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Abstract

We study the reconstructive phase transformations in crystalline
solids (i.e. transformations in which the parent and product lattices
have arithmetic symmetry groups admitting no finite supergroup), the
best known example of which is the bcc-to-fcc transformation in iron.
We first describe the maximal Ericksen-Pitteri neighborhoods in the
space of lattice metrics, thereby obtaining a quantitative characteri-
zation for weak transformations. Then, focussing for simplicity on a
two-dimensional setting, we construct a class of strain-energy functions
which admit large strains in their domain and are invariant under the
full symmetry group of the lattice; in particular, we give an explicit en-
ergy suitable for the square-to-hexagonal reconstructive transformation
in planar lattices. We present a numerical scheme based on atomic-
scale finite elements and use it to analyze the effects of transforma-
tion cycling on a planar crystal, by means of our constitutive function.
This example illustrates the main phenomena related to reconstructive
phase changes: in particular, the formation of dislocations, vacancies
and interstitials in the lattice.

1 Introduction

Reconstructive phase transformations in crystalline materials are charac-
terized by the absence of a finite supergroup for the arithmetic symmetry
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groups of the phases involved, as is the case for example in the well-known
α-γ transformation in iron and other ferrous materials, which takes a body-
centered cubic (bcc) to a face-centered cubic (fcc) structure. The term
‘reconstructive’ indicates that, at least in typical examples, the crystalline
symmetry is initially reduced along the transformation path, (e.g. from
bcc to face-centered tetragonal), and then increases when the final state is
reached (e.g. from face-centered tetragonal to bcc). Such phase changes
are outside the applicability range of the standard Landau theory of phase
transitions.

Weak phase changes, in contrast, involve small lattice deformations, and
admit a common finite supergroup for the symmetry groups of all the phases
involved – see for instance Ericksen (1989). A special case of the latter are
the symmetry-breaking transitions, whose phases have symmetry groups
that are in a group-subgroup relation. The reconstructive transformations
considered here are non-weak, and their properties are in general markedly
different from those exhibited by the weak transitions.1

The current mathematical understanding of weak phase changes is based
on nonlinear elasticity, and the underlying discrete symmetry derives from
choosing a suitable finite subgroup within the full symmetry group of the
crystal, which, a priori, is infinite and discrete, as was first pointed out
by Ericksen (1970, 1977), Parry (1976). This line of thinking, initiated
by Ericksen (1980) is compatible with the Laudau theory, and has proved
remarkably successful especially in the investigation of symmetry-breaking
martensitic transformations, with the related phenomena of twinning and
microstructure formation, as they occur for example in shape-memory and
magnetostrictive alloys (Ball and James, 1987, 1992, Luskin, 1996, Bhat-
tacharya, 1997, Müller, 1999, James and Hane, 2000, Pitteri and Zanzotto,
2002). The significance and applicability range of the Landau theory have
also been clarified by this approach.

A model for reconstructive transformations, however, proves harder to
develop than for weak transitions. An explicit characterization of weak
vs. reconstructive transformations is actually still missing; furthermore,
one main problem is that the invariance of the strain-energy function of
a material undergoing a reconstructive phase change is not described by a
finite group, for in these cases one must take into account the full (infinite,
discrete) symmetry group of the lattice – no choice of finite subgroups will
suffice. As a consequence, the relaxed energy of a crystal only depends on
the specific volume (Fonseca, 1987), which is a feature typical of fluids, not of
solids. The relaxation must thus include slip-like processes and the creation
and motion of dislocations, which, as we discuss below, are obtainable within

1The literature calls reconstructive also the transformations involving either large lat-
tice distortions, or parent and product phases whose symmetry groups have no inclusion
relation (Buerger, 1963, Tolédano and Dmitriev, 1996). The definitions coincide in all the
main cases of interest.

2



a purely elastic framework if the energy density exhibits the full symmetry
of the lattice. Finally, it is not clear which explicit functional forms the
(unrelaxed) elastic energy density should have in order to exhibit such full
lattice symmetry.2

These are, broadly, the questions of interest in this paper. To study
these problems, we first characterize the domains in which the weak trans-
formations occur; then, restricting ourselves to the two-dimensional case, we
write a class of strain-energy functions with full lattice invariance, defined
also for the large deformations that are typical of the reconstructive phase
changes. We then consider an explicit constitutive function suitable for the
square-to-hexagonal (s-h) transformation in planar lattices, and, by investi-
gating numerically the evolution of an initially perfect lattice under repeated
transformations, we observe twinning, slip-like processes, dislocations and
other defects. These results put in evidence the main differences between
the reconstructive and symmetry-breaking phase changes. The latter are
often reversible, leading for instance to shape memory in some alloys. On
the contrary, a reconstructive transformation may generate defects in the
lattice, preventing the reversibility of the process. Such general effects are
present both in two and three dimensions; we remark that two-dimensional
periodic structures to which our analysis of the s-h transformation may be
directly applicable occur in a number of physical systems, such as flux line
lattices (Gammel et al., 1999) and vortex lattices (Chang et al., 1998) in su-
perconductors, Wigner crystals in the two-dimensional electron gas (Holz,
1980, Ando et al., 1982), and skyrmion crystals in quantum Hall systems
(Rao et al., 1997).

In Sect. 2 we recall some basic facts about the symmetry of two-
dimensional (2-d) simple lattices (or ‘Bravais lattices’). We introduce the
classical action of the group GL(2, Z) of 2 by 2 invertible integral matrices
on the space Q+

2 of 2-d positive-definite quadratic forms (lattice metrics),
and recall the ensuing subdivision of planar simple lattices and their metrics
into five ‘Bravais types’.3 Following Engel (1986), we also describe the set of
‘Lagrange-reduced forms’ of lattice metrics, which is a fundamental domain
for this action – see Table 1, and Figs. 1–2.

In Sect. 3 we recall a geometric result that introduces the ‘Ericksen-
Pitteri Neighborhoods’ (EPNs) in the space of lattice metrics (see Ericksen,

2Other approaches to reconstructive phase transformations have been considered by
a number of authors during the last decade; one method involves the extension of the
Landau theory based on the adoption of a ‘transcendental order-parameter’ (see for in-
stance Dmitriev et al., 1988, Horovitz et al., 1989, Tolédano and Dmitriev, 1996, Hatch
et al., 2001). Numerically, such phenomena have also been investigated with molecular
dynamics, see e.g. Morris and Ho (2001).

3The analogous criterion in 3-d produces the well-known fourteen Bravais lattice types.
These basic notions of crystallography can be given for any dimension n of the lattices –
see for instance Engel (1986), Michel (1995, 2001).
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1980, Pitteri, 1984). These regions are used to reduce in a rational way
the domain of the energy functions of crystals, so that only finite crystallo-
graphic groups describe their invariance, as in the classical theories – see the
references above on the elastic modeling of symmetry-breaking transforma-
tions in crystals. We then give a procedure (which works in any dimension
n ≥ 2) to construct maximal EPNs, thereby showing in a quantitative way
the threshold between weak and non-weak transformations; we discuss some
explicit examples of maximal EPNs for n = 2 (see Fig. 3).

In Sect. 4 we study a class of GL(2, Z)-invariant strain-energy functions
on Q+

2 that can model the behavior of planar lattices undergoing reconstruc-
tive transformations. We give an explicit energy for the s-h phase change,
that in suitable temperature ranges exhibits absolute minimizers with ei-
ther square or hexagonal symmetry.4 A proposal for producing GL(2, Z)-
invariant constitutive functions on Q+

2 , based on the use of the classical
modular functions on the upper complex half plane, has been given by
Parry (1998). Our energies, however, are constructed by ‘patching’ suit-
able polynomials of scaled variables, so as to obtain enough smoothness
and the desired symmetry. We prefer this elementary method as it is quite
straightforward for prescribing the correct minimizers in our model.

In Sect. 5 we present a numerical scheme which incorporates theGL(2,Z)-
invariant energy, and use it to investigate numerically the effects produced on
a lattice by taking it through two s-h-s transformation cycles, starting from
a homogeneous configuration with square symmetry. We observe the devel-
opment of twin bands when the system is transformed into the hexagonal
phase (Figs. 6(b) and 6(d)), and the formation of dislocations or vacancies
when the system is taken back to the square phase (Figs. 6(c) and 6(e)).

2 Crystallography

2.1 The arithmetic symmetry of simple lattices

A 2-d simple (‘Bravais’) lattice is an infinite and discrete subset of R
2, given

by:
L(ea) =

{
v ∈ R

2 : v = vaea, v
a ∈ Z

}
(1)

(hereafter the summation convention is understood). The independent vec-
tors ea, a = 1, 2, are the lattice basis, and the metric (or ‘Gram matrix’)
C = (Cab) of L is

Cab = Cba = ea · eb (1 ≤ a, b ≤ 2). (2)
4We notice that the resulting theory is not of the Landau type, as the potential is

defined on all of Q+
2 (that is, also for large strains), and is not invariant under a typical

crystallographic group. Its invariance reduces to the latter when the domain is cut down to
an EPN. In particular, we remark that, as a consequence of GL(2, Z)-invariance, the elas-
tic moduli relative to any energy-minimizing configuration exhibit the correct symmetry
pertaining to that configuration.
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The space Q+
2 of lattice metrics is the 3-d linear cone collecting all the

positive-definite symmetric 2 by 2 real matrices.
Given a Bravais lattice, its basis and metric are not uniquely determined.

Two bases ēa and ea generate the same lattice if and only if they are related
by an invertible integral matrix; for the 2-d case one has:

L(ea) = L(ēa) ⇔ ēb = mabea with m = (mab) ∈ GL(2, Z), (3)

where GL(2, Z) denotes the group of 2 by 2 invertible matrices with integral
entries. Since each lattice determines its bases up to a transformation in this
group, the latter is said to be the ‘global symmetry group’ of planar lattices.
The change of basis in (3) induces, in obvious notation, the following change
of the lattice metric C in (2):

C̄ = mtCm, (4)

where mt denotes the transpose of a matrix m. Equation (4) defines a
natural action of GL(2, Z) on Q+

2 , which is considered in crystallography
for studying the arithmetic symmetry of simple lattices, also in the general
case of n dimensions. The ‘strata’ of the action (4) subdivide the space
of metrics (and hence the lattices themselves) into equivalence classes, the
well-known ‘Bravais types’ (see Engel, 1986, Michel, 2001).

Explicitly, if C is the metric of a basis ea, let their ‘lattice group’ or
‘arithmetic holohedry’ be defined as

L(ea) = {m ∈ GL(2, Z) : mabea = Qeb, Q ∈ O(2)}
=

{
m ∈ GL(2, Z) : mtCm = C

}
= L(C).

(5)

This group transforms by conjugacy under a change of basis (3) for the same
lattice:

L(mabea) = m−1L(eb)m for all m ∈ GL(2, Z); (6)

a given lattice L(ea) therefore determines an entire conjugacy class of lattice
groups in GL(2, Z). One then defines two lattices L and L′ as having the
same Bravais type when they are associated to the same conjugacy class in
GL(2, Z). In an analogous way, one subdivides in Bravais types also the
lattice metrics. A classical result in 2-d finds five Bravais lattice types in
Q+

2 , denominated oblique, rectangular, rhombic (or centered-rectangular),
hexagonal, and square – see Theorem 7.8 in Engel (1986), or Michel (1995);
see also Table 1.

2.2 A fundamental domain

The question of how to select a representative metric for each orbit in Q+
2

(that is, for each Bravais lattice), is a natural one that arises also in the
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Crystal system
(International

Symbol)

Lattice type
(International

Symbol)
Fixed set

Lattice group
(up to inversion)

oblique
(2)

oblique
(p2)

0 < C11 < C22

0 < C12 <
C11

2

„
1 0
0 1

«

rectangular
(p2mm)

0 < C11 < C22

C12 = 0

„
1 0
0 1

«
,

„−1 0
0 1

«

rectangular
(2mm)

Fixed set I

0 < C11 = C22

0 < C12 <
C11

2

„
1 0
0 1

«
,

„
0 1
1 0

«
rhombic

or
centered–

rectangular
(c2mm)

Fixed set II

0 < C11 < C22

0 < C12 =
C11

2

„
1 0
0 1

«
,

„
1 1
0 −1

«

square
(4mm)

square
(p4mm)

0 < C11 = C22

C12 = 0

„
1 0
0 1

«
,

„
0 −1
1 0

«
,

„−1 0
0 1

«
,

„
0 1
1 0

«

hexagonal
(6mm)

hexagonal
(p6mm)

0 < C11 = C22

0 < C12 =
C11

2

„
1 0
0 1

«
,

„
0 −1
1 1

«
,

„
1 1
−1 0

«
,

„−1 0
1 1

«
,

„
1 1
0 −1

«
,

„
0 1
1 0

«

Table 1: The five Bravais types of simple lattices, and the fixed sets
(sets of metrics with given lattice group) intersecting the fundamen-
tal domain D in (7), with the corresponding lattice groups (only one
element of each pair (m,−m) is tabulated). See also Fig. 1.
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Figure 1: A two-dimensional representation of the intersection of the
fundamental domain D in (7) with the plane C11 +C22 = 1, projected
on the plane (C11, C12), projected on the plane (C11, C12). The five
Bravais lattice types in Q+

2 are represented in D as shown (Interna-
tional Symbols are used). See Table 1 for a list of the corresponding
lattice groups. Unlike the other four lattice types, the rhombic (or
centered-rectangular) type is represented in D by two sets of metrics
(‘fat’ and ‘skinny’ rhombi – see Footnote 8) with two distinct but arith-
metically equivalent lattice groups. Details are given in Sect. 2.2 and
Sect. 3.2.

arithmetic reduction of real quadratic forms, initiated by Lagrange and
later pursued by many others, among whom Dirichlet, Jordan, Seeber. A
‘fundamental domain’ for the action (4) is a subset of Q+

2 such that each
GL(2, Z)-orbit in Q+

2 has one and only one element in that subset. A simply
connected fundamental domain in 2-d is the following:5

D =
{
C ∈ Q+

2 , 0 < C11 ≤ C22, 0 ≤ C12 ≤ C11

2

}
, (7)

whose metrics are said to have the ‘reduced form of Lagrange’ (see Engel,
1986, Michel, 1995).6 A representation of D is given in Fig. 1.

Given an arbitrary basis ea, the unique basis conjugate to it with metric
in the fundamental domain D can be obtained in finitely many steps by
iterating the following procedure: (i) if |e1| ≥ |e2|, swap the two vectors; (ii)
if e1 ·e2 ≤ 0, change sign to e2; (iii) if f = e1 −e2 is shorter than e2, replace
e2 with f . It is straightforward to restate the same procedure in terms of

5Fundamental domains have been explicitly described also in the 3-d case, see for
instance Schwarzenberger (1972), Engel (1986), Terras (1988).

6Given any simple lattice L(ea), the definition in (7) corresponds to choosing a suitable
‘reduced’ basis ēa for it, as follows: ē1 is a shortest lattice vector, ē2 is a shortest lattice
vector non-collinear with ē1, with the sign chosen so that the angle between the two is
acute. This basis always exists and is unique up to an inessential orthogonal transforma-
tion, so that its metric C̄ is unique.
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Figure 2: Section on the plane C11 + C22 = 1 of the space Q+
2 (with

coordinates C11, C12), taken from Michel (1995). The GL(2,Z)-related
copies of the fundamental domain D in Fig. 1 fill Q+

2 . The full squares
and empty hexagons indicate a few metrics with square and hexagonal
symmetry, respectively. The dotted lines represent the rectangular
metrics, the solid lines the rhombic metrics. The dense open set of the
other points represents the generic (oblique) lattice metrics.

the lattice metrics, and check that it always converges to D.7 The funda-
mental domain D in (7) is subdivided into six subsets, the metrics in each of
which are stabilized by six distinct lattice groups, as in (5); see Fig. 1 and
Table 1. One obtains six subsets for five lattice types because the rhombic
(or centered-rectangular) lattice type is represented by two distinct sets of
Lagrange-reduced metrics, having two distinct (but arithmetically equiva-
lent) lattice groups.8 The fundamental domain D and its symmetry-related
copies mtDm, m ∈ GL(2, Z), cover the entire space Q+

2 , as represented in
Fig. 2. In the case of 3-d lattices, the explicit information of how the (six-
dimensional) space of metrics is decomposed into copies of the fundamental
domain does not seem to be available.

7Analogous, more complex, reduction schemes, due to Seeber, Selling, Niggli,
Minkowski, exist also for the 3-d case – see Engel (1986).

8Geometrically, this happens because the unit cell of a rhombic lattice can be of two
different kinds: (i) a ‘skinny’ rhombus, one of whose angles is smaller than 60 degrees, so
that a diagonal is shorter than the side; (ii) a ‘fat’ rhombus, with angles all between 60
and 120 degrees, whose diagonals are both longer than the side. The Lagrange reduction
inequalities (7) then select a reduced basis constituted by two side vectors for the ‘fat’
rhombi, and by a diagonal and a side for the ‘skinny’ ones. The intersection of these two
sets of rhombic metrics gives the set of hexagonal metrics in D, see Fig. 1.

8



3 Global and local symmetries of simple lattices

3.1 Ericksen-Pitteri neighborhoods (EPNs)

In Sect. 2 we have seen how the the action (4) of the group GL(2, Z) on
the space of lattice metrics Q+

2 describes the global symmetry of planar
lattices. In this section we recall a result showing how such global symmetry
reduces to the classical one given by the usual 2-d crystallographic groups.
Indeed, within suitable ‘Ericksen-Pitteri neighborhoods’ (EPNs) in Q+

2 one
needs only consider the action and invariance given by appropriate lattice
(sub)groups of GL(2, Z) as in (5). We remark that the notion of EPN holds
in any dimension n.

Given any lattice metric C0, an open neighborhood N of C0 in Q+
2 is an

EPN if the following properties hold:9

(i) for all m ∈ L(C0), C ∈ N implies mtCm ∈ N ;

(ii) if C and mtCm are in N , with m ∈ GL(2,Z), then m ∈ L(C0).

Every C0 ∈ Q+
2 has a nonempty EPN, see Pitteri (1984), Ball and James

(1992). See also Duistermaat and Kolk (1999) for a general treatment of
‘slices’ of group actions. Pitteri and Zanzotto (2002) give a description of
the local structure of the EPNs in (2- and) 3-d. As the metrics in an EPN
are at most as symmetric as the ‘center’ metric C0, these neighborhoods
are the natural domains on which one analyzes symmetry-breaking trans-
formations involving finite but not ‘too large’ lattice distortions, as in the
literature mentioned in the Introduction. Indeed, the EPNs help formalizing
the notion of a weak transformation, which is defined as a phase change com-
pletely taking place within one such neighborhood (Ericksen, 1989). As the
metrics of the initial, final, and any intermediate states, belong to a single
EPN, their symmetry groups are all included in the symmetry group of the
neighborhood’s center. Reconstructive transformations, in our definition,
are necessarily non-weak.

3.2 Maximal EPNs

The above-mentioned existence results about EPNs do not give a quantita-
tive measure for weak transitions. Typical examples of non-weak transitions
are the (reconstructive) s-h or the bcc-fcc transformations, which both in-
volve maximal lattice groups (i.e. not contained in any other lattice group
in 2-d and 3-d, respectively). In general, however, one must know how large

9Equivalently:

(i) mtNm = N for all m ∈ L(C0);

(ii) mtNm ∩ N = ∅ for all m ∈ GL(2, Z) \ L(C0).
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the EPNs are in order to have an explicit criterion to differentiate between
weak and non-weak phase changes. In this section we describe how, given a
‘good enough’ fundamental domain, one can construct maximal EPNs, that
is, open EPNs not strictly contained in any other open EPN (this method
works for any dimension n ≥ 2).

Proposition 1. Let D be a fundamental domain whose boundary has mea-
sure zero – as for instance in (7) –, and fix a metric C0 ∈ D. Let

Ω =
{
mtCm : m ∈ L(C0), C ∈ D}

. (8)

Then, the inner part Ω0 of the set Ω is a maximal EPN of C0.

We observe that every orbit has (at least) a representative in the closure
of the maximal EPN Ω0 considered in the Proposition. This representative
is in general not unique, as each orbit in Q+

2 must have as many elements in
an EPN N (C0) as is dictated by the local symmetry given the lattice group
L(C0) of the center C0. On the other hand, it is clear that not every orbit
can have a representative in Ω0, as, for instance, the square and hexagonal
metrics have symmetry groups with no finite common supergroup.

To prove Proposition 1, we first give two lemmas. In the following we
denote by m ◦ C = mtCm the natural action of GL(n, Z) on Q+

n .

Lemma 1. Given a metric C and a neighborhood I of C, there is an EPN
of C contained in I.

Proof. Let N be an EPN of C. The required set is

N ∩
⋂

m∈L(C)

{m ◦ C : C ∈ I} . (9)

Lemma 2. Let Ω be as in the statement of Proposition 1. If C, C ′ ∈ Ω,
with C ′ = m ◦ C for some m ∈ GL(n,Z), then

m ∈ L(C0)L(C) . (10)

Proof. By definition there are m̄, m̄′ ∈ L(C0) such that C = m̄ ◦ C̄ and
C ′ = m̄′ ◦ C̄ ′, with C̄, C̄ ′ ∈ D. The condition C ′ = m ◦ C becomes C̄ ′ =
((m̄′)−1mm̄) ◦ C̄, which by definition of D implies C̄ ′ = C̄. Then we get
C ′ = m̄′ m̄−1 ◦ C, which together with C ′ = m ◦ C gives the thesis.

Proof of Proposition 1. We first show that Ω0 is an EPN of C0. The first
property of the EPNs (invariance under L(C0)) is obvious. To verify the
second one, let C, C ′ ∈ Ω0, with C ′ = m ◦ C. If L(C) ≤ L(C0), by Lemma
2 the thesis is verified. Otherwise, choose m̃ ∈ L(C) \ L(C0), and let I be
an EPN of C contained in Ω0 (Lemma 1). We now choose in I a metric C̃
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whose lattice group L(C̃) is minimal (i.e. for all C ′′ ∈ Q+
n , L(C̃) ≤ L(C ′′)).

Consider now C̃, m̃ ◦ C̃ ∈ I ⊂ Ω. By Lemma 2 we have

m̃ ∈ L(C0)L(C̃) = L(C0), (11)

which is a contradiction. It remains to show that Ω0 is maximal. If not, there
would be an open EPN Ω1 which strictly contains Ω0. Since Ω1 contains
at most finitely many copies of each metric (at most as many as is the
cardinality of L(C0)), copies of the boundary of D can cover only a zero-
measure subset of Ω1 \ Ω0. Hence we can find C ′ with minimal symmetry
in the interior of D and m ∈ GL(2,Z) such that m ◦C ′ ∈ Ω1 \Ω0. Since C ′

is in Ω0 and m ◦ C ′ is not, m cannot be in L(C0). But since C ′ and m ◦ C ′

are both in Ω1, m must be in L(C0). This gives the required contradiction
and concludes the proof.

To give some explicit examples in 2-d, we represent any C belonging to
the cone Q+

2 by means of the three coordinates C11, C12, C22, with Cii > 0
and C2

12 < C11C22. Then, considering only the plane C11 + C22 = 1 (with
coordinates C11 and C12, 0 < C11 < 1 and |C12| < C

1/2
11 (1 − C11)1/2),

amounts to giving the elements of Q+
2 up to a rescaling, which we will

no longer mention in the rest of this section. On this plane, the trace
of the fundamental domain D in (7) – still called D for simplicity – has
a particularly simple form: it is the triangle with vertices S = (1/2, 0),
H+ = (1/2, 1/4), and (0, 0), the latter not being included in D – see Fig.
1. The trace of Q+

2 on the plane C11 + C22 = 1 is covered by copies of D
obtained by means of the action (4), as shown in Fig. 2.

Now, it is straightforward to describe some maximal neighborhoods in
Q+

2 . A maximal EPN for the square metric S = (1/2, 0) is the open rhombus
centered on S, composed by the four copies of D obtained through the action
of the lattice group L(S) on D (see Table 1 for a list of the elements in
L(S)). As shown in Fig. 3(a), there are two distinct hexagonal metrics on
the boundary of this maximal EPN. Analogously, for the hexagonal metric
H+ = (1/2, 1/4) a maximal EPN is an open triangle containing six copies
of D, with three distinct square metrics on its boundary – see Fig. 3(b).
For an oblique metric a maximal EPN coincides with the inner part of (the
appropriate copy of) D; for a rhombic or rectangular metric, a maximal
EPN is composed by the two copies of D whose common boundary contains
the given metric.

It is instructive to consider in this picture the phase transformations
of a lattice. For instance, a (weak) square-to-rhombic transition involves
the parent square metric S = (1/2, 0) and two product rhombic metrics
R± = (1/2,±r), with 0 < r < 1/4; the choices ± correspond to the two
rhombic metrics (‘variants’) that exist in an EPN of S, which belong to the
same L(S)-orbit. In the homogeneous configuration with metric S the basis
vectors of the lattice are orthogonal: r = e1 · e2 = 0; when the lattice is

11



(a) (b)

Figure 3: Examples of maximal EPNs in Q+
2 , indicated as dashed

areas. (a) Maximal EPN for a square lattice metric, and (b) for a
hexagonal lattice metric. See Sect. 3.2 for details.

transformed to one of the configurations with metrics R±, the distortion
breaks the orthogonality relation r = 0, but leaves the basis vectors of equal
length. This transformation is weak as for not too-large r the metrics in-
volved do not exit from the maximal EPN of S constructed above (twinning
arises when the lattice deforms in a piecewise linear fashion to a configura-
tion involving both the variants R±). If the system is made to transform
back to the square phase, it is reasonable to assume that it will all go back
to the metric S, due to strong energy barriers in the direction of any other
square metric, which are ‘far-away’ from (that is, they are not in any EPN
containing) the metrics S, R±. This reasoning is the basis of the mathe-
matical theory of the shape-memory effect – see the literature quoted in the
Introduction.

If, on the other hand, the homogeneous lattice configuration is trans-
formed from S to one or both of the variants H± = (1/2,±r), with r = 1/4,
the strain is so large that the deformed system with metric H+ has actually
gained full hexagonal symmetry: we have a reconstructive transformation
(which cannot be weak because the metrics S, H± cannot all belong to a
single EPN). Also in this case there can be twinning and the formation of
microstructure in the transformed lattice, as its cells may find themselves
either in the variant H+ or H− (see Fig. 3(a)). However, things differ con-
siderably from the weak case on going back to the square phase. In this
instance, neglecting elastic interactions, the cells in the configuration H+

have in principle equal chances of going to any of the three neighboring
square metrics S1 = S = (1/2, 0), S2 = (1/3, 1/3) or S3 = (2/3, 1/3); like-
wise for H− (Fig. 3(b)). In a large-enough lattice one expects that all these
five square choices may be present in different parts of the crystal. Trans-
formation cycling can thus have the result of moving different parts of the
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sample from S1 to four other square metrics. This generates defects which
can be either localized (interstitials, vacancies) or long-range (dislocations).
An energetic model for these effects is presented and discussed in the rest
of this paper.

4 Elastic potentials for reconstructive phase changes

and the square-to-hexagonal transformation

The free energy φ of a lattice per unit mass depends on the basis vectors
ea, and due to Euclidean invariance, it actually depends only on their inner
products, that is, on the lattice metric C, besides the temperature θ:

φ = φ(C, θ). (12)

From the discussion in the preceding section, we see that the phenomeno-
logical description of reconstructive transformations in (2-d) crystals entails
energies φ whose domain in Q+

2 is large enough to contain metrics not all
belonging to a single EPN. These state functions also ought to identify the
different basis representations of the same lattice, so that, in the 2-d case,
their invariance should be dictated by the action (4) of GL(2, Z):

φ(C, θ) = φ(mtCm, θ) (13)

for all θ, all C, and all m ∈ GL(2, Z). This invariance requirement is
achieved by setting

φ(C, θ) = φ0(CR, θ) , (14)

where φ0 is a function defined on the fundamental domain D in (7), and, for
any C ∈ Q+

2 , CR ∈ D is the corresponding Lagrange-reduced form obtained
as discussed in Sect. 2.2. One may choose any parametrization of φ0 in (14)
– e.g. Fourier coefficients, polynomial expansions, etc. –, but in order to
ensure suitable regularity of φ one needs to impose appropriate conditions
on the boundary of D, as discussed for instance by Parry (1976).

This procedure is simplified if one starts from a maximal EPN, as smooth-
ness on most of the boundary of D is then a consequence of the symmetry
with respect to the lattice group of the center. In the following we require the
continuity of the first and second derivatives of φ, which makes the elastic
moduli of the lattice continuous. Since the determinant is invariant under
GL(2, Z), one can decouple the volumetric and the shape-dependent parts
of the energy by using scaled variables, i.e. writing φ0 as a function of detC
and C/det1/2 C. We will do so in our model, and assume the dependence
on the latter variables to be polynomial.

We start by studying polynomials in the three variables C11, C12, C22,
with Cii > 0 and C2

12 < C11C22 as in Sect. 3.2 (no planar section of Q+
2
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is taken here). We first focus on a maximal EPN N (H̄+) of the unimod-
ular hexagonal metric H̄+ = (1, 1/2, 1), whose lattice group L(H̄+) is the
hexagonal group in Table 1. A polynomial in C is invariant under L(H̄+)
if and only if it can be written as a polynomial in the following hexagonal
invariants (see Smith and Rivlin, 1958):

I1 =
1
3
(C11 + C22 − C12),

I2 =
1
4
(C11 − C22)2 +

1
12

(C11 + C22 − 4C12)2, (15)

I3 = (C11 − C22)2(C11 + C22 − 4C12) − 1
9
(C11 + C22 − 4C12)3 .

Then, let φ1(C) be a generic sixth-order polynomial for C ∈ D, expressed
in terms of the I’s, and define φ(C) outside of D by GL(2,Z)-symmetry as
in (14). As the same polynomial form is retained in all of N (H̄+), we only
need to impose C2 smoothness on the C12 = 0 boundary (see Fig. 3 (b)).
The extension through the latter is generated by a reflection, hence we need
to require C2 smoothness for φ1(C11, |C12|, C22) around C12 = 0. This is
equivalent to

∂φ1

∂C12

∣∣∣∣
C12=0

= 0, (16)

as the second derivative is automatically continuous. By imposing (16) to
the sixth-order polynomial φ1, we obtain a 10-dimensional linear space, for
which, as detC is GL(2,Z)-invariant, three basis vectors are trivially given
by the determinant, its square and cube. The remaining basis vectors are,
for instance:

ψ1 = I1
4 I2 − 41 I23

99
+

7 I1 I2 I3
66

+
I3

2

1056
,

ψ2 = I1
2 I2

2 − 65 I23

99
+
I1 I2 I3

11
+
I3

2

264
,

ψ3 =
4 I23

11
+ I1

3 I3 − 8 I1 I2 I3
11

+
17 I32

528
,

ψ4 =
9 I15

2
− 4 I13 I2 + I1 I2

2 − I2 I3
48

, (17)

ψ5 = 48 I15 − 24 I13 I2 + I1
2 I3,

ψ6 = 21 I14 − 5 I22 + I1 I3,

ψ7 = −5 I13

2
+ I1 I2 − I3

48
,

where the I’s are expressed in terms of C as in (15). The general sixth-order
polynomial φ1 in C meeting (16) can thus be written as a linear combination
of the above-mentioned ten basis vectors.
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We can use this result to obtain energies φ0 which are polynomials in
the scaled variables C/det1/2 C, and have a generic dependency on detC.
Indeed, since the ψi are homogeneous the scaling of C with respect to detC
gives a factor that we can incorporate into the coefficient. We obtain:

φ0(C) = h(detC) +
7∑

i=1

βi(detC)ψi

(
C

det1/2 C

)
, (18)

which still satisfies (16) and hence can be extended with C2 smoothness to
Q+

2 . In particular, for constant coefficients βi the above energy function φ0

completely decouples into the sum of a volumetric term and a deviatoric
one.

In order to obtain a model energy for the s-h (first-order) transformation,
we seek numerical values of βi in (18) such that the global minimum is always
either the square or the hexagonal state, and when changing a parameter,
the system goes through the following three regimes: (i) the square state is
the minimum, and the hexagonal is unstable; (ii) both the square and the
hexagonal states are local minima; (iii) the hexagonal is the minimum, and
the square is unstable (see Fig. 4). This leads to an underdetermined set
of restrictions on the coefficients βi, which are met for instance by choosing
β3 = 1, β2 = β4 = β5 = β6 = β7 = 0, and −1/4 ≤ β1 ≤ 4. The parameter
β1 now plays the role of ‘temperature’, hence we call it θ in the final form
of our energy:

φ0(C, θ) = θψ1

(
C

det1/2 C

)
+ ψ3

(
C

det1/2 C

)
+ (detC − 1)2, (19)

where the volumetric part has been taken to be quadratic. It is straightfor-
ward to verify that due to the GL(2, Z)-invariance of φ, the elastic moduli
of the square and hexagonal energy minimizers, have square and hexagonal
symmetry, respectively.

5 Transformation cycles: dislocations

and plasticity phenomena

Some numerical examples illustrate how this model is useful in the study
of reconstructive transformations in a planar crystal, with the associated
phenomena of microstructure and dislocation formation. We take as refer-
ence a portion of the simple lattice (1), and assume its strain-energy density
to be as in (19). The numerical approach we use for computing the total
energy of any deformation of the reference lattice is based on a set of atomic
coordinates, from which the deformation gradient is constructed using lin-
ear finite elements. Precisely, let {ri}i=1...N be the position vectors of the N
atoms considered. The lattice is first subdivided into triangles, with vertices
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Figure 4: Bifurcation for the energy (19): dotted and solid lines in-
dicate unstable and stable critical points respectively. The bifurcation
between the square and rhombic critical points is transverse in our C2

energy, but would be the usual pitchfork for C3 and smoother energies.
The other bifurcation is generically ‘transcritical’ (i.e. transverse). The
pattern shown here repeats itself according to GL(2, Z)-symmetry, so
that three [two] rhombic branches meet each hexagonal [square] branch
at the bifurcation point.

Figure 5: Decomposition of the crystal in triangles, and construction
of the basis vectors used in the numerical computations (see Sect. 5).

on the atoms; for example, the triangle Tk has vertices (rαk
, rβk

, rγk
). (The

topology of this decomposition remains fixed during the computation.) In
each triangle Tk the deformation uk is defined by means of the linear in-
terpolation between the positions of the vertices. The corresponding basis
vectors are given by

e(k)
1 = rβk

− rαk
, e(k)

2 = rγk
− rαk

, (20)

and C
(k)
ij = e(k)

i · e(k)
j , for i, j = 1, 2 (see Fig. 5). The energy density at

temperature θ is then given by φ(C(k), θ) in each triangle, and the total
energy is obtained as a Riemann sum over the triangles in the reference
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configuration.10 The invariance properties of the energy guarantee that
any permutation of {αk, βk, γk} in (20) will not change φ(C(k), θ), and that
any subdivision of a Bravais lattice will also produce the same energy.11

The gradient of the energy with respect to the atomic positions can be
computed analytically, but its explicit expression is rather cumbersome and
is not given here. Our code is then based on a mixture of gradient flow
and random displacements. More precisely, we perform gradient flow, and
periodically displace randomly all atoms by a small fraction (around 2%)
of the atomic spacing, to accelerate the exploration of the phase space.
Note that the model on which our code is based on nonlinear elasticity, and
thus markedly different from the pair-potential or embedded-atom models
typical of numerical investigations of analogous phenomena performed with
molecular dynamics (see, e.g., Morris and Ho, 2001).

By using this method, we now observe the quasistatic evolution of the
lattice through two s-h transformation cycles. We start at θ = θs = −0.2,
with the crystal in a homogeneous square configuration, which realizes a
(homogeneous) minimizer of the energy functional, as in Fig. 6(a). Fig. 6(b)
shows a state obtained by computing with the hexagonal energy (θ = θh =
3.5) starting from (a). We observe the formation of a twinned microstructure
involving two hexagonal variants and two different lamination directions (the
ground state would involve only one such direction). In Fig. 6(c) the crystal
is brought back to the square phase, by computing with θ = θs starting from
(c). Here we observe the formation of several defects: a dislocation in the
lower-right part of the crystal, and a bulk and a surface interstitial in the
upper-right part. In Fig. 6(d) we show the result obtained by starting a
second transformation cycle from (c), with the hexagonal energy. Again, we
observe different twinned microstructures in different parts of the sample,
and some strains arising from kinematic incompatibility. Finally, Fig. 6(d)
shows the end of the second cycle, in which the sample accumulates defects
in the square phase.
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10In agreement with ideas by Ericksen (1997, 1999), Friesecke and Theil (2002), our
total energy computation for the crystalline body makes no assumptions relating atomic
movements to macroscopic deformations, such as the ‘Cauchy-Born hypothesis’ (Ericksen,
1984, Zanzotto, 1992, 1996).

11By the same invariance there is here no need for relabeling, or equivalently for dynamic
neighbor lists. This is the reason why we can keep the topology of the grid fixed during
the transformation.
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(a) (b)

(c) (d) (e)

Figure 6: Positions of the atoms in the numerical computation de-
scribed in Sect. 5. (a) The initial square configuration. (b) A state
obtained by evolving with the hexagonal energy (θ = θh) starting from
(a). (c) The result of evolution with θ = θs, starting from (b). (d)
The result of evolution with θ = θh, starting from (c). (e) The result
of evolution with θ = θs, starting from (d).
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