · · ,Dp

where each Di is a family of pairwise disjoint closed intervals of equal length li and also the

covered closed sets D∗
i are pairwise disjoint subsets of [0, 1]. Together with these families we

also have the functions

bi(x) =
li

dist(x,D∗
i ) + li

, where bi ≡ 0 if Di = ∅.
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Moreover, we are given a sequence of open sets

H1, · · · , Hp−1

with Hi ⊆ Hi−1 ⊆ [0, 1] such that

(D∗
1 ∪ · · · ∪ D∗

j ) ∩ Hj = ∅ for j = 1, . . . , p − 1.

Now we define the new set

Hp = {x ∈ [0, 1] :
p∑

i=1

bi(x) < K + 1 and x /∈ (D∗
1 ∪ · · · ∪ D∗

p)} ⊂ (0, 1).

If |Hp| ≤ 4εp+1, then we put Dp+1 = ∅ and are ready to iterate the procedure. Else, we pick a

collection Hp of disjoint open intervals of equal length Lp+1 ∈ (0, lp/50) such that |H∗
p| > |Hp|/2

and that x ∈ Hp provided dist(x,H∗
p) < Lp+1. For each J ∈ Hp we define Dp+1(J) to consist

of the single closed intervals of length lp+1 = Lp+1εp+1/|H∗
p| < Lp+1/2 concentric with J . We

put

Dp+1 =
⋃

J∈Hp

Dp+1(J),

and we define as before

bp+1(x) =
lp+1

dist(x,D∗
p+1) + lp+1

.

For bp+1 we have in this case the following crucial estimate:

∫
Hp

bp+1(x) ≥ 2εp+1| log
|H∗

p|
εp+1

|. (3)

Indeed for each J ∈ Hp we obtain, by integrating 1
x
,

∫
J
bp+1(x) ≥ |Dp+1(J)∗|| log

|H∗
p|

εp+1
|.

Then we use that ∑
J∈Hp

|Dp+1(J)∗| = εp+1,

to arrive at (3). Again we are ready to iterate our construction and keep on doing so.

In this way we obtain the full family D =
⋃∞

p=1 Dp and the exceptional set H =
⋂∞

p=1 Hp.

Notice that |D∗| ≤ 1/100 and that we can suppose

|I| ≤ 100−k|I ′| if I ∈ Dp and I ′ ∈ Dp+k with k ≥ 0. (4)
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We now show that |H| = limp→∞ |Hp| = 0. Indeed, otherwise we see that (3) will hold

for all p sufficiently large. We would then obtain a contradiction from the following chain of

estimates which uses the fact that the sequence {Hp} is decreasing

∞∑
p=p0

2εp+1| log
|H∗

p|
εp+1

| ≤
∞∑

p=1

∫
Hp

bp+1(x)

=
∞∑

p=1

∫
Hp\Hp+1

p+1∑
j=2

bj(x)

≤ K + 2.

Step 2 Here we want to understand how the functions bp defined before can be used to get

a lower bound on βf . We have the following simple statement.

Lemma 1 Let x, a, a + 2b ∈ [0, 1] and b > 0. Suppose the measureable set M ⊂ [a, a + 2b]

satisfies |M∆[a+b, a+2b]| < b/49 and that the lipschitz function f : [0, 1] → R fulfils |f ′−χM | ≤
1/8 a.e. on [a, a + 2b]. Then

βf(x, 2−k) ≥
(

2

49

)
2b

2b + dist(x, [a, a + 2b])
,

if max(|x − a|, |x − a − 2b|) ∈ (2−k−1, 2−k].

For the proof it is sufficient to notice that on one of the subintervals [a, a + b], [a + b, a + 2b]

the gradient of f differs, up to a subset of measure b/49, with a fixed sign and in modulus

at least 3/8 from the best approximating slope a ( as occuring in (1)), which moreover has

to be in [−1/8, 9/8]. This shows that f minus its best affine approximation oscillates at least

(3/8)(48b/49) − 2(b/49) = 16b/49 and so the difference can not everywhere be smaller than

8b/49. Since 2−k−1 < 2b + dist(x, [a, a + 2b]), the lemma follows.

Step 3 From Step 1 and Step 2 it is clear that we can hope to achieve a big sum of the

βf ’s only where
∑

p bp became large, i.e. at all x ∈ [0, 1 \ (D∗ ∪H). Since the remaining set, in

particular D∗, is fairly large we have to iterate the construction from Step 1 in order to get a

large
∑

k βf(·, 2−k) also there.

For this purpose we associate with any closed interval I ∈ [0, 1] the affine map φI such that

I = [φI(0), φI(1)] and put D1 = D. Now let

Di+1 = {φI(J) : I ∈ Di and J ∈ D} for i ≥ 1.

We define

D∞ =
∞⋃
i=1

Di, HI = φI(H) and H∞ =
⋃

I∈D∞
HI .
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As D∞ is countable, H∞ is again of measure zero. We also have (Di+1)∗ ⊂ (Di)∗ and more

precisely, for I ∈ Di we get |(Di+1)∗ ∩ I| ≤ |I|/100 and hence |(⋃j>i Dj)∗ ∩ I| ≤ |I|/99.

We define M0 to be the set of all x such that there are i ≥ 1 and [a, a + 2b] ∈ Di with

x ∈ [a + b, a + 2b] \ (Di+1)∗ and choose the lipschitz function

f0(x) =
∫ x

0
χM0(t) dt = |M0 ∩ [0, x]|.

To ensure that (2) fails also in all x ∈ H∞ we use a slight modification of an idea of

C.Goffman ([G]). Since |H∞| = 0, we find {Gk}∞k=1 open sets such that |Gk| < 2−k and

H∞ ⊂ Gk+1 ⊂ Gk ⊂ [0, 1]. We can even assume that |Gk+1 ∩ I| < |I|/100 for all connected

components I of Gk. Indeed, once this is true for G1, . . . , Gk we can modify Gk+1 by replacing

for each connected component I the set Gk+1 ∩ I by Gk′ ∩ I, k′ sufficiently large. In this way

we get a new open set G̃k+1 ⊃ H∞ contained in Gk+1 and sufficiently small in any component

of Gk.

Let Ik be the system of all connected components of Gk, so {Ik}∞k=1 forms a sequence

of nested families of open intervals. It is now easy to see that we inductively find numbers

wI ∈ [−1/8, 1/8], I ∈ ⋃
k Ik, such that for I = (a, b) ⊂ I ′ = (a′, b′), I ∈ Ik+1, I ′ ∈ Ik∣∣∣∣∣

fk+1(b) − fk+1(a)

b − a
− fk(b

′) − fk(a
′)

b′ − a′

∣∣∣∣∣ >
1

8
(5)

where

fl(x) = f0(x) +
l∑

j=1

∫ x

0

∑
I∈Ij

wIχI\Gj+1
(t) dt.

Our final function f∞ will then be given by f0(x) =
∫ x
0 g∞(t) dt with

g = χM0 +
∞∑

j=1

∑
I∈Ij

wIχI\Gj+1
.

Note that ‖g∞ − χM0‖∞ ≤ 1/8 because the family {I \Gj+1 : I ∈ Ik, k ≥ 1} is disjointed and

that for (a, b) ∈ Ik

|fk(b) − fk(a) − (f∞(b) − f∞(a))| ≤ 1

8
|(a, b) ∩ Gk+1| ≤ 1

800
|b − a|.

Together with (5) this gives
∣∣∣∣∣
f∞(b) − f∞(a)

b − a
− f∞(b′) − f∞(a′)

b′ − a′

∣∣∣∣∣ >
1

9

for I = (a, b) ⊂ I ′ = (a′, b′), I ∈ Ik+1, I ′ ∈ Ik. This shows that f∞ is not differentiable at any

x ∈ H∞. Thus due to part (i) of the Remark in the Introduction we have
∑∞

k=1 βf∞(x, 2−k) = ∞
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for all x ∈ H∞. It is also clear from Lemma 1 that lim supk→∞ βf∞(x, 2−k) ≥ 2/49 if x ∈
⋂

i(Di)∗. Since the Lipschitz constant of f∞ is not more than 2, Theorem 2 will be established

if we show that
∑∞

k=1 βf∞(x, 2−k) > K/50 for all x ∈ [0, 1] \ (H∞ ∪⋂
i(Di)∗). Therefore, we can

suppose x ∈ I \ (φI(D∗) ∪ φI(Hp)) for some I ∈ Di and p ≥ 1. This ensures of course that we

can find Ij ∈ Dj (as defined in Step 1) such that

K + 1 ≤
p∑

j=1

|Ij|
|Ij | + dist(Ij, φ

−1
I (x))

=
p∑

j=1

|Ĩj|
|Ĩj | + dist(Ĩj, x)

, where Ĩj = φI(Ij).

Denoting for j ∈ {1, . . . , p} by kj the largest k such that Ĩj ⊆ [x − 2−k, x + 2−k] the required

estimate follows from Lemma 1 and the construction of M0 if we show that for all k ≥ 1

∑
{j:kj=k}

|Ĩj|
|Ĩj| + dist(Ĩj, x))

≤ 2
|Ĩj0|

|Ĩj0| + dist(Ĩj0, x)
, where j0 = min{j : kj = k}. (6)

But if kj = k and j > j0, then (4) implies |Ĩj| ≤ |Ĩj0|/100 ≤ 2−k−4 and hence Ĩj ∩ [x−2−k−2, x+

2−k−2] = ∅. Therefore, we obtain for such j that

|Ĩj|
|Ĩj| + dist(Ĩj, x)

≤ 100j0−j|Ĩj0|
2−k−2

≤ 100j0−j 8|Ĩj0|
|Ĩj0| + dist(Ĩj0 , x)

,

which gives the desired inequality (6) even with a factor 1 + 8/99 < 2. This finishes our proof.
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