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STRUCTURE OF ENTROPY SOLUTIONS:
APPLICATION TO VARIATIONAL PROBLEMS

CAMILLO DE LELLIS, FELIX OTTO

Abstract. In this paper, we establish rectifiability of the jump
set of an S1–valued conservation law in two space–dimensions.
This conservation law is a reformulation of the eikonal equation
and is motivated by the singular limit of a class of variational
problems. The only assumption on the weak solutions is that the
entropy productions are (signed) Radon measures, an assumption
which is justified by the variational origin. The methods are a com-
bination of Geometric Measure Theory and elementary geometric
arguments used to classify blow–ups.

The merit of our approach is that we obtain the structure as if
the solutions were in BV, without using the BV–control, which is
not available in these variationally motivated problems.

1. Introduction

1.1. Motivation. Consider an energy functional of the form

Fε(mε) =

∫
Ω

(
ε |∇mε|2 +

1

ε
(1 − |mε|2)2

)
+

1

ε

∫
R2

|∇−1(∇ ·mε)|2

(1)

defined on the space of vector fields m : Ω → R2. Here∫
R2

|∇−1(∇ ·mε)|2 =

∫
R2

|∇u|2 where − ∆u = ∇ ·mε.

In this paper, we study the regularity of elements m of the “asymptotic
admissible set”. By the asymptotic admissible set of a sequence of
functionals {Fε}ε↓0, we understand the set of all strong limits m (say,
in Lp(Ω) for all p < ∞) of sequences {mεn}n↑∞ which are bounded in
energy.

What can we expect? In view of the 1
ε
–terms in (1), such a limit m

satisfies

|m|2 = 1 a. e. and ∇ ·m = 0 distributionally. (2)

There are two ways of looking upon (2) which are particular to two
space dimensions. The first point of view is: since ∇ · m = 0, there
exists a stream function ψ such that m can be written as its gradient

1
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rotated by π
2
, that is, ⊥∇ψ = m. Then the first condition of (2) turns

into the eikonal equation

|∇ψ|2 = 1 a. e. . (3)

The second point of view is: since |m|2 = 1, we may introduce a phase
θ such that m can be written as (m1, m2) = (cos θ, sin θ). Then the
second condition of (2) turns into a scalar conservation law

∂ cos θ

∂x1
+
∂ sin θ

∂x2
= 0 distributionally. (4)

Both (3) and (4) are rigid for smooth ψ resp. θ, as can be seen from
the characteristics of these first order equations. But they practically
loose all this rigidity if ψ is only Lipschitz or θ is only an essentially
bounded function. The concept of viscosity solution resp. of entropy
solution restores the “right amount” of rigidity. But these concepts
seem a priori unrelated to our variational problem.

Which properties beyond (2) can be expected? In view of the ε in
front of the Dirichlet integral, finite–energy limits m will not be smooth
in general. As we shall presently see, the scaling of the energy Fε is just
such that it “sees” one–dimensional discontinuities (jumps) of the limit
m. In view of (2), the normal component of m is continuous across
jumps. The line–energy density associated with jumps of m can be
inferred from the one–dimensional version of (1), the local variational
problem

F̃ε(mε) :=

∫ (
ε

∣∣∣∣dmε

dx1

∣∣∣∣
2

+
1

ε
(1 − |mε|2)2

)
dx1

+
1

ε

∫
(mε,1 −m0,1)

2 dx1. (5)

Here m0,1 corresponds to the (prescribed) normal component of m.
Rescaling length as x1 = ε x̂1, one sees that the line–energy density is
indeed O(1) in ε. More precisely, a standard calculation shows that for
m±

0 ∈ S1 with m±
0,1 = m0,1,

min
{
F̃ε(mε) |mε → m±

0 as x1 → ±∞
}

= O(|m+
0 −m−

0 |3). (6)

The fact that the line–energy density is O(1) in ε naively suggests
that a finite–energy limit m has a moderately regular one–dimensional
discontinuity set. The cubic degeneracy O(|m+

0 − m−
0 |3) in the jump

size |m+
0 − m−

0 | on the other hand indicates that we possibly do not
control the total variation of m (more discussion on this in Subsection
1.4). In the main result of this paper, Theorem 1.3, we will nevertheless
establish regularity properties for m as if it were of bounded variation.
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1.2. Statement of result. The point of view (4) suggests to borrow
the concept of entropies from conservation laws to further characterize
the asymptotic admissible set. Following [11], we introduce

Definition 1.1. A smooth and compactly supported function Φ: R2 →
R2 will be called an entropy if for every open set Ω and every smooth
m : Ω → R2 we have(∇ ·m = 0 and |m|2 = 1

)
=⇒ ∇ · [Φ(m)] = 0.

A particular set of entropies has first been introduced by Jin and
Kohn as “calibrations” to establish lower bounds on the energy which
are optimal in the limit ε ↓ 0 [17]. Later, the concept of entropies,
together with other tools from conservation laws such as the div–curl–
Lemma and Young measures, has been used to establish

{Fε(mε)}ε↓0 bounded =⇒ {mε}ε↓0 ⊂ Lp precompact,

see [1], [11], [24]. An important ingredient was the estimate∣∣∫∇ · [Φ(mε)]ζ
∣∣ ≤ CΦ

(
Fε(mε) sup |ζ | + (ε Fε(mε)

∫ |∇ζ |2)1/2
)

(7)

for an arbitrary entropy Φ and test function ζ . As a variation of Defi-
nition 1.3 in [1], this motivates the following:

Definition 1.2. We call A(Ω) the set of essentially bounded m : Ω →
R2 with (2) and such that for every entropy Φ,

µΦ := ∇ · [Φ(m)] is a measure of locally finite total variation.

We call the µΦ’s entropy measures.

In view of (7), the asymptotic admissible set is a subset of A(Ω).
Our main result is on the structure of m ∈ A(Ω):

Theorem 1.3. For m ∈ A(Ω) there exists J ⊂ Ω such that

(a) J is H1 σ–finite and rectifiable;
(b) for H1–a.e. x 	∈ J ,

lim
r↓0

1

r2

∫
Br(x)

|m(y) − m̄x,r| dy = 0,

where m̄x,r is the average of m on Br(x);
(c) for H1–a.e. x ∈ J , there exist m+(x), m−(x) ∈ S1 with

lim
r↓0

1

r2

{∫
B+

r (x)

|m(y) −m+(x)| dy

+

∫
B−

r (x)

|m(y) −m−(x)| dy
}

= 0,



4 CAMILLO DE LELLIS, FELIX OTTO

where B±
r (x) := {y ∈ Br(x)| ± y · η(x) > 0} and η(x) is a unit

vector normal to J in x;
(d) for every entropy Φ

µΦ J = [η · (Φ(m+) − Φ(m−))]H1 J, (8)

µΦ K = 0 for any K ⊂ Ω \ J with H1(K) < ∞. (9)

This is somewhat less than what we would get for free if m had
bounded total variation using the fine properties of BV functions and
the Vol’pert Chain Rule (see Section 3.7 and Theorem 3.96 of [2]).
Despite the fact that we cannot expect bounded total variation, we
conjecture that m has the same structure. Hence we expect that points
(b) and (d) can be improved to

Conjecture 1.4.

(b’) for H1–a.e. x 	∈ J , x is a Lebesgue point of m.
(d’) µΦ = [η · (Φ(m+) − Φ(m−))]H1 J for every entropy Φ.

1.3. Mathematical context. Why are we interested in (1)? Because
its asymptotic admissible set contains the asymptotic admissible sets
for two other problems which have been intensively studied in the past
years:

Problem 1 is given by the functional

F 1
ε (mε) =

∫
Ω

(
ε |∇mε|2 +

1

ε
(1 − |mε|2)2

)
(10)

on the set of vector fields satisfying ∇ ·mε = 0.

Problem 2 is given by

F 2
ε (mε) =

∫
Ω

ε |∇mε|2 +
1

ε

∫
R2

|∇−1(∇ ·mε)|2 (11)

on the set of vector fields satisfying |mε|2 = 1.

Problem 1 was first considered by Aviles and Giga [5]. It was later
proposed by Gioia and Ortiz [22] as a model for delamination of com-
pressed thin elastic films (“blisters”), where the stream function ψ is
the height of the delamination (for more on modeling of thin–film blis-
tering phenomena see [7]). Since then, many partial results on the
asymptotic admissible set and the limiting variational problem (the
Γ–limit) have been obtained: [5], [6], [1], [17], [11], [16], [15], [9].

Problem 2 was introduced by Rivière and Serfaty [24] in the con-
text of thin ferromagnetic films. Here m is the magnetization; see for
instance [10] for thin–film models in ferromagnetism. The results for
Problem 2 are stronger than for Problem 1 (see [24], [23], [19], [4] and
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[3]). This might be related to the fact that there are no vortices on the
ε–level, which leads to a tighter control of the asymptotic admissibility
set. Since vortices play an important role in micromagnetics, Alouges,
Rivière and Serfaty have introduced a slight variation of (1) (where the
penalization of |m|2 −1 is stronger than the one of ∇·m) which allows
for vortices on the ε–level — and therefore has more the character of
Problem 1.

One might wonder whether we give up too much information by
replacing the asymptotic admissible set of Problem 1 or 2 by A(Ω).
Indeed, it can be seen from making CΦ in (7) more explicit that the
measures µΦ enjoy a weak form of uniform control in Φ. The kinetic
formulations (see [16] and [23]) quantify this uniform control. But
this uniform control differs from problem to problem and would not
substantially simplify our proof. This is why we stick to the more
flexible A(Ω).

Parallel to but independently from us, Ambrosio, Kirchheim, Lecum-
berry and Rivière [3] have proved the same result for a set Ã(Ω) which
contains the asymptotic admissible set of Problem 2. Ã(Ω) is poten-
tially different from A(Ω): next to (2), its definition is based on a phase
θ, see (4). Their class of entropies Φ are functions of the phase θ, and
not just of m — which is appropriate for Problem 2. As a particu-
lar consequence, ∇ · [Φ(m)] 	= 0 for their entropies if m is a vortex
m(x) = (−x2, x1)/|x|, whereas our entropies are oblivious to a vortex
— as they should be for Problem 1. In this sense, our entropies yield
less control than their entropies. This is reflected in the fact that our
class of possible blow–ups is a priori richer than theirs, so that we need
more arguments to rule most of them out. The proof of [3] is shorter
and uses different methods, in particular based on a comparison among
certain maps in Ã(Ω) and viscosity solutions of the eikonal equation
(see [4]).

1.4. Outlook. One might wonder what the difficulties in this problem
are. In our opinion the difficulties come from the fact that the asymp-
totic admissible sets for Problem 1 and 2, and a fortiori A(Ω), are not
subsets of vector fields of bounded variation: in [1], an example of an
asymptotically admissible m for Problem 1 which is not in BV is given.
To be more precise, the paper [1] only establishes that ∇ · [Φ(m)] is a
Radon measure for the Jin–Kohn entropies Φ, but the approximation
argument introduced in [8] can be used to show that m is indeed in
the asymptotic admissible set. In [24] some evidence was given that a
similar example can be constructed for Problem 2.
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The reason for this phenomenon lies in the fact that the total varia-
tion of the measures µΦ only control the cube |m+ −m−|3 of the jump
size |m+ − m−| — for BV, one would have to control |m+ − m−| it-
self. This is reflected by (6). The cubic control, which is bad for small
jumps, should not be dissociated from (2) — only taken together they
give a certain rigidity. Hence our problem is far from a Modica–Mortola
scenario.

One might wonder whether this is a problem of broader interest. In
view of (4), we believe that our methods allow us to establish an anal-
ogous result for entropy solutions of genuinely nonlinear scalar multi–
dimensional conservation laws or even systems with simple structure.
What would be the merit of such a result? After all, at least for scalar
conservation laws, the solution is of bounded variation if the initial
data are. The merit rather would consist in pinning down the regular-
izing effect of nonlinearity. The traditional method which achieves this
for multi–dimensional scalar conservation laws is based on the kinetic
formulation [20] and velocity averaging [13]. Unfortunately, the linear
function space which encodes this gain in regularity is far from BV.
Our method could be an alternative route to uncover this regularizing
mechanism of nonlinearity in terms of structure properties of the solu-
tion. Again, the problem with the linear approach is that the entropy
production measure (the analogue of µΦ), only controls the cube of the
jump size (the analogue of |m+ −m−|), as is generic for conservation
laws. Our approach is oblivious to this inherent nonlinearity.

1.5. Acknowledgments. We would like to thank Luigi Ambrosio,
Pierre–Emmanuel Jabin, Bernd Kirchheim and Benôıt Perthame for
many helpful conversations. In particular, discussions with Kirchheim
on related measure–theoretic questions (see Section 9) encouraged us
to come up with the (non–measure–theoretic) arguments of Section 7.

2. Overview of the proof

Since the proof of Theorem 1.3 is lengthy and consists of several
parts, we give an outline. We first introduce some language for blow–
ups of m.

Definition 2.1. We call

(a) vortex any vector field which up to translation is equal to m(x) =
⊥x/|x| or m(x) = −⊥x/|x|;



STRUCTURE OF ENTROPY SOLUTIONS 7

(b) line–roof any vector field m ∈ A(R2) which, up to rotation and
translation, is equal to

m(x) =

{
m+ if x1 > 0
m− if x1 < 0

for some choice of constants m+ and m−;
(c) half–roof any m ∈ A(R2) which coincides with a vortex inside a

sector and with a line–roof outside, see Fig. 1;
(d) segment–roof any m ∈ A(R2) which coincides with a vortex in a

sector A, with another vortex in a sector B and with a line–roof
in the remaining portion of the plane, see Fig. 1.

A generic field in (b), (c) and (d) will be called a roof.

Fig. 1segment−roof half−roof

The sets of fields introduced in (c) and (d) are nonempty, as can be
seen from Fig. 1 above. In this figure, the thick segment represents
the jump set of m and the thin rays represent the characteristics of m,
that is, the rays along which m is constant and normal. Here we use
the language of first order equations, see (2) resp. (4).

Definition 2.2.

(a) For any x ∈ Ω, r > 0, a field m and measure µ we introduce the
rescalings

mx,r(y) = m(x+ ry)) and µx,r(A) = µ(r A+ x).

If µΦ is the entropy measure of m ∈ A(Ω) with respect to Φ, 1
r
µx,r

Φ

is the corresponding entropy measure for mx,r.
(b) A field m∞ will be called a blow–up of m in x if there exists a

sequence rn ↓ 0 such that {mx,rn}n↑∞ converges to m∞ in Lp
loc(R

2)
for all p <∞.

(c) B∞(x) denotes the set of all blow–ups of m in x.

Our proof is a combination of general measure theoretic arguments,
arguments from Geometric Measure Theory and specific geometric rea-
soning. We start by a measure theoretic argument in Section 3. We
interpret the family {µΦ}Φ of entropy measures as a single measure on
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Ω with values in the space of linear forms T on the space of entropies
Φ. This allows us to use an infinite–dimensional polar factorization
of {µΦ}Φ into an x–dependent family of linear forms {Tx}x∈Ω on Φ–
space and a nonnegative measure ν on Ω. Roughly speaking, up to
an H1–negligible set, we split Ω into two sets G \ J and J which are
characterized as follows

- G \ J consists of x with

lim sup
r↓0

1

r
‖µx,r

Φ ‖ = 0 for all entropies. (12)

- J consists of x with

lim sup
r↓0

1

r
‖µx,r

Φ ‖
{
< ∞ for all entropies
> 0 for some entropies

}
(13)

x is Lebesgue point of {Tx}x∈Ω. (14)

The compactness results [1], [11] imply that the control (12) resp.
(13) yields for all y ∈ G

{my,r}r↓0 is precompact in Lp
loc for every p <∞.

Hence for y ∈ G \ J , any m∞ ∈ B∞(y) ⊂ A(R2) satisfies

∇ · [Φ(m∞)] = 0 for all entropies.

According to [15] this yields

B∞(y) ⊂ {constants, vortices} for all y ∈ G \ J. (15)

In view of (14), we expect that for any y ∈ J and m∞ ∈ B∞(y) ⊂
A(R2)

∇ · [Φ(m∞)] = Ty(Φ) ν∞ for all entropies, (16)

where ν∞ is a nonnegative measure on R2. Hence the information we
gain after blow–up is that the family of entropy measures factorizes into
a Φ–dependent part Ty and an x–dependent part ν. If m ∈ A(R2), a
linear form T on Φ–space and a nonnegative measure ν on R2 satisfy
(16), we call the triplet (m,T, ν) a split–state. Sections 4–5–6 are de-
voted to the classification of non–degenerate split–states, i. e. (m,T, ν)
with nontrivial T ν. We will establish that non–degenerate split–states
are roofs. We proceed in several steps. In Section 4 we prove that ν
is a rectifiable one–dimensional measure. In Section 5 we prove by a
second blow–up that the tangent to the rectifiable set which supports
ν is constant (it only depends on T ). In Section 6 we prove that this
support is a connected piece of a single line and thus obtain that m is
a roof.
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The above identification of non–degenerate split–states yields in par-
ticular an analogue of (15) for the points of J

B∞(y)

{ ⊂ {constants, vortices, roofs}
	⊂ {constants, vortices}

}
for all y ∈ J. (17)

This information does not yield directly the rectifiability of J ; we give
some reasons for this in Section 9. We need to further characterize the
set B∞(y). So in Section 7 we also take into account that

- Ty in (16) does not depend on m∞ ∈ B∞(y)
- m∞ ∈ B∞(y) are blow–ups of a single field in a single point.

From this we infer that (17) can be improved to

B∞(y)

⎧⎨
⎩

either contains a single line–roof
or contains a single half–roof,
both centered at the origin

⎫⎬
⎭ for all y ∈ J. (18)

By a similar argument, (15) can be improved to

B∞(y)

⎧⎨
⎩

either contains only constants
or contains a single vortex

centered at the origin

⎫⎬
⎭ for all y ∈ G \ J. (19)

The classification (18) in particular yields a lower bound on the one–
dimensional density of J . In Section 8 we evoke Geometric Measure
Theory to conclude rectifiability of J . Finally the classification (19)
ensures that m has vanishing mean oscillation in all but countably
many points of G \ J .

3. Splitting of measures

In this section we introduce two sets G and J (where J will be the
set of Theorem 1.3). Loosely speaking the definition of these sets is
based on a “polar factorization” of the distribution–valued measure
{µΦ}Φ and on the approximate continuity of its first factor. This polar
factorization is achieved by using differentiation of measures.

Proposition 3.1. Given m ∈ A(Ω) there exist Borel sets J ⊂ G such
that

(a) J is H1 σ–finite and H1(Ω \G) = 0;
(b) for x ∈ G \ J B∞(x) consists of constants and vortices;
(c) for x ∈ J every m∞ ∈ B∞(x) satisfies

∇ · [Φ(m∞)] = Tx(Φ)ν∞ for every entropy Φ,
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where Tx is a distribution which only depends on the point x,
though the measure ν∞ could depend on m∞; moreover Tx 	= 0
and there exists at least one m∞ ∈ B∞(x) such that ν∞ 	= 0;

(d) if H ⊂ Ω \ J and H1(H) < ∞ then µΦ(H) = 0 for every entropy
Φ.

Warning 3.2. The definition of J potentially may depend on the selec-
tion of a countable dense subset of the space of all entropies endowed
with the C0(S1)–norm. So here and in the sequel we fix a countable
family C := {Φi}i∈N with such a density property and we agree that
‖Φ‖ denotes the C0(S1)–norm of Φ.

Since we will use it several times, we introduce the following notation.

Definition 3.3. We call split–state every m ∈ A(R2) which satisfies

∇ · [Φ(m)] = T (Φ)ν for every entropy Φ (20)

for some distribution T on the vector space of entropies and some
nonnegative measure ν. A split–state will be called non–degenerate
if µΦ 	= 0 for at least one entropy Φ. Moreover with a triplet (m,T, ν)
we denote an m ∈ A(R2), a nonnegative measure ν and a distribution
T which satisfy (20).

Using this language point (c) of the previous theorem becomes

(c) for x ∈ J every m∞ ∈ B∞(x) is a split state and at least one of
them is non–degenerate; there exists a unique distribution T such
that to every m∞ ∈ B∞(x) we can associate a triplet (m∞, T, ν∞);

Before addressing the proof we first state some basic properties of
rescaling of maps in the class A(Ω) and possible blow–ups.

Lemma 3.4. Given m ∈ A(Ω) the following holds:

(a) for every entropy Φ we have

‖µΦ‖ << H1; (21)

(b) if we have

lim sup
r↓0

‖µΦi
‖(Br(x))

r
< ∞ for every Φi ∈ C (22)

then {mx,r}r↓0 is strongly precompact in Lp
loc(R

2) for p <∞;
(c) if (22) holds and mx,rn → m∞ then

∇ · [Φi(mx,rn)] =
µx,rn

Φi

rn

∗
⇀ ∇ · [Φi(m

∞)] (23)

in the sense of measures.
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Proof. First Step Proof of (a).
Since µΦ = ∇· [Φ(m)] is the divergence of an L∞ field it is easy to see

that the upper one–density of µΦ is finite everywhere. Indeed, testing
the identity ∇· [Φ(m)] = µΦ with the mollification of the characteristic
function of Br(x) we obtain

|µΦ(Br(x))| ≤ 2πr‖Φ‖. (24)

Now for every x such that

lim
r↓0

|µΦ(Br(x))|
‖µΦ‖(Br(x))

= 1 (25)

we thus obtain

lim sup
r↓0

‖µΦ‖(Br(x))

r
≤ 2π‖Φ‖. (26)

Since (25) holds for ‖µΦ‖–a.e. x, standard arguments in Geometric
Measure Theory (see Theorem 2.56 of [2]) imply (21).

Second Step Proof of (b).
If m ∈ A(Ω) then mx,r ∈ A(Ωx,r), where Ωx,r denotes a suitable

rescaling of Ω (and for r ↓ 0, Ωx,r ↑ R2). Indeed it is easy to see that

∇ · [Φ(mx,r)] =
µx,r

Φ

r
. (27)

So sightly modifying the proof of compactness of [11] we conclude that
(22) yields Lp

loc–strong precompactness of mx,r for every p <∞.

Third Step Proof of (c).
If mx,r → m∞ strongly in Lp

loc, then clearly (23) holds in the sense of
distributions. Finally (27), (22) and compactness of the weak∗ topology
of the space of Radon measures give that (23) holds in the sense of
measures.

Remark 3.5. Choosing suitably C we could have proved (b) using the
compactness result of [1]. Indeed there it is proved that a control on
two particular entropies is sufficient for compactness and hence for our
purposes it would be enough to include these two entropies in C.

Proof of Proposition 3.1 First Step After fixing C = {Φi} as
in 3.2 let

XN := linear span of {Φ1, . . . ,ΦN};
we define the vector–valued measure µN taking values into X∗

N (the
dual of XN ) as

〈µN ,Φ〉 := ∇ · [Φ(m)].
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To fix ideas we endow XN with the C0(S1)–norm and X∗
N with the

dual one and we introduce the notation

‖µN‖ := total variation measure of µN .

By the Radon–Nykodim Theorem there exists UN ∈ L1(Ω, X∗
N , ‖µN‖)

such that ‖UN‖ = 1 ‖µN‖–a.e. and µN = UN‖µN‖.
Second Step We introduce the following two families of sets:

SN :=

{
x ∈ Ω

∣∣∣∣lim sup
r↓0

‖µN‖(Br(x))

r
> 0

}
, (28)

LN := {x ∈ Ω |x is a Lebesgue point for UN } .
We start by collecting some properties of the SN ’s. From the ordering
of XN we obtain that

‖µN‖ ≤ ‖µN ′‖ for every pair N < N ′. (29)

This implies that

∀N < N ′ SN ⊂ SN ′. (30)

Since the measure µN has finite total variation we have by standard
arguments (see for example Theorem 2.56 of [2]) that

∀N SN is H1 σ–finite (31)

and

∀N H1 SN << ‖µN‖ SN . (32)

We now turn to the LN ’s. Because LN consists of Lebesgue points of
UN we have by standard arguments that

‖UN(x)‖ = 1 ∀x ∈ LN . (33)

From the ordering of the XN ’s for any pair N < N ′ we obtain that

UN ′ |XN
	= 0 and UN ′|XN

= ‖UN ′|XN
‖UN µN ′–a.e. on {UN 	= 0}.

In view of (33) this yields{
UN ′(x)|XN

	= 0
UN ′(x)|XN

= ‖UN ′(x)|XN
‖UN(x)

}
∀x ∈ LN ∩ LN ′ . (34)

By elementary measure theory we get

‖µN‖(Ω \ LN ) = 0. (35)
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Third Step We now define G and J in Proposition 3.1

G0 := Ω \
⋃

N∈N

SN

J :=
⋃

N∈N

(
SN ∩

⋂
N ′≥N

LN ′

)
(36)

G := J ∪G0.

The H1 σ–finiteness of J follows immediately from (32) and J ⊂ ⋃SN .
Let us now argue that H1(Ω \G) = 0. We have

Ω \G ⊂
⋃

N∈N

(
SN \

⋂
N ′≥N

LN ′

)

=
⋃

N ′∈N

( ⋃
N≤N ′

SN \ LN ′

)

(30)
=

⋃
N ′∈N

(SN ′ \ LN ′) .

We now observe that for fixed N ′ ∈ N we have, according to (35),

‖µN ′‖(SN ′ \ LN ′) ≤ ‖µN ′‖(Ω \ LN ′) = 0

and according to (32)

H1 << ‖µN ′‖ on SN ′ ⊃ SN ′ \ LN ′

so that H1(SN ′ \ LN ′) = 0. This proves that H1(Ω \G) = 0 and hence
completes the proof of point (a).

Fourth Step We now construct T on J . In this step T (x) for x ∈ J
will be constructed as a possible unbounded linear form on

⋃
N XN .

We will extend it to a bounded linear functional on the space of all
entropies in a later step.

Fix x ∈ J and let Nx ∈ N be the smallest N ∈ N with x ∈ SN ∩⋂
N ′≥N LN ′ . We will renormalize the linear forms UN(x) for N ≥ Nx

so to have that they are extensions of one another. Since x ∈ LNx

and in view of (33) there exists a Φx ∈ XNx such that ‖Φx‖ = 1 and
〈UNx(x),Φx〉 = 1.

Since for N ≥ Nx we have x ∈ LN ∩ LNx , from (34) we conclude

〈UN (x),Φx〉 	= 0 for any N ≥ Nx.

We use the value in Φx to renormalize the linear forms UN (x):

TN(x) :=
1

〈UN(x),Φx〉UN (x) (37)
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so that we have

〈TN(x),Φx〉 = 1. (38)

Since x ∈ LN ∩ LN ′ for N ′ ≥ N ≥ Nx, (38) and (34) imply that

TN ′(x)|XN
= TN(x).

Hence there exists a linear form T (x) on the union of all XN ’s such
that

T (x)|XN
= TN (x) for all N ≥ Nx. (39)

Fifth Step We now study the blow–ups in a point x ∈ G0. We have
by definition of G0 that

lim
r↓0

‖µN‖(Br(x))

r
= 0 for all N ∈ N. (40)

Hence (b) in Lemma 3.4 implies that {mx,r}r↓0 is strongly precompact
in Lp

loc for p < ∞. Moreover for all i (40) holds with ‖µΦi
‖ in place of

‖µN‖, which translates into

µx,r
Φi

r
∗
⇀ 0.

Hence we obtain for every blow–up m∞ that ∇ · [Φi(m
∞)] = 0. Since

C is C0(S1)–dense in the set of entropies we have ∇ · [Φ(m∞)] = 0 for
all entropies Φ. Now the results in [15] imply that every m∞ ∈ B∞(x)
is either a constant or a vortex and hence gives point (b).

Sixth Step We now study the blow–ups in a point x ∈ J . We
notice that (25) holds since x is a Lebesgue point for UN . Hence (b)
in Lemma 3.4 implies that {mx,r}r↓0 is precompact in the strong Lp

loc

topology.
Let us fix m∞ ∈ B∞(x) and a sequence of radii rn ↓ 0 such that

mx,rn → m∞ in Lp
loc. Moreover recall the definitions of Nx and Φx

given in the Fourth Step.
Without loosing our generality we may assume that for some N ∈ N

lim sup
n→∞

‖µN‖(Brn(x))

rn
> 0 (41)

otherwise reasoning as in the previous step we would have ∇·[Φ(m∞)] =
0 for every entropy Φ and hence m∞ would be a degenerate split–state.

Let N∗ be the smallest integer satisfying (41). According to our
definition N∗ ≥ Nx. After passing to a subsequence we can assume
that

lim inf
n→∞

‖µN∗‖(Brn(x))

rn

> 0 (42)
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which, thanks to (29), implies

lim inf
n→∞

‖µN‖(Brn(x))

rn
> 0 ∀N ≥ N∗. (43)

Let us now fix N ≥ N∗. Thanks to (43) we can assume, passing to
another subsequence, that there exists a nonnegative measure νN 	= 0
such that (〈UN (x),Φx〉‖µN‖x,rn

rn

)
∗
⇀ νN . (44)

According to the definition of J and because of N ≥ N∗ ≥ Nx, x is a
Lebesgue point for UN . Hence we have

lim
r↓0

1

‖µN‖(Br(x))

∫
Br(x)

‖UN (y) − UN (x)‖d‖µN‖(y) = 0

which thanks to (43) implies

lim
r↓0

1

rn

∫
Brn (x)

‖UN (y) − UN (x)‖d‖µN‖(y) = 0.

This last equation yields that

µx,rn

N

rn
− UN(x)‖µN‖x,rn

rn

∗
⇀ 0 (45)

in the sense of measures. Now for every Φ ∈ XN we may write

∇ · [Φ(mx,rn)] = 〈UN ,Φ〉‖µN‖x,rn

rn

and hence from (45) together with (44) we obtain

∇ · [Φ(mx,rn)]
∗
⇀

〈UN(x),Φ〉
〈UN(x),Φx〉νN

(37,39)
= 〈T (x),Φ〉νN .

Since from (39, 38) 〈T (x),Φx〉 = 1, we see that νN does not depend on
N and so we define ν := νN . Hence we have

∇ · [Φ(m∞)] = 〈T (x),Φ〉ν ∀Φ ∈
⋃

N∈N

XN . (46)

Since ν 	= 0 there exists ζ ∈ C∞
c (R2) with

∫
ζdν = 1 and so we have

〈T (x),Φ〉 = −
∫

Φ(m∞(y)) · ∇ζ(y)dy.

We conclude that T (x) is bounded with respect to the C0(S1)–norm.
Since with respect to this norm

⋃
XN is dense in the set of all entropies

we can extend T in a unique way to a bounded linear functional on the
space of entropies endowed with the C0(S1)–norm. This implies that
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(46) holds for every entropy Φ and hence concludes the proof of point
(c).

Seventh Step We now come to the proof of (d). Let us fix H ⊂ Ω\J
such that H1(H) < ∞ and suppose that Φ is a given entropy. From
the previous steps we know that for H1–a.e. x ∈ H B∞(x) is made
of degenerate split states. So we conclude that for every sequence

rn ↓ 0 we have ∇ · [Φ(mx,rn)]
∗
⇀ 0 in the sense of distributions. Hence

{µx,r
Φ /r}r↓0 converges to 0 in the sense of distributions. But we also

recall (see (26)) that

lim sup
r↓0

‖µx,r
Φ ‖(B1)

r
≤ 2π‖Φ‖ for ‖µΦ‖–a.e. x ∈ H .

This means that {µx,r
Φ /r}r↓0 converges to zero in the sense of measures

in ‖µΦ‖–a.e. x ∈ H . Reasoning as in the Sixth Step, we can conclude
that also {‖µx,r

Φ ‖/r}r↓0 converges to 0 in the sense of measures in ‖µΦ‖–
a.e. x ∈ H . But since these last measures are nonnegative we infer

lim
r↓0

‖µΦ‖(Br(x))

r
= 0 for ‖µΦ‖–a.e. x ∈ H ,

which (see for example Theorem 2.56 of [2]) implies ‖µΦ‖(H) = 0.

4. Rectifiability for split measures

In this section we start with the classification of the non–degenerate
split states (m,T, ν).

Proposition 4.1. Let (m,T, ν) be a non–degenerate split–state. Then
ν is supported on a closed rectifiable one–dimensional set, therefore it
is a rectifiable one–dimensional measure.

We achieve this by using a certain family of “generalized entropies”
which are discontinuous but pointwise limits of smooth entropies. These
generalized entropies were first introduced in [11] to study the compact-
ness for the variational problem (10). These generalized entropies are
very similar to the ones introduced by Kruzkov in the theory of scalar
conservation laws, [18].

Proposition 4.2. Using polar coordinates for (ξ, z) ∈ S1 × S1 (i.e.
ξ = eiα and z = eiθ) we define the “Kruzkov functions” χ(ξ, z) as

χ(ξ, z) =

{
1 if (θ − α) ∈ [2kπ, (2k + 1)π[ for some k ∈ Z

0 otherwise.

If (m,T, ν) is a split state, then for every ξ ∈ S1 we have

ξ · ∇x[χ(ξ,m)] = f(ξ) ν distributionally on R2. (47)
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Moreover f(−ξ) = f(ξ) and f ∈ BV (S1).

Equation (47) is a particular example of a kinetic formulation of a
scalar conservation law, see [20]. As in the traditional setting of scalar
conservation laws, the kinetic formulation encodes the information of
all Kruzkov entropies. Its merit is that it encapsulates the character-
istics for the first order equation (2): a smooth m would be constant
along the lines perpendicular to m. The right hand side of (47) mea-
sures the deviation from this geometric principle. The kinetic formu-
lation for Problem 1 has first been introduced by Jabin & Perthame in
[16], see also [23]. (47) slightly differs from [16] since we start from a
split–state instead of a general m ∈ A(Ω): our right hand side is more
regular and hence can be written without distributional derivatives in
ξ.

Proposition 4.2 will be used to prove the following

Lemma 4.3. There exists α > 0 such that if x is a Lebesgue point of
m then there is a one–sided open cone Cx of opening α and vertex x
such that ν(Cx) = 0.

We see below that this Lemma easily implies the rectifiability of ν.

Proof of Proposition 4.1 Let us fix x ∈ R2 and take a sequence
of points {xn}n↑∞ which are Lebesgue form and converge to x. Possibly
passing to a subsequence the cones Cxn of Lemma 4.3 converge to an
open cone Cx of opening α with vertex in x. Hence ν(Cx) = 0. Take
now the closed set S = supp (ν). We can find a finite family of closed
sets Bi and unit vectors ξi such that

(i) Si ⊂ S and
⋃
Si = B;

(ii) ∀x ∈ Si, if C ′
x := {x+ y : α|y|/2 ≤ y · ξi} then ν(C ′

x) = 0.

This gives that C ′
x ∩ Si = ∅ for every x ∈ Si (because ν(C ′

x) = 0
and Si ⊂ supp (ν)). Hence Si is contained in the graph of a Lipschitz
function.

The remaining part of the section is devoted to proving Lemma 4.3
and Proposition 4.2 above.

Remark 4.4. In the following we fix an orientation for S1, e.g. the
counterclockwise one. Moreover if ξ, ξ1, ξ2 ∈ S1 and the angle between
ξ and ξ1 is positive and strictly less than the angle between ξ2 and ξ1
then we write ξ ∈]ξ1, ξ2[.

Proof of Proposition 4.2 First Step Let ξ ∈ S1 be given.
Reasoning as in Lemma 4 of [11] one can prove that there exists a
sequence of entropies Ψn such that ‖Ψn‖ is equibounded and Ψn(x) →
ξ χ(ξ, x) for every x. Now thanks to the fact that T of equation (20)
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is a bounded linear functional on C0(S1) we can pass to the limit in
∇ · [Ψn(m)] = T (Ψn)ν to get ∇ · [ξ χ(ξ,m)] = f(ξ)ν for some real
number f(ξ). A trivial computation gives the homogeneity of f .

Second Step We now come to the proof that f is a BV function.
First of all we take a function ϕ ∈ C1

c (R
2) such that

∫
ϕdν = 1. We

will prove that if the angle between ξ1, ξ2 ∈ S1 is less than π, then f
is of bounded variation in ]ξ1, ξ2[. We fix ξ1 and ξ2 and for every ξ
we call θ(ξ) the angle between ξ1 and ξ. Pick up z1, . . . , zn such that
ξ1 ≤ z1 < z2 < . . . < zn ≤ ξ2. Using equation (47) we get

|f(zi) − f(zi−1)| =

∣∣∣∣
∫
zi · ∇ϕχ(zi, m) −

∫
zi−1 · ∇ϕχ(zi−1, m)

∣∣∣∣
≤

∣∣∣∣
∫

(zi − zi−1) · ∇ϕχ(zi, m)

∣∣∣∣
+

∣∣∣∣
∫
zi−1 · ∇ϕ (χ(zi, m) − χ(zi−1, m))

∣∣∣∣
≤ |zi − zi−1|‖∇ϕ‖L1 + ‖∇ϕ‖L∞L2(supp (ϕ) ∩ Si)

where

Si =

{
x

∣∣∣∣ either θ(zi) ≤ θ(m(x)) < θ(zi+1)
or π + θ(zi) ≤ θ(m(x)) < π + θ(zi+1)

}
.

Notice that, since the angle between ξ1 and ξ2 is less than π, the sets
Si are all disjoint. Hence we find that∑

|f(zi) − f(zi − 1)| ≤ |ξ2 − ξ1|‖∇ϕ‖L1 + ‖∇ϕ‖L∞L2(supp (ϕ))

and this completes the proof.
We are now ready to prove Lemma 4.3 and end this section. Before

doing it we will give the heuristic explanation which is hidden in the
proof. Let x be a given Lebesgue point for m. Thanks to what proved
so far there is a sector G ⊂ S1 such that

χ(ξ,m(x)) = 1 and ξ · ∇x(χ(ξ,m)) = f(ξ)ν ≥ 0 ∀ξ ∈ G.

So if we call rξ the half–line starting from x and directed along ξ we
have χ(ξ,m(x′)) = 1 for every x′ ∈ rξ. Loosely speaking this tells us
that rξ “does not meet” the measure ν. Since this happens for every
ξ ∈ G one would like to conclude that ν is identically zero inside the
cone given by

⋃
ξ∈G rξ.

Proof of Lemma 4.3 From the condition ∇ ·m = 0, integrating
on S1 both sides of equation (47) we get

∫
S1 f(ξ) = 0. Since m cor-

responds to a non–degenerate split–state it cannot be f = 0. Hence
there must be a measurable subset on which f is positive. Thanks to
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Proposition 4.2 f is continuous except for an at most countable number
of points. So we can choose a ξ for which f is positive in an interval
containing ξ. Thanks to the homogeneity of f f is positive even on
an interval containing −ξ. As a consequence we have that there exist
α, β, γ > 0 such that for every w ∈ S1 there is a couple ξ1, ξ2 which
satisfies:

(i) f(ξ) ≥ β for every ξ ∈]ξ1, ξ2[;
(ii) the cone individuated by ξ1 and ξ2 has opening bigger than α;
(iii) w · ξ ≥ γ > 0 for every ξ ∈]ξ1, ξ2[.

Hence we now take as w the unique element of S1 such that

lim
r→0

1

r2

∫
Br(x)

|m(y) − w|dy = 0

(which exists thanks to the fact that x is a Lebesgue point for m) and
we chose ξ1 and ξ2 which satisfy the three conditions above. Moreover
for the sake of simplicity we will denote w by m(x).

We claim that if we consider the cone

Cx := {x+ rξ | ξ ∈]ξ1, ξ2[, r > 0},
then ν(Cx) = 0. We will prove this in several steps.

First Step We fix ρ > 0 and for every ε > 0 and every ξ ∈]ξ1, ξ2[
we call Rξ

ε (see Fig. 2 below) the open set made by the union of:

(i) the rectangle given by {x+aξ+ b⊥ξ}, with b ∈ (−ε, ε), a ∈ (0, ρ);
(ii) the ball Bε(x) and the ball Bε(x+ ρξ).

ξ,2
ε

ερ

ξ

x
η

η

Fig. 2

x+ρξ

S Sξ,1
ε

The boundary of Rξ
ε is made of two segments parallel to ξ and two

half–circles. We call Sξ,1
ε the half–circle centered at x, Sξ,2

ε the half–
circle centered at x + ρξ and η the exterior unit normal to ∂Rξ

ε. We
now want to estimate ν(Rξ

ε). We take a standard family of mollifiers
ψδ and we recall that, since ν is nonnegative,

ν(Rξ
ε) ≤ lim

δ→0
ν ∗ ψδ(R

ξ
ε) (48)
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(indeed we have ν ∗ ψδ(R
ξ
ε) =

∫
ψδ ∗ χRξ

ε
dν and, since ψδ ∗ χRξ

ε
(x) ↑ 1

on every x ∈ Rξ
ε, letting δ ↓ 0 we get (48)). Since f(ξ) ≥ β we obtain

β ν ∗ ψδ(R
ξ
ε) ≤ f(ξ) ν ∗ ψδ(R

ξ
ε)

=

∫
Rξ

ε

ξ · ∇x(χ(ξ,m) ∗ ψδ)

=

∫
Sξ,2

ε ∪Sξ,1
ε

(χ(ξ,m) ∗ ψδ) ξ · η

≤
∫

Sξ,2
ε

ξ · η +

∫
Sξ,1

ε

(χ(ξ,m) ∗ ψδ) ξ · η (49)

where the last inequality comes from the fact that ξ · η ≥ 0 on Sξ,2
ε and

χ(ξ,m) ≤ 1.

Second Step For every set B, call Leb(B) the set of Lebesgue points
for m which belong to B. Standard arguments involving Fubini–Tonelli
Theorem imply that there is a sequence εn ↓ 0 such that

H1(Leb(∂Bεn(x)))

2πεn

= 1.

Moreover, from the fact that m(x) · ξ ≥ γ > 0 and using again Fubini–
Tonelli Theorem, it is easy to see that we can choose εn so that

H1(Leb(∂Bεn(x)) ∩ {y|χ(ξ,m(y)) = 1})
2πεn

→ 1

uniformly in ξ ∈]ξ1, ξ2[. Going back to (49), if we let δ ↓ 0 we gain

βν(Rξ
εn

) ≤
[∫

Sξ,2
εn

ξ · η +

∫
Sξ,1

εn

ξ · η
]

+ o(εn) = o(εn). (50)

Third Step If we integrate on ξ both sides of (50) we obtain

β

∫ ξ2

ξ1

ν(Rξ
εn

) ≤ αo(εn).

from which, dividing by εn and changing the order of integration, we
get

lim
n→∞

β

∫
R2

[∫ ξ2

ξ1

χRξ
εn

(y)

εn

dξ

]
dν(y) = 0.

We notice that the sequence of functions

gn(y) :=

∫ ξ2

ξ1

χRξ
εn

(y)

εn
dξ
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converges to 2α/|y−x| in every point y ∈ Cρ
x := {x+rξ : ξ ∈]ξ1, ξ2[, 0 <

r < ρ}. We then have

β

∫
Cρ

x

2α

|y − x|dν(y) = 0.

Hence ν(Cρ
x) = 0, which (letting ρ ↑ ∞) gives ν(Cx) = 0.

5. Blow–up for non–degenerate split–states

In this section we continue to investigate split–states (m,T, ν). Ac-
cording to the last section the blow–ups of ν are given (ν–a.e.) by
multiples of the Hausdorff measure concentrated on lines. In this sec-
tion we will show that this forces the blow–up of m to be a line–roof
in H1–a.e. point where ν is concentrated. Furthermore this line–roof
only depends on T .

Proposition 5.1. Let (m,T, ν) be a non–degenerate split–state. Then
there exists a line–roof mT , determined by T , such that B∞(x) = {mT}
for ν–a.e. x. Hence we may assume (after possibly multiplying T by a
positive constant) that ν = H1 J for some rectifiable set J .

Remark 5.2. Given a line d which contains the origin, we call ξd := eiφ

the unique vector in S1 which is parallel to ξd and such that φ ∈ [0, π).
Since d divides R2 in two half–planes we call

upper half–plane the one which contains ⊥ξd
lower half–plane the other.

If m is a line–roof we will call m+
∗ and m−

∗ its values on the upper half–
plane and the lower half–plane respectively. Hence to every line–roof,
up to translations, corresponds one and only one triplet (ξd, m

+
∗ , m

−
∗ ).

The triplet (ξ,m+, m−) associated to mT in Proposition 5.1 can be
explicitly computed from T .

Before coming to the proof we introduce the following two Lemmas:
the first one is proved in [11] whereas the second one is proved in [15].
The first one will allow us to characterize jumps from their entropies
and the second will be the starting point of our geometric arguments.

Lemma 5.3. If ϕ ∈ C∞
c (R2) then Φ(z) = ϕ(z)z + (∇ϕ(z) · ⊥z)⊥z is

an entropy.

Lemma 5.4. Let us suppose that Ω is an open convex set and that
m ∈ A(Ω) is such that for every entropy Φ we have µΦ = 0. Then

(a) either there exists a point x0 ∈ Ω such that m is a vortex centered
at x0 (see Definition 2.1(a));
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(b) or m is Lipschitz in every compact subset of Ω.

In the second case in every point x ∈ Ω passes a characteristic, i.e.
a line d such that m is constant on d and perpendicular to it. Moreover
these characteristics stop only when they hit ∂Ω.

Proof of Proposition 5.1 First Step Thanks to rectifiabil-
ity we know that for ν–a.e. x the measures {νx,r/r}r↓0 converge to
g(x)H1 d(x), where d(x) is a line passing through the origin and g(x)
a positive number. Let us call J the set of these points. If x ∈ J and
m∞ ∈ B∞(x) we then have

∇ · [Φ(m∞)] = T (Φ)g(x)H1 d(x). (51)

Second Step Let x ∈ J and m∞ be a given field in B∞(x) and
suppose, to fix ideas, that d(x) = {(z, 0) : z ∈ R}. For the sake of
simplicity let us use d in place of d(x). From Lemma 5.4 (see also
Lemma 3.1 of [15]) we know that on the line d m has well defined left
and right trace m+, m− ∈ L∞(d) (right and left is defined in the same
way as in Remark 5.2). Thus for every interval D ⊂ d we have

lim
ε↓0

1

ε

∫
D×(0,ε)

|m∞(z, y) −m+(z)| dz dy = 0 (52)

lim
ε↓0

1

ε

∫
D×(−ε,0)

|m∞(z, y) −m−(z)| dz dy = 0.

Now let us fix a rectangle D × (−ε, ε): using the Fubini–Tonelli The-
orem, integrating by parts (51) and letting ε go to 0 we can easily see
that

g(x)T (Φ)H1(D) =

∫
D

(Φ(m+(z)) − Φ(m−(z)) · (1, 0) dH1(z). (53)

This gives that (Φ(m+) − Φ(m−)) · (1, 0) is a constant. For an m∞

having the line of discontinuity with direction ξd we then have

(Φ(m+) − Φ(m−)) · ⊥ξd is constant for every entropy Φ. (54)

Third Step We now prove that m+ and m− are constant. Thanks
to the divergence–free constraint, m+(z) − m−(z) is parallel to ξd in
H1–a.e. z (from now on we will write ξ for ξd). Notice also that we must
have m+ −m− 	= 0 a.e., otherwise we would have Φ(m+)−Φ(m−) = 0
for every Φ, which contradicts (51). Since m± take values in S1 we can
conclude that m+(z) · ξ = −m−(z) · ξ 	= 0 for H1–a.e. z.
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Let us fix two couples (m+
1 , m

−
1 ), (m+

2 , m
−
2 ) ∈ S1 × S1 and suppose

that we have

(m+
1 −m−

1 ) · ⊥ξ = (m+
2 −m−

2 ) · ⊥ξ = 0 (55)

m−
1 · ξ = −m+

1 · ξ 	= 0 (56)

m+
2 · ξ = −m2

1 · ξ 	= 0 (57)

(Φ(m+
1 ) − Φ(m−

1 )) · ⊥ξ = (Φ(m+
2 ) − Φ(m−

2 )) · ⊥ξ ∀Φ (58)

We claim that these conditions imply m+
1 = m+

2 , m−
1 = m−

2 (hence
from (54) we conclude that m+ and m− are both constant). Arguing
by contradiction we would have three possibilities:

(i) m−
2 	= m+

1 	= m+
2 ;

(ii) m−
2 	= m−

1 	= m+
2 ;

(iii) m+
1 = m−

2 and m−
1 = m+

2 .

According to Lemma 5.3 if ϕ ∈ C∞
c (R2) the map Φ(z) = ϕ(z)z +

(∇ϕ(z) · ⊥z)⊥z is an entropy. So in case (i) we choose a function ϕ
such that:

- ϕ(m±
i ) = 0 for i ∈ {1, 2};

- ∇ϕ(m±
2 ) = 0 and ∇ϕ(m−

1 ) = 0.
- ∇ϕ(m+

1 ) = ⊥m+
1 .

Then thanks to (56) we would have (Φ(m+
1 ) − Φ(m−

1 )) · ⊥ξ 	= 0 and
(Φ(m+

2 ) − Φ(m−
2 )) · ⊥ξ = 0 which are incompatible with (58). If we

were in case (ii) we could argue in a similar way (just by exchanging
the roles of m+

1 and m−
1 ). For handling case (iii) we choose

- ϕ(m±
i ) = 0 for i ∈ {1, 2};

- ∇ϕ(m+
1 ) = ∇ϕ(m−

2 ) = ⊥m+
1 = ⊥m−

2 ;
- ∇ϕ(m−

1 ) = ∇ϕ(m+
2 ) = 0.

Indeed such a choice would imply

(Φ(m+
1 ) − Φ(m−

1 )) · ⊥ξ = −(Φ(m+
2 ) − Φ(m−

2 )) · ⊥ξ 	= 0.

Fourth Step Now let x, y ∈ J and m∞
1 ∈ B∞(x), m∞

2 ∈ B∞(y).
We call ξi the directions of the two lines of discontinuity and m±

i the
right and left traces of m∞

i on its line of discontinuity. Then equation
(53) implies that

(Φ(m+
1 ) − Φ(m−

1 )) · ⊥ξ1 =
g(y)

g(x)
(Φ(m+

2 ) − Φ(m−
2 )) · ⊥ξ2. (59)

It is straightforward to check that if we replace (58) with (59) and (55,
56, 57) with

(m+
i −m−

i ) · ⊥ξi = 0

m−
i · ξi = −m+

i · ξi 	= 0
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the proof of the previous step still works and implies m+
1 = m+

2 and
m−

1 = m−
2 . As already noticed m+

i −m−
i is parallel to ξi. Hence the

couple (m+
i , m

−
i ) determines ξi and we can conclude that g(x) = g(y),

d(x) = d(y).

Thus there exists a fixed constant c such that νx,r/r
∗
⇀ cH1 d for

every x ∈ J . This easily implies ν = cH1 J and so our initial split–
state can be characterized also with the triplet (m, c T,H1 J).

Fifth Step We will now end the proof by showing that for x ∈ J
every m∞ ∈ B∞(x) is constant on both the half–planes individuated
by d. We fix our attention on the upper half–plane. We know that
we have the two alternatives of Lemma 5.4: anyway we can rule out
alternative (a), since a vortex would not give a constant trace on the
line d. So we are in case (b) and for every point w in the upper half–
plane we can find a characteristic line lw which passes through w and
stops only when it hits d.

We notice that thanks to (52) for every w′ ∈ d there is a sequence of
points {wn}n lying in the upper half–plane and such that {m∞(wn)}n

converges to m+. If we take the characteristics lwn we easily conclude
that they converge (up to a subsequence) to a half–line lw′ which origi-
nates in w′ and is perpendicular to m+. Moreover Lipschitz continuity
of m∞ on compact subsets of the half–planes gives that m∞ is con-
stantly equal to m+ on lw′. This implies that m∞ is constantly equal
to m+ on the whole upper half–plane.

Remark 5.5. We notice that Kruzkov functions are not able to dis-
tinguish every line–roof from another since, for example, the line–roofs
individuated by the triplets

((0, 1), (a, b), (−a, b)) ((0, 1), (a,−b), (−a,−b)
have the same f in equation (47). This gives a difference between the
problem we are treating and the scalar one–dimensional conservation
laws, in which Kruzkov’s entropies alone are able to distinguish among
all the “jumps”.

6. Classification of split–states

In this section we conclude with the classification of split–states.

Proposition 6.1. If (m,T,H1 J) is a non–degenerate split–state then
m is a roof (either a line–roof or a half–roof or a segment–roof: see Def-
inition 2.1 and compare with Fig. 1 and Fig. 7). Moreover the values
m+ and m− in Definition 2.1 are completely determined by T .
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Remark 6.2. From Proposition 4.1 we know that J is rectifiable.
Hence without loosing our generality we may assume that in every
x ∈ J there is a line tangent to it. From Proposition 5.1 we know
that this line is determined by T , i.e. is the same in every x. In the
following we denote it by d. Again according to Proposition 5.1, for
every x ∈ J , B∞(x) consists of a single line–roof which jumps on d
between two fixed values. We call these values m+

∗ and m−
∗ .

Before addressing the proof of Proposition 6.1 we need some prelim-
inary remarks.

Remark 6.3. Thanks to what we have proved in the previous section
we can calculate explicitly the function f in terms of m+

∗ , m−
∗ and d. To

fix ideas we suppose that d is directed along (1, 0) and m+
∗ = (a, b) with

a, b > 0. Then the shape of f can be easily described by Fig. 3 below.
So we conclude that f is positive on the two–sided cone C+ := A ∪ C
and negative on C− := B ∪D.

f=0

f<0

f>0

for characteristics 
possible directions

Fig. 3

m
*

m
*
+

−

C

D A

B
d

Lemma 6.4. Define C+ and C− as in Remark 6.3. Then

H1((x+ (C+ ∪ C−)) ∩ J) = 0 for every x ∈ J . (60)

Proof. From Proposition 5.1 we know that there are two sequences of
Lebesgue points {x+

n }n↑∞ and {x−n }n↑∞ both converging to x such that
m(x+

n ) → m+
∗ and m(x−n ) → m−

∗ . Let us fix our attention on x+
n .

Since m(x+
n ) is close to m+

∗ , there is a cone An close to A such that
H1((x+

n +A)∩ J) = 0 by the argument of Lemma 4.3 and Remark 6.3.
In the limit we obtain H1((x + A) ∩ J) = 0, since A is open. Since
the proof of Lemma 4.3 can be adapted to the case χ(ξ,m(x)) = 0
and f(ξ) < 0 we obtain analogously H1((x + D) ∩ J) = 0. Hence
H1((x+(A∪D))∩J) = 0. By symmetry H1((x+(B∪C))∩J) = 0.

Proof of Proposition 6.1 We divide the proof into several steps.
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First Step If x ∈ J than H1((x+ d) ∩ J) > 0.

Let x ∈ J be fixed and without loosing our generality suppose x = 0.
From Proposition 5.1 we know that the blow–up of H1 J in 0 is H1 d.
Since the open set C+ ∪ C− ∪ d \ {0} contains d \ {0} we have

lim
r↓0

H1((C+ ∪ C− ∪ d \ {0}) ∩ J ∩Br(x))

2r
= 1

and hence H1((C+∪C−∪d)∩J) > 0. On the other hand by Lemma 6.4
we have H1((C+ ∪ C−) ∩ J) = 0 and thus

H1((C+ ∪ C− ∪ d) ∩ J) = H1(d ∩ J).

Second Step If x ∈ J then J ∩ (x+ d) is connected.

Let us suppose that x, y ∈ J ∩(x+d) and fix a system of coordinates
in which d = {(t, 0) : t ∈ R}. We know that in x and y every blow–up
has to be a jump between m+

∗ and m−
∗ . To fix ideas let us suppose that

m−
∗ and m+

∗ are oriented as in Fig. 3. Consider the half–stripe denoted
by A in Fig. 4: this half–stripe is bounded by the segment [x, y] and
by the two half–lines perpendicular to m+

∗ which start from x and y.
Consider also the symmetric half–stripe B. We will prove that

m ≡ m+
∗ on A, (61)

m ≡ m−
∗ on B. (62)

Of course this will imply [x, y] ⊂ J and hence completes the proof of
this step.

x
y

no entropy measures

Fig. 4

characteristics

 A

 B

Lemma 6.4 ensures that H1(J ∩ A) = H1(J ∩ B) = 0. Since A and
B are convex we may apply Lemma 5.4. If m were a vortex on A we
would have the wrong trace either near x or near y. Hence Lemma 5.4
implies that the characteristics drawn in the stripe stop only if they
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hit the boundary and that m is Lipschitz on every compact subset of
the stripe.

From the first step we know that for every ε > 0 we can find x′, y′ ∈
J ∩ d such that x < x′ < y′ < y and |x − x′|, |y − y′| ≤ ε. Reasoning
exactly as in the fifth step of the proof of Proposition 5.1 we draw two
half–lines l′x and l′y both perpendicular to m+

∗ and starting respectively
from x′ and y′. We remark that m is constantly equal to m+

∗ on them.
This implies that every characteristic lying in the stripe delimited by
the two half–lines lx′ and ly′ (and by [x′, y′]) have to be parallel to lx′.
Hence m ≡ m+

∗ in this stripe, and letting x′, y′ converge to x and y we
get (61). A symmetric argument gives (62) and completes the proof.

Third Step J is contained in one line.

The previous steps imply that J is the countable union of open sub-
sets of parallel lines. Let us suppose that J is not connected. Then
condition (60) implies that the connected components of J are finite
segments. Now, if we have a finite segment, then in the region indicated
in Fig. 5 H1 J is identically 0.

Fig. 5

S

no entropy measures ��

A

B

C

Fix one of the segments and call it S. In the second step we have
already identified m in the half–stripes A and B. We now will identify
m in the cone C. Let l1 and l2 denote the characteristic half–lines
which bound C and O its vertex, see Fig. 6. We apply Lemma 5.4 to
C and we easily conclude that m|C cannot be a vortex with center in
the interior of C. Since the characteristics lying in C cannot hit l1 or l2
(there cannot be a vortex centered at a point of li since m is constant
on them) they all have to hit O. Hence m looks as in Fig. 6.
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Fig. 6

l2

1l

O

Finally it is easy to see that if J consists of more than one segment
then the characteristics emanating from the acute endpoints of the
segments (which are all either the left ones or the right ones) would
intersect. But this is not possible.

Fourth Step Conclusion of the proof.

From the last step we know that J is either a line or a half–line or
a segment. Since outside the closure of J the entropy measures are
identically zero, we can draw the characteristic lines as we have done
in the proofs of the previous steps. It is easy to conclude that they
have to be as summarized in Fig. 7 below.

Fig. 7

segment−roof half−roof line−roof

7. Further characterization of B∞(x)

In the previous sections we identified all m∞’s with

∇ · [Φ(m∞)] = 0 for all entropies

and all split–states, that is, m∞’s of the form

∇ · [Φ(m∞)] = T (Φ) ν∞ for all entropies.

So far, we have not made use of the fact that all these m∞ come
from the blow–up of a single field in a single point. This will be done
now. We obtain a complete classification of B∞(x) for x ∈ G \ J in
Proposition 7.2 and for x ∈ J in Proposition 7.3. Before stating them
we introduce a bit of terminology.
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Definition 7.1. A vortex will be called

- centered if its unique point of singularity is the origin;
- counterclockwise if it is of the form mv(x− x0) (see 2.1 (a));
- clockwise if it is of the form −mv(x− x0).

A line–roof is centered if its singular line contains the origin.
A half–roof is centered if its singular half–line starts from the origin.

Proposition 7.2. Let x ∈ G \ J (see the proof of Proposition 3.1 for
the definition). Then

either B∞(x) contains only constants
or B∞(x) contains only the centered counterclockwise vortex
or B∞(x) contains only the centered clockwise vortex.

Proposition 7.3. Let x ∈ J . Then

either B∞(x) contains only the centered line–roof
or B∞(x) contains only the centered left half–roof
or B∞(x) contains only the centered right half–roof.

Proof of Proposition 7.2 We recall from Proposition 3.1 that

B∞(x) contains only constants and vortices.

Without loosing our generality we assume x = 0 and that m is defined
everywhere in B2(0).

First Step A functional F on m–space.
We will define a functional F on all essentially bounded and weakly

divergence–free vector fields m on B2(0). Because m is divergence–free,
there exists a Lipschitz continuous “stream function” ψ with ⊥∇ψ = m;
ψ is unique up to additive constants. We take F(m) to be an “averaged
second derivative” of ψ in the origin

F(m) :=
3

2 π

∫
B1(0)

(ψ(x) − ψ(0)) dx.

This functional is normalized such that |∇ψ|2 = 1 a. e. implies

F(m) ∈ [−1, 1]. (63)
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We will be interested in how F behaves under rescaling. It is easy to
check that

2 π

3

d

dr

∣∣∣∣
r=1

[F(m0,r)]

=

∫
∂B1(0)

(ψ(x) − ψ(0)) dx− 3

∫
B1(0)

(ψ(x) − ψ(0)) dx (64)

=

∫
∂B1(0)

(
ψ(x) − ψ(0) − 3

∫ 1

0

(ψ(s x) − ψ(0)) s ds

)
dx.

Second Step F separates the elements of B∞(0).
We now state how F acts on m∞ ∈ B∞(0), i. e. on constants and

vortices. We list the obvious equivalences in the following table

F(m∞) = 1 centered counterclockwise vortex
F(m∞) ∈ (0, 1) off–center counterclockwise vortex
F(m∞) = 0 constant
F(m∞) ∈ (−1, 0) off–center clockwise vortex
F(m∞) = −1 centered clockwise vortex

We next state how F acts on rescaled versions m∞
0,r of m∞ ∈ B∞(0):

F(m∞) ∈ (0, 1) =⇒ d

dr

∣∣∣∣
r=1

[F(m∞
0,r)
]
> 0, (65)

F(m∞) ∈ (−1, 0) =⇒ d

dr

∣∣∣∣
r=1

[F(m∞
0,r)
]
< 0.

Let us now argue in favor of, say, (65). In view of the table, F(m∞) ∈
(0, 1) implies that m∞ is an off–center counterclockwise vortex. In
particular, the related stream function ψ∞ is convex and we have

ψ∞(r x) − ψ∞(0) ≤ (ψ∞(x) − ψ∞(0)) r for x ∈ ∂B1 and r ∈ [0, 1].

From the last line in (64) we see that d
dr

∣∣
r=1

[F(m∞
0,r)
]

is always non-
negative, and vanishes only if ψ∞ is homogeneous of degree 1 in B1(0).
But this is not the case for an off–center vortex. Hence (65) holds.

Third Step Compactness argument.
We set for convenience

f(r) := F(m0,r) =
3

2 π

∫
B1(0)

(ψ0,r(x) − ψ0,r(0)) dx
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and observe that (see (64))

2 π

3
r f ′(r) =

∫
∂B1(0)

(ψ0,r(x) − ψ0,r(0)) dx

−3

∫
B1(0)

(ψ0,r(x) − ψ0,r(0)) dx, (66)

where ψ0,r(x) − ψ0,r(0) = 1
r
(ψ(r x) − ψ(0)) is the stream function for

m0,r. We claim that for all δ > 0, there exist ε > 0, r0 > 0 s. t.

f(r) ∈ [δ, 1 − δ] and r ≤ r0 =⇒ r f ′(r) > ε, (67)

f(r) ∈ [−1 + δ,−δ] and r ≤ r0 =⇒ r f ′(r) < −ε.
We reason by contradiction in favor of (67) and assume that there exists
a sequence {rn}n converging to zero such that

lim
n→∞

f(rn) ∈ (0, 1) and lim
n→∞

rn f
′(rn) ≤ 0. (68)

We may also assume that {m0,rn}n converges strongly to an m∞ ∈
B∞(0), which implies uniform convergence of {ψ0,rn}n to the corre-
sponding ψ∞. Hence we obtain

F(m∞) = lim
n→∞

f(rn)
(68)∈ (0, 1),

d

dr

∣∣∣∣
r=1

[F(m∞
0,r)
] (64,66)

= lim
n→∞

rn f
′(rn)

(68)

≤ 0.

This is a contradiction according to (65).

Fourth Step Ode argument.
Since

∫ r0

0
1
r
dr = ∞, (67) implies

lim inf
r↓0

f(r) < 1 − δ =⇒ lim sup
r↓0

f(r) ≤ δ. (69)

Indeed, it is obvious from (67) that

lim inf
r↓0

f(r) ≤ δ =⇒ lim sup
r↓0

f(r) ≤ δ (70)

lim inf
r↓0

f(r) ≤ 1 − δ =⇒ lim sup
r↓0

f(r) ≤ 1 − δ (71)

We conclude from (70) that for proving (69) it is sufficient to show

lim inf
r↓0

f(r) ≤ δ.

We argue by contradiction: if this is false then for some ρ1 we have
f(r) ∈ [δ,+∞[ for any r ∈]0, ρ1]. But, taking into account (71) and
the left–hand side of (69) we also conclude that there exists ρ2 such
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that f(r) ∈] − ∞, 1 − δ] for any r ∈]0, ρ2]. So if ρ = min{ρ1, ρ2} we
would have f(r) ∈ [δ, 1 − δ] for all r ∈]0, ρ] and therefore

+∞ > lim sup
t↓0

(f(ρ)−f(t)) ≥ lim sup
t↓0

∫ ρ

t

f ′(r)dr
(67)

≥ ε

∫ ρ

0

dr

r
= +∞,

which is a contradiction.
Since δ > 0 was arbitrary (69) yields

lim inf
r↓0

f(r) < 1 =⇒ lim sup
r↓0

f(r) ≤ 0.

By symmetry, we also have

lim sup
r↓0

f(r) > −1 =⇒ lim inf
r↓0

f(r) ≥ 0.

Hence in view of (63), we only have three cases:

lim
r↓0

f(r) = 0 or lim
r↓0

f(r) = 1 or lim
r↓0

f(r) = −1.

Hence F(B∞(0)) either is {0}, {1}, or {−1}. In view of the above
table, this implies the claim of the lemma.

Proof of Proposition 7.3 We recall that from Proposition 6.1
we know already

B∞(x) contains only constants, vortices and roofs (72)

B∞(x) contains at least one roof (73)

all roofs in B∞(x) have same triplet (ξ,m+, m−).

This last statement means that

- the direction of the set of discontinuity (which is a connected piece
of a line) is determined by a vector ξ not depending on m;

- on this set any m ∈ B∞(x) jumps between two given values m−

and m+ (and only one possibility is given, i.e. fixed ξ as in Re-
mark 5.2, m jumps from m− to m+ along ⊥ξ, while it cannot jump
from m+ to m−).

By a change of coordinates, we may without loosing our generality
assume x = 0 and ξ = (1, 0). Also, possibly passing to −m instead of
m, we may assume that

all roofs in B∞(x) are convex (74)

and, rescaling if necessary, that m is defined in all of B2(0).

First Step The functional I
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As in Proposition 7.2, ψ denotes the stream function of m: ⊥∇ψ =
m. Let v+, v− denote the vectors with ⊥v± = m±. Hence v± are the
singled–out values of ∇ψ in the line–roof case. We consider

F(m) :=

∫ 1

0

(ψ(s v+) + ψ(s v−) − 2ψ(0)) ds

and observe that

d

dr

∣∣∣∣
r=1

[F(m0,r)]

= ψ(v+) + ψ(v−) − 2ψ(0) − 2

∫ 1

0

(ψ(s v+) + ψ(s v−) − 2ψ(0)) ds

= ψ(v+) − ψ(0) − 2

∫ 1

0

(ψ(s v+) − ψ(0)) ds

+ ψ(v−) − ψ(0) − 2

∫ 1

0

(ψ(s v−) − ψ(0)) ds. (75)

Second Step How functional I acts on B∞(0)
Let m∞ ∈ B∞(0) be given. It follows immediately from |∇ψ|2 = 1

a. e. that

F(m∞) ∈ [−1, 1]. (76)

In view of (72) we have

F(m∞)

{ ≥
≤
}

0 =⇒ m∞
{

convex
concave

}
. (77)

The directions v+, v− are just chosen such that F(m∞) = 1 for roofs
m∞ whose singular set (ridge) contains 0. Of course F(m∞) = ±1 is
also true for a vortex m∞ with singular set (center) in 0. Hence in view
of (72) we have

0 ∈ singular set =⇒ F(m∞) ∈ {−1, 1}. (78)

The converse statement

F(m∞) ∈ {−1, 1} =⇒ 0 ∈ singular set (79)

is also true: since |∇ψ|2 = 1 a. e. , F(m∞) ∈ {−1, 1} implies that
ψ∞ is affine with slope one along the segments [0, 1] v+ and [0, 1] v−.
Assume that 0 	∈ singular set. Then ∇ψ∞(0) exists so that the above
translates into ∇ψ∞(0) · v+ = ∇ψ∞(0) · v− = 1. Since v+ 	= v−, this
yields |∇ψ∞(0)|2 > 1 — a contradiction. This establishes (79).

We now observe that there exists a c0 ∈ (0, 1) such that

ψ∞ linear =⇒ |F(m∞)| ≤ c0. (80)
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Indeed, if ψ∞ is linear, we have F(m∞) = 1
2
(v+ + v−) · ∇ψ∞(0) and

thus |F(m∞)| ≤ |1
2
(v++v−)| =: c0 because of |∇ψ∞(0)|2 = 1. Observe

that c0 < 1 because of v+ 	= v−. This establishes (80). Finally, we have
that

F(m∞) ∈ (c0, 1) =⇒ d

dr

∣∣∣∣
r=1

[F(m∞
0,r)
]
> 0, (81)

F(m∞) ∈ (−1,−c0) =⇒ d

dr

∣∣∣∣
r=1

[F(m∞
0,r)
]
< 0. (82)

Let us argue in favor of, say, (81). Since in particular F(m∞) ≥ 0
we have that ψ∞ is convex according to (77). Looking at (75), one
realizes that as in the proof of Proposition 7.2, the convexity implies
that d

dr

∣∣
r=1

[F(m∞
0,r)
] ≥ 0. It also shows that equality, which we shall

assume, can only occur if ψ∞ is affine along [0, 1] v+ and [0, 1] v−. Since
|F(m∞)| < 1, 0 is not in the singular set according to (78). Hence
∇ψ∞(0) exists and thus ψ∞ is affine on the union [0, 1] v+ ∪ [0, 1] v− of
the two segments. Since F(m∞) only depends on the restriction of ψ∞

onto [0, 1] v+∪ [0, 1] v−, we may apply (80), which yields |F(m∞)| ≤ c0
— the desired contradiction.

Third Step Conclusions from functional I
From (76,81,82), we obtain, by the same argument as in the proof of

Proposition 7.2, that

F(B∞(0)) = {1}, F(B∞(0)) = {−1} or F(B∞(0)) ⊂ [−c0, c0].

The second case, i. e. F(B∞(0)) = {−1}, is easily ruled out: according
to (77) this implies that for any m∞ ∈ B∞(0) ψ∞ is concave and
according to (79) it implies that 0 is in its singular set. In view of
(72,74) this means that any m∞ ∈ B∞(x) is a vortex, which contradicts
(73).

Also the third case, i. e. F(B∞(0)) ⊂ [−c0, c0], can be ruled out:
according to (73) there exists anm∞ ∈ B∞(0) with non–empty singular
set. Consider its rescaled versions and their “blow–down” m∞,−∞:

m∞
0,r

r↑∞−→ m∞,−∞.

A diagonal argument shows that also m∞,−∞ ∈ B∞(0). On the other
hand, 0 must be in the singular set of m∞,−∞ so that |F(m∞,−∞)| = 1
in view of (78) — which is in contradiction with F(B∞(0)) ⊂ [−c0, c0].
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Hence we must have F(B∞(0)) = {1} which in view of (79), (77)
and (74) translates into

B∞(0) contains only the centered counterclockwise vortex
or roofs whose singular set runs through 0.

(83)

Fourth Step The functional II
In order to further restrict B∞(0), we introduce

F(m) := 2

∫ 1

0

(ψ(s (1, 0)) − ψ(0)) ds

and notice that

d

dr

∣∣∣∣
r=1

[F(m0,r)]

= 2

(
ψ((1, 0)) − ψ(0) − 2

∫ 1

0

(ψ(s (1, 0)) − ψ(0)) ds

)
. (84)

Fifth Step How F acts on B∞(0).
Let m∞ ∈ B∞(0) be given. We now list the properties which imme-

diately follow from (83)

F(m∞) ∈ [0, 1], (85)

F(m∞) = 1 =⇒ m∞ is the centered counterclockwise vortex

or the centered left half–roof, (86)

F(m∞) = 0 =⇒ m∞ is the centered line–roof

or the centered right half–roof. (87)

We also have

F(m∞) ∈ (0, 1) =⇒ d

dr

∣∣∣∣
r=1

[F(m∞
0,r)
]
> 0. (88)

Indeed, consider (84): The convexity of ψ∞ (guaranteed by (83)), im-
plies as in Proposition 7.2 that d

dr

∣∣
r=1

[F(m∞
0,r)
] ≥ 0 with equality only

if ψ∞ is affine on the segment [0, 1] (1, 0). In view of (83), affinity would
imply ψ∞((1, 0)) − ψ∞(0) ∈ {0, 1} and therefore F(m∞) ∈ {0, 1} — a
contradiction.

Sixth Step Conclusions from functional II
Again, we apply the argument from Proposition 7.2 and obtain from

(85,88) that

F(B∞(0)) = {1} or F(B∞(0)) = {0}.
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In view of (86,87), this means

either B∞(0) ⊂ {centered c. c. vortex, centered left half–roof}
or B∞(0) ⊂ {centered line–roof, centered right half–roof}.

By symmetry, we also have

either B∞(0) ⊂ {centered c. c. vortex, centered right half–roof}
or B∞(0) ⊂ {centered line–roof, centered left half–roof}.
The combination of both yields that B∞(0) either consists of the

centered counterclockwise vortex, or the centered left half–roof, or the
centered line–roof, or the centered right half–roof. Since the first case
is not an option in view of (73), we obtain the claim of the proposition.

8. Rectifiability

In this section we will prove that the set J defined in Proposition 3.1
satisfies the requirements of Theorem 1.3. We recall that (9) has al-
ready been proved as point (d) of Proposition 3.1.

Proposition 8.1.

(a) J is rectifiable.
(b) For H1–a.e. x ∈ J there exist m+(x) and m−(x) such that

lim
r↓0

1

r2

{∫
B+

r (x)

|m(y) −m+(x)| dy

+

∫
B−

r (x)

|m(y) −m−(x)| dy
}

= 0. (89)

(c) For H1–a.e. x 	∈ J we have

lim
r↓0

1

r2

∫
Br(x)

|m(y) −mr|dy = 0. (90)

(d) If Φ is an entropy, then

µΦ J = [η · (Φ(m+) − Φ(m−))]H1 J.

Proof. First Step Proof of (a).
Let Φ be an entropy. Relation (21) and point (d) of Proposition 3.1

imply that there exists a Borel function gΦ such that µΦ = gΦH1 J+µ̃,
where µ̃(H) = 0 if H1(H) < ∞. Hence if we define ν := gΦH1 J we
have

µx,r
Φ − νx,r

r

∗
⇀ 0 for H1–a.e. x ∈ J . (91)
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Proposition 7.3 implies that

µx,r
Φ

r
∗
⇀ c(x)H1 l(x) for H1–a.e. x ∈ J , (92)

where c(x) is a real number and l(x) is either a line which contains the
origin or a half–line emanating from the origin.

Standard arguments imply that ‖ν‖ = |gΦ|H1 J and hence rea-
soning as in the Sixth Step of the proof of Lemma 3.1 we conclude
that

‖ν‖x,r − sign (gΦ(x))νx,r

r

∗
⇀ 0 (93)

in every x which is a Lebesgue point for gΦ with respect to H1 J .
Hence (92), (91) and (93) give

‖ν‖x,r

r
∗
⇀ |c(x)|H1 l(x) for ‖ν‖–a.e. x. (94)

Since ‖ν‖ is a nonnegative measure this implies that

lim inf
r→0

‖ν‖(Br(x))

r
= lim sup

r→0

‖ν‖(Br(x))

r
for ‖ν‖–a.e. x (95)

and that for ‖ν‖–a.e. x there exists a cone Cη(x) := {v : 2|v·η(x)| ≥ |v|}
such that

lim sup
r→0

‖ν‖((x+ Cη(x)) ∩Br(x))

r
= 0. (96)

Then it is a standard fact (see for example the Proof of Theorem 2.83
in [2]) that ‖ν‖ is rectifiable (actually ‖ν‖ = |gΦ|H1 J and (96) are
already sufficient for rectifiability: see Corollary 15.16 in [21]).

Hence we have that {gΦ 	= 0} ∩ J is a rectifiable set for any entropy
Φ. Now recall the set of entropies C introduced in 3.2. According to
(36) and (28) we have

J ⊂
⋃
Φ∈C

{
x : lim sup

r→0

‖µΦ‖(Br(x))

r
> 0

}
. (97)

Hence we conclude

H1

((⋃
Φ∈C

{gΦ 	= 0}
)

\ J
)

= 0,

which proves the rectifiability of J .

Second Step Proof of (b).
Proposition 7.3 implies that, for H1–a.e. x ∈ J , B∞(x) consists

either of a single line–roof or of a single half–line roof. But thanks to
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the rectifiability of J and to (97), for H1–a.e. x ∈ J we can find an
entropy Φ such that

µx,r
Φ

r
∗
⇀ gΦ(x)H1 d(x)

where gΦ(x) 	= 0 and d(x) is the tangent line to J in x. In such an
x, B∞(x) must then consist of a line–roof which jumps on d(x). This
easily gives (89).

Third Step Proof of (c).
We know from Proposition 7.2 that, for H1–a.e. x 	∈ J , either B∞(x)

consists of constants, or it consists of a single centered vortex. If B∞(x)
contains only constants then for every sequence rn ↓ 0 we can extract
a subsequence rh(n) such that

lim
n→∞

1

r2
h(n)

∫
Brh(n)

(x)

|m(y) −mrh(n)
|dy = 0.

Thus in this case x satisfies (90). We will complete the proof by showing
that

V := {x | B∞(x) consists of the centered counterclockwise vortex}
is countable (the same holds for the clockwise vortex). Let mx denote
the counterclockwise vortex centered at x and define

δ :=

∫
B1(x)∩B1(y)

|mx(z) −my(z)|dz for |x− y| = 1.

A scaling argument yields∫
Bρ(x)∩Bρ(y)

|mx(z) −my(z)|dz = δρ2 for |x− y| = ρ (98)

Hence the set

Vr :=

{
x :

∫
Bρ(x)

|m(z) −mx(z)|dz < δρ2

2
for every ρ ≤ r

}

is at most countable, because for x 	= y ∈ Vr we have |x−y| > r by (98)
and the triangle inequality. On the other hand we have by definition

V ⊂
∞⋃
i=1

V 1
i

so that also V is countable.

Fourth Step Proof of (d).
Let Φ be a given entropy. By (b) we know that, for H1–a.e. x ∈ J ,

B∞(x) consists of a line roof m∞
x , jumping between the two values
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m+(x) and m−(x) on the tangent line d(x) to J in x. Hence for these
x we have

mx,r → m∞
x strongly in Lp

loc for p <∞
and thus

µx,r
Φ

r
∗
⇀ [η(x) · (Φ(m+(x)) − Φ(m−(x))]H1 d(x), (99)

where η(x) is the unit normal to J in x such that (89) holds.
We recall again that thanks to relation (21) and point (d) of Propo-

sition 3.1 we have µΦ J = gΦ J + µ̃ where µ̃(H) = 0 if H1(H) <∞.
Hence we have

µx,r
Φ

r
∗
⇀ gΦ(x)H1 d(x) for H1–a.e. x ∈ J . (100)

Comparing (100) with (99) we conclude that gΦ(x) = η(x)·(Φ(m+(x))−
Φ(m−(x)) for H1–a.e. x ∈ J . This completes the proof.

9. Final Remarks

In this last section we show the fact which encouraged us to come
with the arguments used in Section 7 and we also explain why the
classification of Section 6 is still not sufficient for proving directly the
rectifiability of J .

Bernd Kirchheim pointed out to us that the following result holds:

Theorem 9.1. Let us suppose that ν = gH1 S for some S such that
H1(S) <∞ and moreover suppose that for ν–a.e. x the weak limits of
sequences of rescaled measures νx,rn/rn with rn ↓ 0 can only be

(a) a constant c(x) times the Hausdorff measure concentrated on a
line parallel to a fixed one (d(x));

(b) the zero measure.

Then S is rectifiable.

See [3] for a proof. The core of the argument is the fact that the
measure H1 restricted to a line l is a monotone measure, i.e. for every
x and every r < s

H1(l ∩ Br(x))

r
≤ H1(l ∩ Bs(x))

s
,

where the equality holds if and only if x ∈ l.
Using known results in Geometric Measure Theory one can extend

the previous theorem substituting (a) with
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(a’) a constant c > k(x) > 0 times the Hausdorff measure concentrated
on some line d, where both c and d may depend freely on the
chosen sequence {rn}, whereas k(x) does not depend on it.

Also, see again [3], one could allow for a third possibility for the limits
of rescaled measures, namely

(c) a constant c times the Hausdorff measure concentrated on some
half–line d (where, as in (a’), d is allowed to vary among all half–
lines and c is only subject to the constraint c > k(x) > 0).

Anyway it is not clear to us if the same could hold allowing the
rescaled measures to possibly converge also to segments. We are here
very near to a border–line between rectifiability and unrectifiability.
Indeed let us take the measure ν given by the restriction of H1 to the
graph of the function

f(x) :=
∞∑
i=1

2−n2

χAn(x),

being An the union of the closed segments
[(
k − 2−[log n]

)
2−n2

, k2−n2
]
,

where k ∈ {1, 2, . . . , 2n2} and [x] denotes the integer part of x. This
example is a slight modification of one shown by Dickinson in [12] and
it can be proved that

(i) ν is not rectifiable (i.e. the graph of f is an unrectifiable set);
(ii) for ν–a.e. x, if the measures νx,rn/rn converge then their weak

limit is given by H1 restricted to a subset of {(x, y), x ∈ R} for
some y ∈ R (where y depends on the sequence {rn});

(iii) the subsets which appear in (ii) consist all of at most two con-
nected components (more precisely they can be the full line, an
half–line, a segment, the full line minus a segment or the empty
set).

The proofs of these facts are just a routine modification of those present
in [12].
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