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Abstract

We introduce a measure “stochastic interaction” that captures spatial and
temporal signal properties in recurrent systems. The measure quantifies the
Kullback-Leibler divergence of a Markov chain from a product of split chains
for the single units. Maximization of stochastic interaction, also called “Tem-
poral Infomax”, is shown to induce almost deterministic dynamical systems
for unconstrained Markov chains. If part of the units are clamped to pre-
scribed stochastic processes providing external input, Temporal Infomax leads
to finite automata, either completely deterministic or at most weakly non-
deterministic. This way, computational capabilities may arise in neural sys-

tems.
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A fundamental question in computational neuroscience asks for the nature of codes em-
ployed by cortical neurons [1]. Information theory provides a framework to study neural
coding taking into account the stochasticity of neural spike trains as well as interactions or
correlations in the joint activities of populations of cells [2-4]. The concept of mutual infor-
mation has turned out a particularly useful guiding principle in these studies: According to
common theorizing about neural function it has been suggested that individual neurons try
to maximize the information they convey in their output spike trains about a given stimulus
ensemble at their input. For instance, Fairhall et al. [5] have recently shown that single
neurons adapt their firing statistics and range of operation to the mean and variance of
stimuli in such a way that the mutual information between input and output is maximized.

Linkser has further shown that information maximization in layered feedforward systems
leads to the development of spatial filters similar to receptive fields of neurons in primary
visual areas, and, in addition, to a self-organization of the network into layered maps with
smoothly varying filter properties inside each layer but increasingly complex filters in the
hierarchy of layers [6]. These computationally demonstrated phenomena closely reflect the
organization of the early visual system as known from neuroanatomy and -physiology [7].
Accordingly, Linsker’s principle links two previously unrelated areas of research: Information
theory and the primary processing of visual information in real brains.

Linkser’s Infomax principle is related to principle component analysis [8,9]. That is, the
spatial filter developed by a given neuron basically represents the eigenvector correspond-
ing to the largest eigenvalue of the covariance matrix of the neuron’s inputs. This again
maximizes the output variance and, thus, the mutual information between the probability
distributions of the spatial inputs and the neuron’s output. In feedforward systems higher
order correlations can further be represented in subsequent layers of the model. This way
cortical feature hierarchies may arise, eventually yielding distributed “object” representa-
tions in “cognitive” brain areas.

Neural systems, however, are in general reccurently connected and non-stationary, both

properties not reflected by the classical Infomax principle. In order to capture intrinsically



temporal aspects of dynamic interactions in recurrent networks the concept of information
maximization has been extended by Ay [10] to the dynamical setting of Markov processes,
where it is referred to as (stochastic) interaction. Linsker’s approach for stationary input-
output transformations can be shown to be a special case of this more general framework
[9]. In the present paper we consider the optimization of the spatio-temporal stochastic
interaction measure in Markov chains and demonstrate that this leads to globally almost
deterministic dynamical systems, where nonetheless every single unit generates virtually
random activity as characterized by a high entropy. Furthermore, we investigate Markov
chains, where a part of the system is clamped to prescribed stochastic processes. Surpris-
ingly, Markov processes that optimize stochastic interaction under such an input constraint
turn out to be almost deterministic finite automata, where the internal dynamics is driven
by the input through complex, globally almost deterministic state sequences. Therefore,
our approach relates spatio-temporal information maximization (“Temporal Infomax”) to
computing devices.

We consider a set V = {1,..., N} of binary units with state sets 2, = {0,1}, v € V.
For a subsystem A C V, Q4 := {0,1}# denotes the set of all configurations restricted to
A, and P(Q,) is the set of probability distributions on Q4. Given two subsets A and B,
B # 0, K(Qp|Q,) is the set of Markov kernels from Q4 to Qp. If A = B we also write
K(Qa) = K(Qa]Qa).

For a probability distribution p € P(Q,4) and a Markov kernel K € K (Qp|Q4) we define

a Markov transition as the pair (p, K') and the conditional entropy of (p, K) as

Hp K) = = ¥ plw) K&/ ) nK (W |w) (1)

H(p, K) is a natural extension of the Shannon-entropy to Markov transitions, since
—In K(w'|w) in (1) is the information content of an individual state transition supposed w
is known and K (w'|w)p(w) is the probability for that transition. Thus, H(p, K) measures
the average information generated by the Markov transition (p, K).

In correspondence with marginal probability distributions for stationary joint distribu-
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tions, we define marginal kernels of K for all w,,w! € €, by

5 ey plo) K(o'|o)

K, (W, |w,) = vy, Ty ) 2
(wy [wy) P (2)

Oy =Wy

Equation (2) projects the full kernel K (o’ |o) defined on the whole state space to a kernel
K, (W), |wy,) for only unit v. In (2), p,(w,) = Z;Ve:nx/ p(o) are the marginal probabilities for
unit v, such that the pairs (p,, K,), v = 1,---, N are the marginal Markov transitions of
the transition (p, K).

The conditional entropy in (1) enables the definition of a divergence or distance of a given
transition from its product of marginal transitions: This (stochastic) interaction measure of
K with respect to p is defined as

I(p,K) == > H(py K,) — H(p,K) . (3)

veV

Equation (3) has the form of a Kullback-Leibler divergence and generalizes the usual mutual
information to Markov transitions. It measures how much (p, K') deviates from N indepen-
dent transitions, or, in other words, how strong the units in (p, K') “interact” stochastically.
For N binary units I(p, K) < N In2, because H (p, K) is zero for deterministic systems, and
the maximum entropy of a single unit with |€2,| = 2 states is In|€2,| = In 2.

Now, assume that the set of units V' is separated into a subset 0 C V' of “peripheral” or
“Input” units and “internal” units, V' \ 0. The dynamics on J is given by a fixed Markov

transition (p?, K?) independent of the internal units. Then, the Markov kernel K reads
KW |w)=K(2d|za) = K'(z'| 2,a)K°(d | a) , (4)

where w,w’ € Qy, w = (2,a), W' = (¢,d), a, d’ € Qy, and 2z, 2’ € Qy\y. In this setting,
(p?, K?) represents some stochastic spatio-temporal process in the “outer world” and in
generalization of the classical Infomax principle our aim is to optimize the internal dynamics
of the system (given by K’ in (4)) such that the stochastic interaction measure, I(p, K), is
maximized.

For K as in (4) it is straightforward to show that the conditional entropy satisfies
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H(p,K)=H(p,K")+ H(p’, K’) . (5)

Thus, the total kernel entropy can be written as a sum of the entropy of the periphery and

that of the internal transition (p, K'). With (5) I(p, K) in (3) becomes

S Hy(py, K) — H(p, K') + 1(p°, K°). (6)
veV\o

Eqn. (6) reveals, that also the interaction I(p, K) can be written as a sum of terms for
the periphery and the internal Markov transition (p, K’). Because I(p?, K?) is constant
during optimization, maximizing [(p, K) is therefore equivalent to the maximization of

Svevvo Hu(py, K,) — H(p, K'). First, consider H(p, K'):

H(p, K" = szaK'(’|z a)ln K'(2' | z,a) (7)

z,a

— Z p(z,q) <_ Z K'(Z|za)nK'(2 | 2, a>> . (8)

=H(K'(-| 2,a)

The underbraced term in (8) is obviously the Shannon-entropy generated by the inter-
nal state transitions induced by K’ restricted to the fixed source state (z,a). Clearly, if
K'(-]z,a) is deterministic, i.e., if it is 1 for only a single target state 2, the Shannon-entropy
H(K'(-|z,a)) vanishes. Thus, if all K'(-]z,a), 2z € Qy\s, a € Qy are deterministic, the to-
tal entropy H(p, K’) obtains its absolute minimum of 0. Maximizing — H (p, K'), therefore,
favours determinism in global state transitions. However, observe that maximizing I(p, K')
requires in addition that the marginal entropies H,(p,, K, ), v € V\0 are as large as possible,
that is, the local single unit activities must be as unpredictable as possible. This prohibits
“degenerate” chains where, e.g., some units are constant or otherwise input-independent.

The subsequent simulations show that both seemingly contradicting constraints can be
satisfied either perfectly or at least in good approximation. They implement the usual
Markov dynamics on a set of N binary units to generate sample trajectories and a random
search scheme to optimize I (p, K') of Markov chains with kernels

K(,d' |z,a) = [H KW V|za)]K8(a'|a). (9)

vevV\o



Details of the simulations will be presented elsewhere. In contrast to (4) the kernel K’ in
square brackets in (9) is of product form reflecting the independent output generation of
cells given their inputs in neural modeling. A “parallel kernel” K’ as in (9) is deterministic,
if all its entries are either 0 or 1. Beside that, results for parallel and general kernels are
identical.

Figure 1 displays an optimized system with N = 3 units and no units clamped, i.e.,
0 = . Figure 1A shows the optimized Markov matrix K(w'|w). Most columns reveal
only a single possible transition indicating determinism. However, there are two exceptions,
states w = 111 and 010. State 111 is a transient state: It has outgoing transitions to some
(here, all) other states, but none of the other states projects back to it. Therefore, once left,
state 111 is never occupied again. State 010 is what we call a branching state. As Fig. 1C
shows, which just redisplays the matrix in A as a state transition graph, state 010 is part
of two nested loops of states with deterministic transitions between nodes. Only state 010
has two outgoing — and therefore non-deterministic — transitions. As a consequence, activity
flows deterministically along consecutive states of the individual loops, but at state 010 it
can switch randomly between two possible targets leading back to one or the other determin-
istic sequence of states. Therefore, sample trajectories of the dynamics are characterized
by randomly interleaved sequences of repetetive deterministic firing patterns as shown in
Fig. 1B. Individual units, however, reveal largely unpredictable firing.

The example in Fig. 1 is also characteristic for larger systems. Whereas in generic Markov
chains transitions between arbitrary states are possible, the dynamics of strongly interacting
chains is confined to a core of nested deterministic subsequences of states linked by branching
nodes, and augmented by a set of transient states. Accordingly, strongly interacting isolated
Markov chains are globally almost deterministic but locally unpredictable.

Figure 2 shows an example system comprising N = 4 units, but two units clamped to
a Markov chain with equal transition probabilities between peripheral states. Figure 2A
displays the respective peripheral kernel K9 and Fig. 2B the optimized full kernel.

The most prominent difference between the kernels in Fig. 2B and Fig. 1A is that the
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columns in Fig. 2B do not reveal just one, but four entries. These entries are grouped
into blocks, as indicated in the figure, and all transitions for one global state (z, a) target in
exactly one of the blocks. Moreover, the blocks are uniquely characterized by internal states,
z, 2/, whereas the peripheral states a, a’ only indicate the precise location inside each block.
Thus, given an internal state z and a peripheral state a, the next internal target state 2’ is
uniquely defined, that is, K’(z'|z,a) is deterministic. Nonetheless, because the dynamics
on the periphery is random, sample trajectories again do not reveal much determinism.

Computer science [11] defines deterministic finite automata (DFAs) as a quintuple M =
(Z,%,0, 20, F), where Z = {z1,---,2,} is a finite set of states and ¥ = {aq,---,a,,} a finite
alphabet. The designated state 2y € Z is called the initial state and ¥ C Z the set of final or
accepting states. Operation of the automaton is defined by the transition tabled : Zx¥ — Z
which maps every pair (z,a) € Z x ¥ to exactly one successor state.

Now, observe that as in a finite automaton, the strongly interacting Markov chain in
Fig. 2 provides a total mapping from g X {2y to {2y 5. We may, thus, identify the internal
state space {0y with the state set Z of a DFA, and the peripheral states {25 with the set
of symbols 3. Then the Markov kernel K'(z2'|z, a) reflects exactly the transition table of a
DFA, and can be represented by a labeled state transition graph, see Fig. 3. (For a complete
correspondence we also have to designate an initial state, zy, and accepting states, F, in
our Markov models, but these issues are of secondary importance for the present paper —
cf., e.g., [12] for related work).

The example in Fig. 2 again is also typical for larger systems and arbitrary Markov
chains on the periphery. However, the optimized internal dynamics must not always be
perfectly deterministic, but as for K in Fig. 1 some columns K'(-|z,a) in optimized con-
strained chains may occasionally contain more than one positive entry. In that case given
an internal state and input two or several internal target states are possible, a situation
corresponding with nondeterministic finite automata in computer science [11]. In fact, it
can be proven mathematically that the number of outgoing edges of any node in the er-

godic (i.e., non-transient) component of the dynamics is linearly bounded in system size
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N. Since 2V transitions are possible, maximization of stochastic interaction in constrained
Markov chains therefore leads to systems characterized by deterministic or at most weakly
nondeterministic, input-driven, internal state transitions. The development of the internal
structure is controled by minimization of H(p, K') which favours global determinism, and
maximization of the single unit entropies H,, which enforces an “unfolding” of nested loop
attractors in avoidance of degenerate (e.g., constant) Markov chains.

We should finally emphasize that we cannot touch on semantic issues in the present
work, that is, whether and how the finite automata resulting from our Temporal Infomax
principle might be related to “cognitive processes” (e.g., [12]). We rather discussed them
merely as intrinsic dynamic modes of activity. With that respect it seems interesting that
physiological experiments in higher brain areas indeed give evidence for behavior-related,
repetetive, deterministic firing patterns in neural populations [13] accompanied by complex
spatio-temporal correlations [14]. Moreover, in behaviorally relevant cortical areas it has
been observed that neural activity flips between quasi-stationary states [15], a phenomenon
well describable by Markov models [16]. Thus, just as classical Infomax explains properties
of sensory systems, it seems possible that Temporal Infomax structures recurrent networks

in higher cortical processing stages.
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FIG. 1. Example for unconstrained optimization using 3 units. A) Optimized Markov matrix
(dot-size indicates transition probability); B) sample trajectory (dots correspond with an output
of 1); C) transition graph representing the matrix in A (node labels denote states, edge labels

transition probabilities). State 111 is ‘transient’ and 010 a ‘branching state’.
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FIG. 2. A strongly interacting Markov chain with N = 4 units, |0| = 2 of which clamped to a

peripheral chain with equal transition probabilities (.25) between peripheral states a, a’. A: the

peripheral kernel K?(a’ | a); B) full Markov kernel K (' |w) = K(2/,d’ | z,a); C) sample trajectory.
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FIG. 3. Deterministic finite automaton corresponding with Fig. 2. Nodes are labeled by internal

states z € {ly\ 5 and edges by peripheral states a € Q5.
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