Max-Planck-Institut
für Mathematik
in den Naturwissenschaften
Leipzig

The eta invariant and the real
connective K-theory of the classifying
space for quaternion groups

by

Egidio Barrera-Yanez and Peter B. Gilkey

Preprint no.: 83 2002
THE ETA INVARIANT AND THE REAL CONNECTIVE
K-THEORY OF THE CLASSIFYING SPACE FOR QUATERNION
GROUPS

EGIDIO BARRERA-YANEZ AND PETER B. GILKEY

Abstract. We express the real connective K theory groups $\tilde{k}o_{4k-1}(BQ)$ of the quaternion group Q_ℓ of order $\ell = 2^j \geq 8$ in terms of the representation theory of Q_ℓ by showing $\tilde{k}o_{4k-1}(BQ)$ = $KSp(S^{4k+3}/\tau Q)$ where τ is any fixed point free representation of Q_ℓ in $U(2k+2)$.

Subject Classification: 58G25.

1. Introduction

A compact Riemannian manifold (M,g) is said to be a spherical space form if (M,g) has constant sectional curvature $+1$. A finite group G is said to be a spherical space form group if there exists a representation $\tau : G \rightarrow U(k)$ for $k \geq 2$ which is fixed point free - i.e. $\det(I - \tau(\xi)) \neq 0 \forall \xi \in G - \{1\}$. Let $M^{2k-1}(G,\tau) := S^{2k-1}/\tau(G)$ be the associated spherical space form; G is then the fundamental group of the manifold $M^{2k-1}(G,\tau)$. Every odd dimensional spherical space form arises in this manner; the only even dimensional spherical space forms are the sphere S^{2k} and real projective space RP^{2k}. The spherical space form groups all have periodic cohomology; conversely, any group with periodic cohomology acts without fixed points on some sphere, although not necessarily orthogonally. We refer to [18] for further details concerning spherical space form groups.

Any cyclic group is a spherical space form group since the group of ℓth roots of unity acts without fixed points by complex multiplication on the unit sphere S^{2k-1} in \mathbb{C}^k. Let $H = \text{span}_\mathbb{R}\{1, I, J, K\}$ be the quaternions, let $\ell = 2^j \geq 8$, and let $\xi := e^{4\pi I/\ell} \in H$ be a primitive $(\frac{\ell}{2})$th root of unity. The quaternion group Q_ℓ is the subgroup of H of order ℓ generated by ξ and J:

$$Q_\ell := \{1, \xi, ..., \xi^{\ell/2-1}, J, \xi J, ..., \xi^{\ell/2-1} J\}.$$ \hspace{1cm} (1.1)

Let BG be the classifying space of a finite group and let $ko_*(BG)$ be the associated real connective K theory groups; we refer to [2, 3, 7, 9, 14] for a further discussion of connective K theory and related matters.

The p Sylow subgroup of a spherical space form group G is cyclic if p is odd and either cyclic or a quaternion group Q_ℓ for $\ell = 2^j \geq 8$ if $p = 2$. This focuses attention on these two groups. We showed previously in [4] that:

Theorem 1.1. Let Z_ℓ be the cyclic group of order $\ell = 2^j > 1$. Let $k \geq 1$. Let $\tau : Z \rightarrow U(2k+2)$ be a fixed point free representation. Then

$$\tilde{k}o_{4k-1}(BZ_\ell) = KSp(M^{4k+3}(Z_\ell, \tau)).$$

In this paper, we generalize Theorem 1.1 to the quaternion group:

Key words and phrases. quaternion spherical space form, eta invariant, symplectic K theory, real connective K theory.
Theorem 1.2. Let Q_ℓ be the quaternion group of order $\ell = 2^j \geq 3$. Let $k \geq 1$. Let $\tau : Q_\ell \rightarrow U(2k+2)$ be a fixed point free representation. Then
\[\tilde{\text{ko}}_{4k-1}(BQ_\ell) = \tilde{K}Sp(M^{4k+3}(Q_\ell, \tau)). \]

The quaternion (symplectic) K theory groups $\tilde{K}Sp(M^{4k+3}(Q_\ell, \tau))$ are expressible in terms of the representation theory - see Theorem 4.1. Thus Theorem 1.2 expresses $\tilde{\text{ko}}_{4k-1}(BQ_\ell)$ in terms of representation theory. If $\ell = 8$, then these groups were determined previously [3, 5].

Here is a brief outline to this paper. In Section 2, we review some facts concerning the representation theory of Q_ℓ which we shall need. In Section 3, we review some results concerning the eta invariant. In Section 4, we use the eta invariant to study $\tilde{K}Sp(M^{4k+3}(Q_\ell, \tau))$. In Section 5, we use the eta invariant to study $\tilde{\text{ko}}(BQ_\ell)$ and complete the proof of Theorem 1.2.

The proof of Theorem 1.2 is quite a bit different from the proof of Theorem 1.1 given previously; the extension is not straightforward. This arises from the fact that unlike the classifying space BZ_ℓ, the 2 localization of BQ_ℓ is not irreducible. Let $SL_2(\mathbb{F}_q)$ be the group of 2×2 matrices of determinant 1 over the field \mathbb{F}_q with q elements where q is odd. Then the 2-Sylow subgroup of $SL_2(\mathbb{F}_q)$ is Q_ℓ for $\ell = 2^j$ where j is the power of 2 dividing $q^2 - 1$. There is a stable 2-local splitting of the classifying space BQ_ℓ in the form
\[BQ_\ell = BSL_2(\mathbb{F}_q) \vee \Sigma^{-1} BS^3/BN \vee \Sigma^{-1} BS^3/BN \]
where N is the normalizer of a maximal torus in S^3 [16, 15]. It is necessary to find a corresponding splitting of $\tilde{K}Sp(M^{4k+3}(Q_\ell, \tau))$ that mirrors this decomposition; see Remark 5.2.

2. The Representation Theory of Q_ℓ

We say that $f : Q_\ell \rightarrow C$ is a class function if $f(xgx^{-1}) = f(g)$ for all $x, g \in Q_\ell$; let $\text{Class}(Q_\ell)$ be the Hilbert space of all class functions with the L^2 inner product
\[\langle f_1, f_2 \rangle = \ell^{-1} \sum_{g \in Q_\ell} f_1(g) \overline{f_2}(g). \]
Let $\text{Irr}(Q_\ell)$ be a set of representatives for the equivalence classes of irreducible unitary representations of Q_ℓ. The orthogonality relations show that $\{\text{Tr}(\sigma)\}_{\sigma \in \text{Irr}(Q_\ell)}$ is an orthonormal basis for $\text{Class}(Q_\ell)$, i.e. we may expand any class function:
\[f = \sum_{\sigma \in \text{Irr}(Q_\ell)} \langle f, \text{Tr}(\sigma) \rangle \text{Tr}(\sigma). \]

The unitary group representation ring $RU(Q_\ell)$ and the augmentation ideal $RU_0(Q_\ell)$ are defined by:
\[RU(Q_\ell) = \text{Span}_\mathbb{Z}\{\sigma\}_{\sigma \in \text{Irr}(Q_\ell)}, \quad \text{and} \]
\[RU_0(Q_\ell) = \{\sigma \in RU(Q_\ell) : \text{dim} \sigma = 0\}. \]
We shall identify a representation with the class function defined by its trace henceforth; a class function f has the form $f = \text{Tr}(\tau)$ for some $\tau \in RU(Q_\ell)$ if and only if $\langle f, \sigma \rangle \in \mathbb{Z}$ for all $\sigma \in \text{Irr}(Q_\ell)$.

Let $RSp(Q_\ell)$ and $RO(Q_\ell)$ be the \mathbb{Z} vector spaces generated by equivalence classes of irreducible quaternion and real representations, respectively. Forgetting the symplectic structure and complexification of a real structure define natural inclusions $RSp(Q_\ell) \subset RU(Q_\ell)$ and $RO(Q_\ell) \subset RU(Q_\ell)$. We have:
\[RO(Q_\ell) \cdot RO(Q_\ell) \subset RO(Q_\ell), \]
\[RSp(Q_\ell) \cdot RSp(Q_\ell) \subset RO(Q_\ell), \]
\[RO(Q_\ell) \cdot RSp(Q_\ell) \subset RSp(Q_\ell). \]
The $\frac{\ell}{4} + 3$ conjugacy classes of Q_ℓ have representatives:

$$\{1, \xi, \ldots, \xi^{\ell/4} = -1, \ J, \ \xi J\}.$$

There are $\frac{\ell}{4} + 3$ irreducible inequivalent complex representations of Q_ℓ. Four of these representations are the 1 dimensional representations defined by:

$$\rho_0(\xi) = 1, \ \kappa_1(\xi) = -1, \ \kappa_2(\xi) = 1, \ \kappa_3(\xi) = -1,$$

$$\rho_0(J) = 1, \ \kappa_1(J) = 1, \ \kappa_2(J) = -1, \ \kappa_3(J) = -1.$$

We define representations $\gamma_u : Q_\ell \to U(2)$ by setting:

$$\gamma_u(\xi) = \begin{pmatrix} \xi^u & 0 \\ 0 & \xi^{-u} \end{pmatrix}, \ \gamma_u(J) = \begin{pmatrix} 1 & (-1)^u \\ 0 & 1 \end{pmatrix}.$$

The representations γ_u, γ_{-u}, and $\gamma_u + \xi^u$ are all equivalent. The representations γ_u are irreducible and inequivalent for $1 \leq u \leq \frac{\ell}{4} - 1$; γ_0 is equivalent to $\rho_0 + \kappa_2$ and γ_4 is equivalent to $\kappa_1 + \kappa_3$. We have:

$$\text{Irr} (Q_\ell) = \{\rho_0, \kappa_1, \kappa_2, \kappa_3, \gamma_1, \ldots, \gamma_{\frac{\ell}{4} - 1}\}.$$

If $\bar{s} = (s_1, \ldots, s_k)$ is a k tuple of odd integers, then

$$\gamma_{\bar{s}} := \gamma_{s_1} \oplus \ldots \oplus \gamma_{s_k}$$

is a fixed point free representation from Q_ℓ to $U(2k)$; conversely, every fixed point free representation of Q_ℓ is conjugate to such a representation. The associated spherical space forms are the quaternion spherical space forms.

The representations $\{\rho_0, \kappa_1, \kappa_2, \kappa_3\}$ are real, the representations γ_{2i} are real, and the representations γ_{2i+1} are quaternion. We have:

$$\text{RO}(Q_\ell) = \text{span}_\mathbb{Z}\{\rho_0, \kappa_1, \kappa_2, \kappa_3, 2\gamma_{1}, \ gamma_{2}, \ldots, 2\gamma_{\ell/4 - 1}\},$$

$$\text{RSp}(Q_\ell) = \text{span}_\mathbb{Z}\{2\rho_0, 2\kappa_1, 2\kappa_2, 2\kappa_3, \ gamma_{1}, 2\gamma_{2}, \ldots, \gamma_{\ell/4 - 1}\}.$$

We define:

$$\Theta_1(g) := \begin{cases} \frac{\xi}{4} & \text{if } g = \pm I, \\ -2 & \text{if } g = \xi^{2i} J, \\ 0 & \text{otherwise}, \end{cases}$$

(2.2)

$$\Theta_2(g) := \begin{cases} \frac{\xi}{4} & \text{if } g = \pm I, \\ -2 & \text{if } g = \xi^{2i+1} J, \\ 0 & \text{otherwise}. \end{cases}$$

The two class functions Θ_i will be used to mirror in $RU(Q_\ell)$ the splitting of BQ_ℓ given in equation (1.2).

We identify virtual representations with the class functions they define henceforth. Let

$$\Delta := 2\rho_0 - \gamma_1; \ \ \text{Tr} (\Delta) = \det(I - \gamma_1).$$

Lemma 2.1.

(1) We have $\Theta_1 \in \text{RO}_0(Q_\ell)$ and $\Theta_2 \in \text{RO}_0(Q_\ell)$.

(2) Let $c_i := \ell^{-1} \sum_{g \in Q_\ell} \Delta(g)^i$. We have $c_0 = \frac{\ell - 1}{4}$. If $i > 0$, then $c_{2i} \in \mathbb{Z}$ and $c_{2i - 1} \in 2\mathbb{Z}$.

Proof: We use equation (2.2) to compute:

for any ℓ (i) $\langle \Theta_1, \rho_0 \rangle = 0$, (ii) $\langle \Theta_1, \gamma_{2i+1} \rangle = 0$, (iii) $\langle \Theta_1, \gamma_{2i} \rangle = (-1)^i$,

for $\ell = 8$ (i) $\langle \Theta_1, \kappa_1 \rangle = -1$, (ii) $\langle \Theta_1, \kappa_2 \rangle = 1$, (iii) $\langle \Theta_1, \kappa_3 \rangle = 0$,

for $\ell > 8$ (i) $\langle \Theta_1, \kappa_1 \rangle = 0$, (ii) $\langle \Theta_1, \kappa_2 \rangle = 1$, (iii) $\langle \Theta_1, \kappa_3 \rangle = 1$,

$$\langle \Theta_2, \kappa_1 \rangle = 1, \ \langle \Theta_2, \kappa_2 \rangle = 1, \ \langle \Theta_2, \kappa_3 \rangle = 0.$$
Lemma 3.2.

Let Θ be a measure of the spectral asymmetry of M. We use equation (2.1) to complete the proof of assertion (1):

\[
\Theta_1 = \begin{cases}
\operatorname{Tr} \{s_2 - s_1\} & \text{if } \ell = 8, \\
\operatorname{Tr} \{s_2 + s_3 + \sum_{1 \leq i < \ell / 8} (-1)^i \gamma_{2i}\} & \text{if } \ell \geq 16,
\end{cases}
\]

\[
\Theta_2 = \begin{cases}
\operatorname{Tr} \{s_2 - s_3\} & \text{if } \ell = 8, \\
\operatorname{Tr} \{s_2 + s_1 + \sum_{1 \leq i < \ell / 8} (-1)^i \gamma_{2i}\} & \text{if } \ell \geq 16.
\end{cases}
\]

The first identity of assertion (2) is immediate. Let $r > 0$. As $\operatorname{Tr} (\Delta^r)(1) = 0$,

\[
c_r = \ell^{-1} \sum_{g \in Q_L} \operatorname{Tr} (\Delta^r)(g) = (\Delta^r, \rho_0) \in \mathbb{Z}.
\]

If r is odd, then γ^r_1 is quaternion so $\langle \gamma^r_1, \rho_0 \rangle \in 2\mathbb{Z}$. Since $\Delta^r \equiv \gamma^r_1 \mod 2RU(Q_L)$, $\langle \Delta^r, \rho_0 \rangle \in 2\mathbb{Z}$ if r is odd. \qed

3. The eta invariant, K theory, and bordism

Let V be a smooth complex vector bundle over a compact Riemannian manifold M. Let V be equipped with a unitary (Hermitian) inner product. Let

\[
P : C^\infty (V) \rightarrow C^\infty (V)
\]

be a self-adjoint elliptic first order partial differential operator. Let $\{\lambda_i\}$ denote the eigenvalues of P repeated according to multiplicity. Let

\[
\eta(s, P) := \sum_i \operatorname{sign}(\lambda_i) |\lambda_i|^{-s}.
\]

The series defining η converges absolutely for $\Re(s) > 0$ to define a holomorphic function of s. This function has a meromorphic extension to the entire complex plane with isolated simple poles. The value $s = 0$ is regular and one defines

\[
\eta(P) := \frac{i}{2} (\eta(s, P) + \dim(\ker P))|_{s=0}
\]

as a measure of the spectral asymmetry of P; we refer to [11] for further details concerning this invariant which was first introduced by [1] and which plays an important role in the index theorem for manifolds with boundary.

We say that P is quaternion if V has a quaternion structure and if the action of P commutes with this structure. We say that P is real if V is the complexification of an underlying real vector bundle and if P is the complexification of an underlying real operator.

Lemma 3.1. Let M be a spin manifold of dimension m.

1. If $m \equiv 3, 4 \mod 8$, then the Dirac operator is quaternion.
2. If $m \equiv 7, 8 \mod 8$, then the Dirac operator is real.

Proof: Let $\text{Clif} (m)$ be the real Clifford algebra on \mathbb{R}^m. We have:

\[
\text{Clif} (3) = \mathbb{H} \oplus \mathbb{H},
\]

\[
\text{Clif} (4) = M_2(\mathbb{H}),
\]

\[
\text{Clif} (7) = M_8(\mathbb{R}) \oplus M_8(\mathbb{R}),
\]

\[
\text{Clif} (8) = M_{16}(\mathbb{R}), \quad \text{and}
\]

\[
\text{Clif} (m + 8) = \text{Clif} (m) \otimes_{\mathbb{R}} M_{16}(\mathbb{R}).
\]

Therefore, the fundamental spinor representation of $\text{Clif} (m)$ is quaternion if we have $m \equiv 3, 4 \mod 8$ and real if we have $m \equiv 7, 8 \mod 8$. The Lemma now follows. \qed

The following deformation result will be crucial to our investigations:

Lemma 3.2. Let P_u be a smooth 1 parameter family of self-adjoint first order elliptic partial differential operators on a compact manifold M.

1. The reduction mod \mathbb{Z} of $\eta(P_u)$ is a smooth \mathbb{R}/\mathbb{Z} valued function.
2. The variation $\partial_u \eta(P_u)$ is locally computable.
3. If the operators P_u are quaternion, then the reduction mod $2\mathbb{Z}$ of $\eta(P_u)$ is a smooth $\mathbb{R}/2\mathbb{Z}$ valued function.
Theorem 3.4. Let P be an elliptic self-adjoint first order partial differential operator. Let $\sigma \in RU_0(\pi_1(M))$.

This invariant is a homotopy invariant.

Lemma 3.3. Let P_u be a smooth 1 parameter family of elliptic first order self-adjoint partial differential operators over M.

1. If $\sigma \in RU_0(\pi_1(M))$, then the mod \mathbb{Z} reduction of $\eta^\sigma(P_u)$ is independent of the parameter u.

2. If all the operators P_u are quaternion and $\sigma \in RO_0(\pi_1(M))$ or if all the operators P_u are real and $\sigma \in RSp_0(\pi_1(M))$, then the mod $2\mathbb{Z}$ reduction of $\eta^\sigma(P_u, \sigma)$ is independent of the parameter u.

Proof: If σ is a representation of $\pi_1(M)$, then the mod \mathbb{Z} reduction of $\eta^\sigma(P_u)$ is smooth a smooth function of u by Lemma 3.2. Since P_u^σ is locally isomorphic to $\dim \sigma$ copies of P_u and since the variation is locally computable,

$$\partial_u \eta^\sigma(P_u) = \dim \sigma \cdot \partial_u \eta(P_u).$$

This formula continues to hold for virtual representations. In particular, if we have that $\sigma \in RU_0(\pi_1(M))$, then $\dim \sigma = 0$ so $\partial_u \eta^\sigma(P_u) = 0$; (1) follows.

If P_u is quaternion and σ is real or if P_u is real and if σ is quaternion, then P_u^σ is quaternion and $\eta^\sigma(P_u)$ is a smooth $\mathbb{R}/2\mathbb{Z}$ valued function of u. The same argument shows that $\partial_u \eta^\sigma(P_u) = 0$. □

We can use the eta invariant to construct invariants of K theory. Let $P : C^{\infty}(V) \to C^{\infty}(V)$ be a first order self-adjoint elliptic partial differential operator with leading symbol p. Let W be a unitary vector bundle over M. We use a partition of unity to construct a self-adjoint elliptic first order operator P^W on $C^{\infty}(V \otimes W)$ with leading symbol $p \otimes \text{id}$; this operator is not, of course, canonically defined.

We can extend the invariant η^σ to the the reduced unitary unitary and quaternion (symplectic) K theory groups $\tilde{K}U$ and $\tilde{K}Sp$.

Theorem 3.4. Let P be an elliptic self-adjoint first order partial differential operator. Let $\sigma \in RU_0(\pi_1(M))$.

Proof: We sketch the proof briefly and refer to [11] Theorem 1.13.2 for further details. Since $\text{sign}(u)$ has an integer jump when $u = 0$, $\eta(P_u)$ can have integer valued jumps at values of u where $\dim(\ker(P_u)) > 0$. However, in \mathbb{R}/\mathbb{Z}, the jump disappears so the mod \mathbb{Z} reduction of $\eta(P_u)$ is a smooth \mathbb{R}/\mathbb{Z} valued function of u; one uses the pseudo-differential calculus to construct an approximate resolvent and to show that the variation $\partial_u \eta(P_u)$ is locally computable. Assertions (1) and (2) then follow. If P_u is quaternion, then the eigenvalues of P_u inherit quaternion structures. Thus $\dim(\ker(P_u))$ is even so $\eta(P_u)$ has twice integer jumps as eigenvalues cross the origin. Consequently the reduction mod $2\mathbb{Z}$ of $\eta(P_u)$ is smooth and assertion (3) follows. □

Let \tilde{M} be the universal cover of a connected manifold M and let σ be a representation of $\pi_1(M)$ in $U(k)$. The associated vector bundle is defined by:

$$V^{\sigma} : = \tilde{M} \times \mathbb{C}^k / \sim$$

where we identify

$$(\tilde{x}, z) \sim (g \cdot \tilde{x}, \sigma(g) \cdot z)$$

for $g \in \pi_1(M)$, $\tilde{x} \in \tilde{M}$, and $z \in \mathbb{C}^k$.

The trivial connection on $\tilde{M} \times \mathbb{C}^k$ descends to define a flat connection on V^{σ}. The transition functions of V^{σ} are locally constant; they are given by the representation σ. Thus the bundle V^{σ} is said to be locally flat. Let $P : C^{\infty}(V) \to C^{\infty}(V)$ be a self-adjoint elliptic first order operator on M;

$$P^{\sigma} : C^{\infty}(V \otimes V^{\sigma}) \to C^{\infty}(V \otimes V^{\sigma})$$

is a well defined operator which is locally isomorphic to k copies of P. Define $\eta^\sigma(P) : = \eta(P^{\sigma})$; we extend by linearity to $\sigma \in RU(\pi_1(M))$.

This invariant is a homotopy invariant.
(1) The map $W \to \eta^\sigma(p^W)$ extends to a map $\eta^\sigma_p : KU(M) \to \mathbb{R}/\mathbb{Z}$.

(2) Suppose that P and σ are both real or that P and σ are both quaternion. The map $W \to \eta^\sigma(p^W)$ extends to a map

$$\eta^\sigma_p : KSp(M) \to \mathbb{R}/2\mathbb{Z}.$$

Proof: Let p^W and \tilde{p}^W be two first order self-adjoint partial differential operators on $C^\infty(V \otimes W)$ with leading symbol $p \oplus \text{id}$. Set:

$$P_u := uP^W + (1 - u)\tilde{p}^W.$$

This is a smooth 1 parameter family of first order self-adjoint partial differential operators. As the leading symbol of P_u is $p \oplus \text{id}$, the operators P_u are elliptic. By Lemma 3.3, $\eta^\sigma(p_u) \in \mathbb{R}/\mathbb{Z}$ is independent of u. Consequently $\eta^\sigma_p(W) := \eta^\sigma(P^W) \in \mathbb{R}/\mathbb{Z}$ only depends on the isomorphism class of the bundle W. As the eta invariant is additive with respect to direct sums, we may extend η^σ_p to $KU(M)$ as an \mathbb{R}/\mathbb{Z} valued invariant. Let W be quaternion. By Lemma 3.3, $\eta^\sigma(P_u) \in \mathbb{R}/2\mathbb{Z}$ is independent of u if both P and σ are real or if both P and σ are quaternion and thus η^σ extends to KSp as an $\mathbb{R}/2\mathbb{Z}$ valued invariant in this instance. \(\square\)

We can use the Atiyah-Patodi-Singer index theorem [1] to see that the eta invariant also defines bordism invariants. Let G be a finite group. A G structure f on a connected manifold M is a representation f from $\pi_1(M) \to G$. Equivalently, f can also be regarded as a map from M to the classifying space BG. We consider tuples (M, g, s, f) where (M, g) is a compact Riemannian manifold with a spin structure s and a G structure f. We introduce the bordism relation $[(M, g, s, f)] = 0$ if there exists a compact manifold N with boundary M so that the structures (g, s, f) extend over N; this induces an equivalence relation and the equivariant bordism groups $MSpin_m(BG)$ consists of bordism classes of these triples. Disjoint union defines the group structure.

Let $MSpin_* := MSpin_*(B\{1\})$ be defined by the trivial group. Cartesian product makes $MSpin_*(BG)$ into an $MSpin_*$ module. Let \mathcal{F} be the forgetful homomorphism which forgets the G structure f. The reduced bordism groups are then defined by:

$$\tilde{MSpin}_*(BG) := \ker(\mathcal{F}) : MSpin_*(BG) \to MSpin_*.$$

Since the eta invariant vanishes on $MSpin_*$, we restrict henceforth to the reduced groups.

If s is a spin structure on (M, g), let $P_{(M, g, s)}$ be the associated Dirac operator. If $\sigma \in RU_0(G)$, then $f^*\sigma \in RU_0(\pi_1(M))$ and we may define:

$$\eta^\sigma(M, g, s, f) := \eta^{f^*\sigma}(P_{(M, g, s)}).$$

Theorem 3.5. Let G be a finite group. Assume either that $m \equiv 3 \text{ mod } 8$ and that $\sigma \in RO_0(G)$ or that $m \equiv 7 \text{ mod } 8$ and that $\sigma \in RS_0(G)$. Then the map $(M, g, s, f) \to \eta^\sigma(M, g, s, f)$ extends to a map

$$\eta^\sigma : \tilde{MSpin}_m(BG) \to \mathbb{R}/2\mathbb{Z}.$$

Proof: We sketch the proof and refer to [6] for further details. Suppose that $m \equiv 3 \text{ mod } 4$ and that $[(M, g, s, f)] = 0$ in $MSpin_m(BG)$. Then $M = dN$ where the spin and G structures on M extend over N. We may also extend the given Riemannian metric on M to a Riemannian metric on N which is product near the boundary.

Let $\sigma \in RU_0(G)$. The Dirac operator $P_{(M, g, s)}$ on M is the tangential operator of the spin complex $Q_{(N, g, s)}$ on N. We twist these operators by taking coefficients in the locally flat virtual bundle $V^{f^*\sigma}$.

Let $\tilde{A}(N, g, s)$ be the A-roof genus and let $ch(V^{f^*\sigma})$ be the Chern character. By the Atiyah-Patodi-Singer index theorem [1]:

$$\text{index}(Q^{f^*\sigma}_{(N, g, s)}) = \int_N \tilde{A}(N, g, s) \wedge ch(V^{f^*\sigma}) + \eta(P^\sigma_{(M, g, s)}).$$
Corollary 3.7. Let \(\sigma \in (V, f) \). Since \(\sigma \) is a virtual bundle of virtual dimension 0 which admits a flat connection, the Chern character of \(V^\sigma \) vanishes. Consequently:

\[
\eta^\sigma(M, g, s, f) = \eta(P(M, g, s)) = \text{index}(Q^\sigma(M, g, s)).
\]

The dimension of \(N \) is \(m + 1 \). We apply Lemma 3.1 to see that if \(m \equiv 3 \mod 8 \) and if \(\sigma \) is real or if \(m \equiv 7 \mod 8 \) and if \(\sigma \) is quaternion, then \(Q^\sigma(M, g, s, f) \) is quaternion. Thus \(\text{index}(Q^\sigma(M, g, s, f)) \in 2\mathbb{Z} \) so \(\eta^\sigma(M, g, s) \) vanishes as an \(\mathbb{R}/2\mathbb{Z} \) valued invariant if \([(M, g, s, f)] = 0 \) in \(\text{MSpin}_m(BG) \). \(\square \)

There is a geometric description of the real connective \(K \) theory groups \(\tilde{k}_0m(BG) \) in terms of the spin bordism groups. Let \(\mathbb{H}P^2 \) be the quaternionic projective plane. Let \(\tilde{T}_m(BG) \) be the subgroup of \(\text{MSpin}_m(BG) \) consisting of bordism classes \([(E, g, s, f)] \) where \(E \) is the total space of a geometrical \(\mathbb{H}P^2 \) spin fibration and where the \(G \) structure on \(E \) is induced from a corresponding \(G \) structure on the base. The following theorem is a special case of a more general result \([17] \):

Theorem 3.6. Let \(G \) be a finite group. There is a 2 local isomorphism between \(k_0m(BG) \) and \(\text{MSpin}_m(BG)/\tilde{T}_m(BG) \).

We use Theorem 3.6 to draw the following consequence:

Corollary 3.7. Assume either that \(m \equiv 3 \mod 8 \) and \(\sigma \in \text{RO}_0(Q_t) \) or that \(m \equiv 7 \mod 8 \) and \(\sigma \in \text{RO}_0(Q_t) \). Then \(\eta^\sigma \) extends to a map from \(\tilde{k}_0m(BQ_t) \) to \(Q/2\mathbb{Z} \).

Proof: If \([(E, s, f)] \in T_m(BQ_t) \), then \(\eta^\sigma(P(E, g, s, f)) = 0 \); see \([6] \) Lemma 4.3 or \([13] \) Lemma 2.7.10 for details. Thus by Theorems 3.5 and Theorem 3.6, the eta invariant extends to \(\tilde{k}_0m(BQ_t) \). By \([6] \) Theorem 2.4, \(\tilde{k}_0m_{4k-1}(BQ_t) \) is a finite 2 group. Thus it is not necessary to localize at the prime 2 and the eta invariant takes values in \(Q/2\mathbb{Z} \). \(\square \)

The eta invariant is combinatorially computable for spherical space forms. The following theorem follows from \([8] \).

Theorem 3.8. Let \(\tau : G \to SU(2k) \) be fixed point free, let \(P \) be the Dirac operator on \(M^{4k-1}(G, \tau) \), and let \(\sigma \in \text{RU}_0(G) \). Then

\[
\eta^\sigma(P) = t^{-1} \sum_{g \in G \setminus \{1\}} \text{Tr}(\sigma(g)) \det(I - \tau(g))^{-1}.
\]

4. The Groups \(\tilde{K}Sp(M^{4w-1}(Q_t, \nu \cdot \gamma_1)) \)

Let \(\Delta = \det(I - \gamma_1) \in \text{RO}_0(Q_t) \). By equation (2.1):

\[
\Delta^\nu \text{RO}_0(Q_t) \subset \text{RO}_0(Q_t) \quad \text{if } \nu \text{ is even},
\]

\[
\Delta^\nu \text{RO}_0(Q_t) \subset \text{RO}_0(Q_t) \quad \text{if } \nu \text{ is odd}.
\]

The following Theorem is well known - see, for example \([10, 12] \):

Theorem 4.1. Let \(\tau : Q_t \to U(2\nu) \) be fixed point free. Then

\[
\tilde{K}Sp(M^{4w-1}(Q_t, \tau)) = \begin{cases}
\text{RO}_0(Q_t)/\Delta^\nu \text{RO}_0(Q_t) & \text{if } \nu \text{ is even,} \\
\text{RO}_0(Q_t)/\Delta^\nu \text{RO}_0(Q_t) & \text{if } \nu \text{ is odd.}
\end{cases}
\]

By Theorem 4.1, the particular representation \(\tau \) plays no role and we therefore set \(\tau = \nu \cdot \gamma_1 \). We use the eta invariant to study these groups. Let \(\eta^\nu_\nu(W) \) be the invariant described in Theorem 3.4 for the Dirac operator \(P \) on \(M^{4w-1}(Q_t, \nu \cdot \gamma_1) \). We define:

\[
\bar{\eta}^\nu(W) := \begin{cases}
(\eta^0_0, \eta^1_0, \eta^2_0, \eta^2_\Delta, \eta^2_2, \ldots, \eta^\nu_\nu, \eta^\nu_0, \eta^\nu_\Delta, \eta^\nu_0^\nu, \eta^\nu_\Delta^\nu, \eta^\nu_0^\nu^\nu, \eta^\nu_\Delta^\nu^\nu)(W) & \text{if } \nu \text{ is even,} \\
(\eta^0_0, \eta^1_0, \eta^2_0, \eta^2_\Delta, \eta^2_2, \ldots, \eta^\nu_\nu, \eta^\nu_0, \eta^\nu_\Delta, \eta^\nu_0^\nu, \eta^\nu_\Delta^\nu, \eta^\nu_0^\nu^\nu)(W) & \text{if } \nu \text{ is odd.}
\end{cases}
\]

Lemma 4.2. Let \(M := M^{4w-1}(Q_t, \nu \cdot \gamma_1) \). Then

\[
\bar{\eta}^\nu : \tilde{K}Sp(M) \to (Q/2\mathbb{Z})^{
u+1}.
\]
Proof: We apply Lemma 3.1 and Theorem 3.4. We distinguish two cases:

(1) If ν is even, then P is real. Thus $\eta'_\nu : \mathbb{K}Sp(M) \to \mathbb{Q}/2\mathbb{Z}$ for real σ and the Lemma follows as we have used the real representations $\{\Theta_1, \Theta_2, 2\Delta, 2\Delta^2, \ldots, \Delta^{\nu-2}, 2\Delta^{\nu-1}\}$ to define η'_ν.

(2) If ν is odd, then P is quaternion. Thus $\eta'_\nu : \mathbb{K}Sp(M) \to \mathbb{Q}/2\mathbb{Z}$ if σ is quaternion and the Lemma follows as we have used the quaternion representations $\{2\Theta_1, 2\Theta_2, \Delta, 2\Delta^2, \ldots, \Delta^{\nu-2}, 2\Delta^{\nu-1}\}$ to define η'_ν. □

Let $\varepsilon_{2i} = 2$ and $\varepsilon_{2i-1} = 1$: $\{2\Theta_1, 2\Theta_2, \Delta, 2\Delta^2, \ldots, \varepsilon_{\nu-1}\Delta^{\nu-1}\}$ are quaternion. In Lemma 2.1, we defined constants

$$c_i := \ell^{-1} \sum_{g \in Q_{\ell}(1)} \det(I - \gamma_1(g))^i.$$

Since $\Delta(g) = \det(I - \gamma_1(g))$, we use Theorem 3.8 to compute:

$$\eta^{\Delta^s}_\nu = \ell^{-1} \sum_{g \in Q_{\ell}(1)} \Delta(g)^{r+s} \Delta^{\nu-r} = c_{r+s-\nu}. \tag{4.1}$$

Since Θ_1 and Θ_2 are supported on the elements of order 4 in Q_{ℓ} and since $\Delta(g) = 2$ for such an element, we may use Theorem 3.8 and equation (2.2) to see:

$$\eta^{\Delta^s}_\nu(\Theta_1) = \eta^{\Delta^s}_\nu(\Delta^s)' = \ell^{-1} \sum_{g \in Q_{\ell}(1)} 2^r \text{Tr}(\Theta_1(g)) \Delta^{\nu-r} = 0,$$

$$\eta^{\Delta^s}_\nu(\Theta_2) = \ell^{-1} \sum_{g \in Q_{\ell}(1)} \text{Tr}(\Theta_2(g)) \Delta^{\nu-r} = 2 \cdot \frac{\ell^2}{\pi} + 4 \cdot \frac{\ell^4}{4}, \tag{4.2}$$

We have $\ell = 2^i$. We use equation (4.1), equation (4.2), and Lemma 2.1 to see:

$$\tilde{\eta}'_{\nu} = \left(\begin{array}{c} 2\Theta_1 \\ 2\Theta_2 \\ \Delta \\ 2\Delta^2 \\ \vdots \\ \varepsilon_{\nu-1}\Delta^{\nu-1} \end{array} \right) = \left(\begin{array}{cc} A_\nu & 0 \\ 0 & B_\nu \end{array} \right) \in M_{\nu+1}(\mathbb{Q}/2\mathbb{Z})$$

where A is the 2×2 matrix given by

$$A_\nu = 2^{1-\nu} \left(\begin{array}{cc} 2^{j-3} + 1 & 2^{j-3} \\ 2^{j-3} & 2^{j-3} \end{array} \right) \text{ if } \nu \text{ is even}$$

$$A_\nu = 2^{2-\nu} \left(\begin{array}{cc} 2^{j-3} + 1 & 2^{j-3} \\ 2^{j-3} & 2^{j-3} \end{array} \right) \text{ if } \nu \text{ is odd}$$

and where B is the $\nu - 1 \times \nu - 1$ matrix given by:

$$B_\nu = \left(\begin{array}{cccc} 2c_{2-\nu} & c_{3-\nu} & 2c_{4-\nu} & \ldots & 2c_{2-\nu} \\ 4c_{3-\nu} & 2c_{4-\nu} & 4c_{5-\nu} & \ldots & 4c_{1-\nu} \\ 2c_{4-\nu} & c_{5-\nu} & 2c_{6-\nu} & \ldots & 2c_0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 2c_{2-\nu} & c_{1-\nu} & 2c_0 & \ldots & 0 \\ 4c_{1-\nu} & 2c_0 & \ldots & 0 & 0 \\ 2c_0 & 0 & \ldots & 0 & 0 \end{array} \right) \text{ if } \nu \text{ is even}$$
The Theorem now follows from equation (4.3).
Thus equations (4.4) and (4.7) show

\[
B_\nu = \begin{pmatrix}
c_2 c_3 c_4 & \cdots & c_2 c_3 c_0 \\
c_2 c_4 c_5 & \cdots & c_2 c_0 \\
c_4 c_5 c_6 & \cdots & c_0 \\
\vdots & \ddots & \vdots \\
c_{2\nu} c_{2\nu+1} & \cdots & c_{2\nu} c_{2\nu+1} \\
0 & \cdots & 0 \\
\end{pmatrix}
\]

if \(\nu \) is odd.

Theorem 4.3. Let \(B_\nu \) be the subgroup of \((\mathbb{Q}/2\mathbb{Z})^{\nu-1}\) spanned by the rows of the matrix \(B_\nu \) defined above. Let \(M = M^{4\nu-1}(Q_\ell, \nu \cdot \gamma_1) \). Then

\[
\tilde{K}Sp(M) = \begin{cases}
\mathbb{Z}_{2\nu} \oplus \mathbb{Z}_{2\nu} \oplus B_\nu & \text{if } \nu \text{ is even}, \\
\mathbb{Z}_{2\nu-1} \oplus \mathbb{Z}_{2\nu-1} \oplus B_\nu & \text{if } \nu \text{ is odd}.
\end{cases}
\]

Proof: Let \(\mathcal{K}_\nu \) be the subspace of \(\tilde{K}Sp(M) \) spanned by the virtual vector bundles defined by \(\{2\Theta_1, 2\Theta_2, \Delta, 2\Delta^2, \ldots, \nu-1\Delta^{\nu-1}\} \). It is then immediate from the form of the matrix \(B_\nu \) that

\[
\eta_\nu(\mathcal{K}_\nu) = \begin{cases}
\mathbb{Z}_{2\nu} \oplus \mathbb{Z}_{2\nu} \oplus B_\nu & \text{if } \nu \text{ is even}, \\
\mathbb{Z}_{2\nu-1} \oplus \mathbb{Z}_{2\nu-1} \oplus B_\nu & \text{if } \nu \text{ is odd}.
\end{cases}
\]

We use Lemma 2.1 to see \(c_0 = \ell^{-1} \). Thus \(c_0 \) is an element of order \(\ell \) in \(\mathbb{Q}/2\mathbb{Z} \). We use the diagonal nature of matrix \(B_\nu \) to see that:

\[
|\eta_\nu(\mathcal{K}_\nu)| \geq \begin{cases}
4^\nu \ell^{\nu-1} & \text{if } \nu \text{ is even}, \\
4^{\nu-1} \ell^{\nu-1} & \text{if } \nu \text{ is odd}.
\end{cases}
\]

The \(E_2 \) term in the Atiyah-Hirzebruch spectral sequence for the \(K \) theory groups \(\tilde{K}Sp^v(M) \) is

\[
\oplus_{u+v=w} \hat{H}^w(M; KSp^v(pt)).
\]

We take \(w = 0 \) and study the reduced groups to obtain the estimate:

\[
|\tilde{K}Sp(M)| \leq |\oplus_{u+v=0} \hat{H}^w(M; KSp^v(pt))|.
\]

We have that:

\[
KSp^v(pt) = \begin{cases}
\mathbb{Z} & \text{if } v \equiv 0, 4 \text{ mod } 8, \\
\mathbb{Z}_2 & \text{if } v \equiv -5, -6 \text{ mod } 8,
\end{cases}
\]

\[
KSp^v(pt) = \begin{cases}
0 & \text{otherwise},
\end{cases}
\]

\[
\hat{H}^w(M; \mathbb{Z}) = \begin{cases}
\mathbb{Z}_\ell & \text{if } u \equiv 0, 4 \text{ mod } 8, u < 4\nu - 1,
\hat{H}^w(M; \mathbb{Z}_2) = \begin{cases}
\mathbb{Z}_2 \oplus \mathbb{Z}_2 & \text{if } u \equiv 1, 2, 5, 6 \text{ mod } 8, u \leq 4\nu - 1.
\end{cases}
\end{cases}
\]

Equations (4.5) and (4.6) then imply:

\[
|\tilde{K}Sp(M)| \leq \begin{cases}
4^\nu \ell^{\nu-1} & \text{if } \nu \text{ is even}, \\
4^{\nu-1} \ell^{\nu-1} & \text{if } \nu \text{ is odd}.
\end{cases}
\]

Thus equations (4.4) and (4.7) show \(|\tilde{K}Sp(M)| \leq |\eta_\nu(\mathcal{K}_\nu)| \). As the opposite inequality is immediate, we have

\[
\eta_\nu(\mathcal{K}_\nu) = \mathcal{K}_\nu = \tilde{K}Sp(M).
\]

The Theorem now follows from equation (4.3). \(\square \)

5. The groups \(\tilde{k}o_{4k-1}(BQ_\ell) \)

Let \(x = (M, g, s, f) \) where \(s \) is a spin structure and \(f \) is a \(G \) structure on a compact Riemannian manifold \((M, g)\) of dimension \(4k - 1 \). Let \(\eta^v(x) \) be the eta invariant of the associated Dirac operator with coefficients in \(f^*\sigma \). We reverse the parities of the invariant defined in the previous section to define:

\[
\tilde{\eta}_\ell(x) := \begin{cases}
(\eta^{2\Theta_1}(x), \eta^{2\Theta_2}(x), \eta^{2\Delta}(x), \eta^{2\Delta^2}(x), \ldots, \eta^{2\Delta^{k}}(x)) & (k \text{ even}) \\
(\eta^{\Theta_1}(x), \eta^{\Theta_2}(x), \eta^{2\Delta}(x), \eta^{2\Delta^2}(x), \ldots, \eta^{2\Delta^{k}}(x)) & (k \text{ odd}).
\end{cases}
\]
We have used real representations if k is odd and quaternion representations if k is even. Therefore, by Corollary 3.7, $\bar{\eta}_k$ extends to:

$$\bar{\eta}_k : \tilde{k}_{4k-1}(BG) \to (\mathbb{Q}/2\mathbb{Z})^{k+2}.$$

The group Q_ℓ has 3 non-conjugate elements of order 4: $\{I, J, \xi J\}$ which generate the 3 non-conjugate subgroups $\{(I), (J), (\xi J)\}$ of order 4. The representation γ_1 restricts to a fixed point free representation of any subgroup of Q_ℓ. We define the following spherical space forms:

$$M_{Q_{4k-1}} := M_{4k-1}(Q_\ell, k\gamma_1), \quad M_{J_{4k-1}} := M_{4k-1}((I), k\gamma_1) \quad M_{\xi J_{4k-1}} := M_{4k-1}((J), k\gamma_1).$$

Give the lens spaces M_g the Q_ℓ structure induced by the natural inclusion $\langle g \rangle \subset Q_\ell$. We project into the reduced group $\tilde{M}_{\text{Spin}}_{4k-1}(Q_\ell)$; this does not affect the eta invariant as $\eta^\sigma(M_{\text{Spin}}_8(pt)) = 0$. Let $i > 0$. By Theorem 3.8:

$$\eta^{i^2}(M_{4k-1} \times Z^{i^2}) = \eta^\sigma(M_{4k-1})\tilde{A}(Z^{i^2}) = \begin{cases} 2\eta^\sigma(M_{4k-1}) & \text{if } j \text{ is odd}, \\ \eta^\sigma(M_{4k-1}) & \text{if } j \text{ is even}. \end{cases}$$

Let K^4 be a spin manifold with $\tilde{A}(K^4) = 2$ and let B^8 be a spin manifold with $\tilde{A}(B^8) = 1$. Let $Z^{8k-4} := K^4 \times B^{8k-8}$ and $Z^{8k} = (B^8)^{k}$. Standard product formulas [10] then show

$$\eta^\sigma(M_{4k-1} \times Z^{i^2}) = \eta^\sigma(M_{4k-1})\tilde{A}(Z^{i^2}) = \begin{cases} 2\eta^\sigma(M_{4k-1}) & \text{if } j \text{ is odd}, \\ \eta^\sigma(M_{4k-1}) & \text{if } j \text{ is even}. \end{cases}$$

Let B_ν and $B_{\nu'}$ be as defined in Section 4. There is a dimension shift involved as we must set $\nu = k + 1$. We use the same arguments as those given previously to see

$$\bar{\eta}_k \begin{pmatrix} M_{4k-1} - M_{J_{4k-1}} \\ M_{I_{4k-1}} - M_{\xi J_{4k-1}} \\ M_{Q_{4k-1}} - M_{I_{4k-1}} \times Z^4 \\ \vdots \\ M_{Q_{4k-1}} \times Z^{4k-4} \end{pmatrix} = \begin{pmatrix} C_k & 0 \\ 0 & B_{k+1} \end{pmatrix} \in M_{k+2}(\mathbb{Q}/2\mathbb{Z})$$

where C_k is the 2×2 matrix given by

$$C_k = \begin{pmatrix} 2^{1-k} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} & \text{if } \ell = 8 \text{ and } k \text{ is even}, \\ 2^{1-k} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} & \text{if } \ell > 8 \text{ and } k \text{ is even}, \\ 2^{-k} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} & \text{if } \ell = 8 \text{ and } k \text{ is odd}, \\ 2^{-k} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} & \text{if } \ell > 8 \text{ and } k \text{ is odd}, \end{pmatrix}$$

Theorem 1.2 will follow from Theorem 4.3 and from the following:

Theorem 5.1. We have

$$\tilde{k}_{4k-1}(BQ_\ell) = \begin{cases} \mathbb{Z}_{2k} \oplus \mathbb{Z}_{2k} \oplus B_{k+1} & \text{if } k \text{ is even}, \\ \mathbb{Z}_{2k+1} \oplus \mathbb{Z}_{2k+1} \oplus B_{k+1} & \text{if } k \text{ is odd}. \end{cases}$$
Remark 5.2. Let

We use the same argument used to prove Theorem 4.3. Let

Proof: We use the same argument used to prove Theorem 4.3. Let

\[\mathcal{L}_k := \text{Span}_\mathbb{Z}[M^4_{k-1} - M^4_{k-1}, M^4_{k-1} - M^4_{k-1}, M^4_{k-1}, M^4_{k-1} \times Z^4, ..., M^3 \times Z^{4k-4}] \subset \tilde{ko}_{4k-1}(BQ \ell). \]

We then have that

\[\bar{\eta}(\mathcal{L}_k) = \begin{cases} Z_{2k} \oplus Z_{2k} \oplus B_{k+1} & \text{if } k \text{ is even}, \\ Z_{2k+1} \oplus Z_{2k+1} \oplus B_{k+1} & \text{if } k \text{ is odd}. \end{cases} \]

By Lemma 2.1 we have \(c_0 = \frac{2}{k} \) and thus \(2c_0 \) is an element of order \(2 \) in \(\mathbb{Q}/2\mathbb{Z} \). We use the diagonal nature of the matrix \(B_{k+1} \) to see that:

\[|\bar{\eta}(\mathcal{L}_k)| \geq \begin{cases} 4^{k+1}k & \text{if } k \text{ is even}, \\ 4^{k+1}k & \text{if } k \text{ is odd}. \end{cases} \]

We use [6] Theorem 2.4 see:

\[|\tilde{ko}_{4k-1}(BQ \ell)| \geq \begin{cases} 4^{k+1}k & \text{if } k \text{ is even}, \\ 4^{k+1}k & \text{if } k \text{ is odd}. \end{cases} \]

Remark 5.2. Let \(n \geq 0 \). One has [3] that:

\[\tilde{ko}_{8n+2}(\Sigma^{-1} BS^3/BN) = \begin{cases} \mathbb{Z}_2 & \text{if } \varepsilon = 1, 2, \\ \mathbb{Z}_{2^n+2} & \text{if } \varepsilon = 3, 7, \\ 0 & \text{if } \varepsilon = 4, 5, 6, 8, \end{cases} \]

We may use equation (1.2) to decompose:

\[\tilde{ko}_{\ast}(BQ \ell) = \tilde{ko}_{\ast}(\Sigma^{-1} BS^3/BN) \oplus \tilde{ko}_{\ast}(\Sigma^{-1} BS^3/BN) \]

\[\oplus \tilde{ko}_{\ast}(B_{2}\mathcal{L}_2(\mathbb{F}_q)). \]

This is the decomposition given in Theorems 4.3 and 5.1:

\[\mathcal{A}_k = \tilde{ko}_{4k-1}(\Sigma^{-1} BS^3/BN) \oplus \tilde{ko}_{4k-1}(\Sigma^{-1} BS^3/BN) \]

\[= \text{Span} \{[V^g],[V^h]\} \subset \bar{K}Sp(M^{4k+3}(Q \ell, \tau)) \]

\[= \text{Span} \{[M^4_{k-1} - M^4_{k-1}],[M^4_{k-1} - M^4_{k-1}]\} \subset \tilde{ko}_{4k-1}(BQ \ell), \]

\[B_k = \tilde{ko}_{4k-1}(B_{2}\mathcal{L}_2(\mathbb{F}_q)) \]

\[= \text{Span} \{[V^g],[\Delta^1]\} \subset \bar{K}Sp(M^{4k+3}(Q \ell, \tau)) \]

\[= \text{Span} \{[M^4_{k-1-4\mu} \times Z^{4\mu}]\} \subset \tilde{ko}_{4k-1}(BQ \ell). \]

Acknowledgements

Research of P. Gilkey partially supported by the NSF (USA) and the MPI (Leipzig, Germany).

References

Instituto de Matemáticas UNAM U. Cuernavaca, Av. Universidad s/n, Col. Lomas de Chamilpa C.P. 62210, Cuernavaca, Mor. MEXICO
email: ebarrera@matcuer.unam.mx

Mathematics Dept., University of Oregon, Eugene, Oregon 97403, USA and Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, 04103 Leipzig, Germany. email: gilkey@math.uoregon.edu