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STRUCTURE OF ENTROPY SOLUTIONS FOR MULTI-DIMENSIONAL
SCALAR CONSERVATION LAWS

CAMILLO DE LELLIS, FELIX OTTO, MICHAEL WESTDICKENBERG

ABSTRACT. An entropy solution u of a multi-dimensional scalar conservation law is not
necessarily in BV, even if the conservation law is genuinely nonlinear. We show that u
nevertheless has the structure of a BV—function in the sense that the shock location is
codimension—one rectifiable. This result highlights the regularizing effect of genuine non-
linearity in a qualitative way; it is based on the locally finite rate of entropy dissipation.
The proof relies on the geometric classification of blow—ups in the framework of the kinetic
formulation.

1. INTRODUCTION

In this paper, we study the structure of entropy solutions of scalar conservation laws
in n space dimensions dyu + div, f(u) = 0. A bounded measurable entropy solution u is
characterized by dissipation of entropy

—finq = Om(u) +divy q(u) <0 in D, (1)

for any convex entropy—entropy flux pair (1(v),q(v)) € R x R™ compatible with the given
flux function f(v) € R", that is,

d()=n'()f'(v) and 7"(v) >0 forall veR.
Using (n,q) = +(id, f) in (1), we see that u is in particular a weak solution:
Owu +div, f(u) =0 inDy,. (2)
Kruzkov established the well-posedness of the Cauchy problem for (1) in L, see [15].

We recall that for a smooth solution u of (2), u is constant along the characteristic lines
of speed f’(u). Thus the nonlinearity of f imposes a certain rigidity to the problem: Since
f'(u) varies in the transported value u, characteristics must cross and shocks are formed.
Therefore smooth solutions cannot exist in general. The weak formulation (2) allows for
singularities — at the expense of rigidity. The Cauchy problem is ill-posed. The notion of
entropy solution (1) restores the right amount of rigidity for existence and uniqueness. In
this paper, we will show that this rigidity also survives in form of a regularizing effect on the
structure of u.

1.1. One space dimension.
The regularizing effect of nonlinearity in one space dimension is well-understood. We give

a short list of the main analytic ideas which capture this effect.
1
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For a strictly convex flux function, i.e. f”(v) > ¢ > 0, Oleinik proved an L*—estimate on
the positive part of the spatial gradient:

1

1(0u)+ (&, )l z=r) < — (3)

independently of the initial data [19]. It is based on the maximum principle for the parabolic
approximation. In fact, the “E—condition” (3) characterizes entropy solutions among all weak
solutions.

For homogeneous nonlinear flux function, i.e. f(v) = v? with p > 1, Bénilan and Crandall
established an L!'-estimate on the time derivative

1
10u(t, ) w) < WIIU(U, Meiw)-

Roughly speaking, it is based on Kruzkov’s L'-contraction principle [15] for entropy solutions
and a scale invariance of the solution space, see [4]. This argument has been extended to
more general flux functions [20].

We are interested in the case of a “genuinely nonlinear” flux function f(v), which in one
space dimension means that there is no v—interval on which the characteristic speed f’(v) is
constant. In this setting, Tartar established a compactness result: A sequence of uniformly
bounded entropy solutions {u}; is precompact in L' locally [23]. This can be seen as a
qualitative version of the regularizing effect of nonlinearity.

Tartar makes use of the fact that the entropy dissipation measures
=g = Om(u®) + div g(u®)

are (locally) uniformly bounded. This follows from the fact that u% is the space—time diver-

gence of a uniformly bounded field. Loosely speaking, Tartar’s result states that uniformly
bounded {u%}k rule out fine-scale oscillations of {u"},. Chen and Rascle converted this
qualitative observation into a regularity result, see [7]: An entropy solution is automatically

continuous in time with values in L] (R™).

1.2. Multiple space dimensions.

The regularizing mechanism of genuine nonlinearity is intuitive in one space dimension:
Generically, the speed f'(v) of characteristics is different for different values v. Hence char-
acteristic lines transporting different values have to cross (at earlier or later times) and thus
shocks are unavoidable. These shocks dissipate entropy, but the entropy dissipation f, , is
(locally) finite. This should limit shock occurrence and thus oscillations of entropy solutions.
The natural generalization of “genuinely nonlinear” to n space dimensions is the following:
There is no v-interval on which f’(v) is contained in an (n — 1)-dimensional subspace. But
the geometry of the equation is more complicated in multiple space dimensions: Character-
istic lines of different speed need not cross. Thus it is less clear if and how finite entropy
dissipation can limit the oscillation of u.

Lions, Perthame and Tadmor showed that indeed also in multiple space dimensions, finite
entropy dissipation limits the oscillations of u. Their idea was to “unfold” the notion of
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entropy solution (2)&(1) into a kinetic equation in the sense of the Boltzmann equation [17].
The analogue of the Maxwellian is

+1 f0<v<u
X(vyu):=¢ =1 ifu<ov<0 ». (4)
0 otherwise

It is easy to check that (1) is equivalent to
Ox(v,u(t,z)) + f'(v) - Vox(v,u(t,z)) = Opp in Dy iw (5)

for some non-negative measure p on R, x R, x R” which encodes the entropy dissipation
in the sense of

g = [n"(v)du(v,-) for every entropy 7.

Notice that (5) makes the characteristic speed f'(v) appear in the transport operator on
the Lh.s. In fact, the kinetic formulation shows that whenever u is not constant along
characteristics, entropy must be dissipated. The kinetic formulation (4)&(5) allows to use
the velocity averaging estimates for transport equations [12, 10, 17]. Genuine nonlinearity is
precisely the condition on f’(v) which the argument requires to rule out fine-scale oscillations
of the “velocity average” u = [ x(v,-)dv, based on the control of the r.h.s. of (5) in form
of [du(v,t,z). Under stronger non-degeneracy conditions, the velocity averaging estimates
yield quantitative regularity results for entropy solutions, cf. [17, 14].

1.3. Structure.

Entropy solutions u of conservation laws are expected to be piecewise smooth with piecewise
smooth shock location J, at least generically. A mathematically convenient relaxation of
this notion is to say that outside of a codimension—one rectifiable set J, u is approximately
continuous. Such a “structure result” is true for any function u of bounded variation (BV)
in space-time, see for instance [1, 8]. By the L'-contraction principle, an entropy solution u
of a scalar conservation law is of bounded variation if the initial data are. A priori bounds
on the total variation have been obtained also for systems of conservation laws in one space
dimension, despite the fact that the L'-contraction principle does not hold in this situation,
see [8, 6]. But BV does not seem to be an appropriate space for systems in multiple space
dimensions (see the discussion in the introduction of [22] and [5]). Therefore, it seems
desirable to develop methods, at first on the scalar level, which avoid BV —arguments.

If the initial data are just L°°, it is not expected that the solution of (1) is in BV —
except in the one—dimensional, strictly convex case. In fact, even in the best case the a
priori estimate obtained from velocity averaging is, in terms of scaling, far from a BV -
estimate. This remains true for recent subtler arguments, see [25, 14]. We think this is not
surprising: Velocity averaging is a linear argument. The entropy dissipation measure p is
treated as a given r.h.s. of the linear transport operator in (5). Depending on the degree of
non-degeneracy, some Besov norm of u is estimated by [ du(v,t, z). Locally in space-time,
however, the entropy dissipation generically is cubic in the shock strength, i.e. the jump size
[u]:

Jduv, ) ~ [l HO L
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This means that the control of small shocks through the entropy dissipation is bad. In
particular, the entropy dissipation does not control [ ; |[u]] dH™ in any obvious way. But it
is this quantity which would be controlled by the space-time BV -norm of u:

[ l[u]] dH™ < [|V,ul dt dx.

This shows that from the point of view of a local regularity theory, BV is not a natural space
— even for a scalar law. It also suggests that linear spaces might be inappropriate to fully
capture the regularizing effect.

In this paper, we show that finite entropy dissipation in combination with genuine nonlin-
earity is indeed enough for a structure result. Loosely speaking, we obtain BV ~like structure
for entropy solutions without using a BV —control, see Theorem 2.4.

1.4. Methods and related work.

Our qualitative approach to regularity is borrowed from elliptic theory: the study of blow—
ups in a given point of space-time. We investigate the blow—ups within the framework of the
kinetic formulation (4)&(5). This allows us to study the fine properties of u and the defect
measure 4 simultaneously. The compactness result through velocity averaging ensures that
also the limiting (u*, u™) satisfies (4)&(5). The gain of blowing up is that u™ factorizes
into a measure in v and a measure in (¢, x), for all blow—up points besides those in a set
which is smaller than codimension one. This gain in structure through (polar) factorization
is a typical first step in arguments from geometric measure theory, e.g. in the theory of sets
of bounded perimeter, see Theorem 1 in Section 5.7.2 of [11].

The idea to study blow—ups within the kinetic formulation was introduced by Vasseur [24].
He used it to establish the existence of one—sided traces for entropy solutions. These traces
are “strong traces” in the L'-sense. We recall that the existence of strong one-sided traces
is another typical property of BV —functions.

The main step in obtaining our regularity result is the classification of solutions to (4)&(5)
with factorized p, which we call “split states”. The geometric arguments are similar to those
in our prior work [9], where we studied an S'-valued conservation law in two space dimen-
sions (no time). This conservation law arises as a singular limit of a variational problem; in
particular, the analogue of the entropy dissipation measure p has no sign. Also the present
analysis is oblivious to the sign of p and thus the difference in time and space variables. In
comparison with [9], additional arguments are required to obtain codimension—two rectifia-
bility of the boundary of the jump set of a split state.

A slightly less general version of this S!'-valued conservation law has been treated by
Ambrosio, Kirchheim, Lecumberry and Riviere [2] with somewhat different methods. In
particular, these authors used an interesting connection with viscosity solutions of the related
Hamilton—Jacobi equation, see [3]. This idea has been extended by Lecumberry and Riviere
[16] to strictly convex conservation laws in one space dimension. Because of the connection
to Hamilton—Jacobi equations, this approach seems limited to one space dimension.

Acknowledgments Camillo De Lellis acknowledges partial support by the EU Network
Hyperbolic and kinetic equations HPRN-CT-2002-00282. Felix Otto and Michael Westdick-
enberg acknowledge partial support by the Deutsche Forschungsgemeinschaft through SFB
611 Singularities and scaling in mathematical models of the University of Bonn.
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2. SETTING AND STATEMENT OF THE RESULT

As mentioned in the introduction, the sign of the entropy dissipation measures and the
difference between time and spatial variables play no role in our analysis. Hence we replace
(t,x) by z, (v, f(v)) by f(v) and (n(v), q(v)) by ¢(v). We start by introducing the appropriate
notion of genuine nonlinearity — it is the well-known slight strengthening of the condition
that there is no open interval on which f’ is contained in a single hyperplane. We also
introduce the set of entropies and the notion of “entropy solution”. To simplify the kinetic
formulation, we shall w.l.o.g. assume that the bounded u is positive.

Definition 2.1.
a) We call f € C*Y(R,R"™) genuinely nonlinear if a := f' satisfies

L'({veR|a(v)-£=0}) =0 forall € S™
b) Let £, denote the set of all ¢ € C(R,R™) for which there ezists an n with

J(0) =1/() (@) end 7'(0) >0 in D, 6)
c) We call a measurable w: R™ — (0,1) an “entropy solution” if
pg = —div, q(u) € M(R") forall g€ &, (7)

M(R™) denoting the space of all locally finite Radon measures.

Warning 2.2. When f: R — R, x R is of the form f(u) = (u, F(u)) we can compare
(c) with the usual notion of entropy solution used in the literature of scalar conservation laws
(thus we identify z; with the time variable t). We remark that our notion is considerably
more general: To avoid confusions we refer to the classical one as classical entropy solution.
There are two reasons for this:

- Our entropy solution is not necessarily a weak solution of
Oyu + divy F(u) = 0; (8)

In particular any classical entropy solution of a conservation law with a suitable source
term Oyu + div, F'(u) = g is an entropy solution in the sense of (c).

- Even when an entropy solution u (in the sense of (c)) is a weak solution of (8), the
entropy production p, for ¢ € £ need not to be a non-negative measure (as it would
be for classical entropy solutions), but it can change sign.

We now introduce the notion of vanishing mean oscillation in a point, which is a slight
weakening of the notion of Lebesgue point. We also recall the definitions of rectifiability and
of a strong trace.

Definition 2.3.
a) Letuw e L} (R") and y € R™. We say that u has vanishing mean oscillation at y if

loc
lim —n/ lu(x) —uy,|dx = 0,
Br(y)

where W, denotes the average of u on the ball B, (y).
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b) A set J C R™ is called rectifiable of dimension n — 1, if, up to an H" '-negligible set,
it 1s contained in the countable union of Lipschitz graphs. We call a Borel vector field
n: J — S" 1 a unit normal if for H" '-a.e. y € J, n(y) is perpendicular to one of the
Lipschitz graphs in y.

¢) Letuw e L, .(R"), J C R" a rectifiable set of dimension n — 1 with unit normal n. We
call two Borel functions u=,u": J — R left and right trace of u on J with respect to n,

if for H" 1 -a.e. y € J,

. - + r) =
i ([ e —w s+ [ -l = o
where BX(y) :== {z € B.(y)| + (z —y) - n(y) > 0}.

We are now in the position to state our main result:

Theorem 2.4. Let f be genuinely nonlinear and u an entropy solution. Then there exists
a rectifiable set J of dimension n — 1 such that

a) u has vanishing mean oscillation at every y & J,
b) u has left and right trace on J.

Remark 2.5. This result is slightly weaker than what we would obtain for v € BV(R™).
In this case, (a) could be replaced by

a*) every y & J is a Lebesgue point of u.

In this case, if in addition u satisfies divf(u) = 0, also the structure of the measures y, is
natural:

c*) pg = lg(ut) —qu™)]-pH LS forall g€ é&,.
We refer to Section 1.8 in [8] for a discussion of BV -solutions of systems of conservation

laws. With the methods laid out in Section 8 of [9] (cf. Theorem 1.3(d) of [9]), we only are
able to show

¢) pglJ =[g(u™) —q(u)]-nH"'LJ forall ¢ € &,.

In particular, we cannot rule out that yu, has a part which lives on a set of dimension strictly
larger than n — 1.

We divide the proof of Theorem 2.4 into four sections.

e In Section 3 we introduce the kinetic formulation with an “entropy dissipation measure”
we MR x R™) with no sign. We also define the set J which appears in Theorem 2.4.
Finally, we introduce the notion of blow—ups and rephrase the compactness result from
velocity averaging in this context.

e In Section 4 we work out the net gain in blowing—up: Not only is the kinetic formulation
preserved, but the entropy dissipation measure © € M(R x R") factorizes into a v—
dependent density and a non—negative measure v in x. We call these special solutions
of the kinetic equation split states. We use the classification of split states from Sections
5 and 6 to establish first the rectifiability of J and then the vanishing-mean-oscillation
and trace properties stated in Theorem 2.4.

e In Section 5 we characterize the split states. We first obtain qualitative information
and then quantitative information on their jump set J through a (second) blow—up.
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We have to consider blow—ups in points of both J and its codimension—two boundary
0J. For the characterization of (second) blow—ups, we use the results of section 6.

e In Section 6 we characterize the simplest possible split states, which we call flat split
states. Flat split states are split states with a jump set J which is either empty, or
an entire hyperplane, or half of a hyperplane. These states correspond to constants,
shocks, resp. a combination of shock and rarefaction wave.

3. KINETIC FORMULATION AND BLOW—UP

In this section, we introduce the kinetic formulation and the concept of blow—ups. The first
proposition states the kinetic formulation. The situation is slightly different from standard
since the measures i, in (7) do not have a sign.

Proposition 3.1. Let u be an entropy solution. Then there exists a locally finite Radon
measure u € M(R, x R?) such that

a(v) - Vox(v,u(x)) = Oop in D, ,, (9)
where
1 ifo<v<u
X(v,u) = { 0 otherwise } ' (10)
The following definition introduces the set J in Theorem 2.4.
Definition 3.2. Let u and p be as in Proposition 3.1.
a) We denote by v the x—marginal of the total variation ||| of w:
v(A) == ||u||(R x A)  for all Borel sets A C R". (11)
b) We denote by J the set of positive upper H" ' ~density of v:
B,
J = {yGR” limsupy(i(:ly»>0} . (12)
rl0 (e

The next definition introduces the rescalings and the set of all blow—ups for u, u and v in
a given point y. In case of p and v, the blow—ups are also called tangent measures (see for
example Definition 14.1 of [18]). The rescalings are chosen such that the kinetic equation
(9) is invariant.
Definition 3.3. Letu € L} (R"), p € M(R x R") and v € M(R"); fix a point y € R™.

loc

a) For anyr > 0 we define u¥" € L} (R"™), p»" € M(R x R") and v¥" € M(R") through

loc

W) = uly+ra)
(B xA) = ] w(B x (y+rA)) resp.
1
T(A) = " v(y +rA)

for all Borel sets A C R"™ and B C R.
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b) The sets B¥(y) C L>=(R"), T" '(y,n) € MR x R") and T" ' (y,v) € M(R™) are
the sets of all u®, p® resp. v™>° such that there exists a sequence ry | 0 with
u¥™ — u™  strongly in L, .(R"),
v s > weakly in M(R x R™)  resp.
pUme Ea p weakly in M(R™).

The following proposition applies the well-known compactness result to blow—up se-
quences.

Proposition 3.4. Let u, p be as in Proposition 3.1. Then, for H" '-a.e. y € R",

{u’" Y10 is strongly precompact in L, (R"), (13)
{1 }r10 s weak™ precompact in - M(R x R"), (14)
{9 Yo is weak™ precompact in. - M(R"). (15)

Furthermore, u™ € B>®(y) and u>™ € T" (y,v) coming from the same blow-up sequence
{ri}rioo satisfy (9).

Proof of Proposition 3.1. Following Kruzkov, we introduce ¢, € £,

) = { FO S0 Huz ) )

0 otherwise
for v € R and write p, := p,,. We first prove that
0,1] 5 v+ p, € M(U) is bounded (17)
for any bounded open set U C R". Rewriting (6) as

q(v) = q(0) = n(0) f'(0) + n(v) f'(v) — /O n(w) f*(w) dw,

we see that the set £, introduced in Definition 2.1 is a closed subset of C(]0, 1], R™).
Equipped with the sup—norm, it is a complete metric space, hence a space of second category.
We introduce

I'={pe & (U)]ll¢llo < 1}.
For ¢ € I, we now consider the linear functional 7,,: £, — R given by

Toq) = / pdpq.

We see from the definition of p, that the functional T, is bounded

/nwduq /UVso-q(U)

— and thus continuous. Moreover, the family of functionals {7, },er is pointwise bounded:

|Tso(Q)| = < Ccp,UHQHOO

sup To(q)| = (gl (U) =t cqu < 00 forall g € &,
o€
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since p, is locally finite. We now apply the uniform boundedness principle (cf. Theorem 2.2
of [21]): There exist a ¢y € &4, an € > 0 and a ¢y < oo such that

sup T (@) = [lgl(U) < v for all g € Be(qo) NE-. (18)
€

For arbitrary ¢ € £, with ||¢||cc = 1, using the linearity of g — g, and the fact that £ is a
convex cone, we infer from (18)

m |

1l (0) = Zeall©) < = (lteqraolO) + il (©)) < e

Hence the map & 3 ¢ — p, € M(U) is bounded from &; into M(U). This implies
(17). Note also that p, vanishes if v > 1, while for v < 0 it is constant in v: we have

py = —div, f(u).

Since v +— p, is weakly measurable, we gather from (17) that

/Cduz/R/C(v,x)duv(x)d’v

defines a p € M(R x R™). In view of the definitions (16) and (10)

() = ~a(o) x(o,u).

~—

Hence —div, g,(u) = p, turns into (9) when tested with —d,((v, x). O

Proof of Proposition 3.4. It is easy to check that for y € R™ and r > 0, the rescalings u?"
and p¥" still satisfy the kinetic equation

a(v) - Vex(v, u?"(x)) = 0pp®"  in Dy ,. (19)

We observe that the weak™ compactness (14) of p¥" follows immediately from the control of
the total variation ||p¥"|| through (15). Because of (19), the strong convergence (13) follows
also from (15) via the velocity averaging lemma (cf. Theorem 3 in [17]).

Hence it remains to establish (15) for H" '-a.e. y € R". This amounts to

v(Br(y))

—— < oo for H" lae y € R

lim sup
10 r

The latter follows from a standard argument in geometric measure theory: Assume that for
a bounded set K with H"*(K) > 0 we had

i sy 2(B-(0)

—— =00 foralyceK.
rl0 rT

Then the Vitali covering argument (cf. Theorem 1 of Section 1.5.1 in [11]) would imply
v(K) = co. But v is locally finite.

Notice that for a non-negative measure p the upper H" '~density of v is bounded for
all y € R™. This follows easily from testing (9) against functions (x(v,z) := vyi(z), where
{¢r 1 1s a sequence of non—negative radial test functions with ¢, T 1 B, (y) Pointwise. O
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4. SPLIT STATES AND RECTIFIABILITY

In this section we will combine all results to prove Theorem 2.4. The section is structured
as follows

e In Subsection 4.1, we introduce the notion of a split state, see Definition 4.1. Roughly
speaking, a split state is a solution (u, 1) of equation (9) for which 9,u factorizes into
a v—dependent part h and an z—dependent part v. In Proposition 4.2 we show for
H" !-a.e. y that the blow—ups in y are split states.

e In Subsection 4.2, we use the classification of split states from Section 5 (see Proposition
5.1) to deduce the rectifiability of the set J defined in (12).

e In Subsection 4.3, we use the classification of flat split states from Section 6 (see Propo-
sitions 6.1 (b) and 6.2 (b)) to show that .J is the jump set of u in the sense of Theorem
2.4 (a)&(b).

4.1. Blow—ups are split states.

Definition 4.1. A split state is a triple (u, h,v) consisting of

e a function u € L*(R"),
e a function h € BV (R) continuous from the left, and
e a non-negative v € M(R")

which satisfy the kinetic equation
a(v) - Vox(v,u(z)) = h(v)v in D., for allv. (20)

We now show that blow—ups are split states. It will be crucial for Subsection 4.2 that the
v—dependent factor h only depends on the blow—up point, but not on the blow—up sequence.

Proposition 4.2. Let f,u be as in Theorem 2.4. Then for H" '-a.e. y € R" there exists
an h, € BV(R) with the following property:

For any (u™®,v>) € B®(y) x T" Y (y,v) coming from the (21)
same blow-up sequence, (u™, h,, v™) is a split state.

Proof of Proposition 4.2. It follows from Proposition 3.4 that for H" '-a.e. blow—up point
y € R" any (u™,v>) as in (21) satisfies

a(v) - Vex(v,u™(x)) = 0yu™ inD,, (22)

where ™ is the weak™-limit of some rescaling of p. This is our starting point. Then the
proof proceeds in three steps.

e In Step 1 we construct a family {H,}, of measures in v such that the factorization
p>® = H, x v> holds for H" '-a.e. y.

e In Step 2, we establish additional regularity for the factor H,, as a consequence of the
interplay between the product structure of 4> and the kinetic equation (22). More
precisely, we show that d,H, = h,L! with h, € BV(R).

e In Step 3, we select a representative of h, such that the kinetic equation (22) holds
pointwise in v.
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Step 1 Recall the definition of v € M(R"), cf. (11). By standard measure theory (see
Theorem 2.28 of [1]), there exists a weakly v—measurable map H: R" — M(R) with p =
[ Hdv, that is

/(pd,u - /n/ch(v,x) dH,(v) dv(z), Vo€ CP(R x RY).

We now use the fact that v—almost every y € R" is a Lebesgue point for H w.r.t. the weak*
topology on M(R.). More precisely, we have

rnfl

v(B,(y))
see Proposition A.1. Recall the definition of the jump set J in (12). For any y ¢ J we have

(uv" — H, x ") =~ 0 for v-a.e. y € R, (23)

p?" —~ 0 and thus 4> = 0 so that there is nothing to prove. Hence we restrict ourselves
to y € J. By the Vitali covering argument, the definition of J implies that any v-negligible
subset, of J is also H" '-negligible. Thus (23) holds for H" !-a.e. y € J. On the other hand,
we already know from Proposition 3.4 that

B,
lim sup I/(i(iy» < oo for H" '-ae. y e R". (24)
r]0 T

Hence (23) and (24) combine to
pv" — Hy x 9" =0 for H" -ae. y € J,
which in particular yields > = H, x v> for H" '-a.e. y € J.

Step 2 We now prove that 9,H, = h,L' for some h, € BV(R). As in Step 1, we may
restrict ourselves to the case y € J. Then there exists a blow—up sequence with v>° # 0,
which we shall consider. According to (22) and Step 1 we have

a(v) - Vox(v,u™(x)) = 0,(H, x v°) = (0,Hy) x V> in D, . (25)
Pick a p € C°(R™) with [ pdv>® = 1. Then (25) yields
0,Hy, = —a(v) - /Vgp(m) X(v,u*(x))dx in D.. (26)

Notice that for fixed x, x(v,u*(x)) is of bounded variation in v with uniformly bounded
total variation [ ]9,x(v,u™(z))|dv < 2. Hence also the z—integral [ V(x) x(v,u>(x)) dx
is a BV —function. Since a € C'(R), we infer from (26) that 9,H, is a BV —function.

Step 3. We finally prove that the kinetic equation (22) holds pointwise in v. According
to (25) and Step 2 we have

a(v) - Vex(v,u™(z)) = hy x v in D, . (27)
Then the one-sided continuity of x(v,u*(x)) in v yields
x(v—¢e,u®(x) — x(v,u™(z)) stronglyin L} ase | 0.

On the other hand, since h is of bounded variation, we may select a representative with the
same one-sided continuity, that is,

hy(v—¢) — hy(v) ase 0.
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Then (27) improves to
a(v) - Vox(v,u™(z)) = hy(v) x v in D’ for all v.

4.2. J is rectifiable.

Recall the definition of the set .J, cf. (12). We will prove in this subsection that .J is rectifiable.
The main ingredient is the classification of split states (u, h, V) stated and proved in Section
5, cf. Proposition 5.1. According to the compactness property stated in Proposition 3.4,
for any v € T" (y,v), there is a u™ € B*(y) coming from the same blow—up sequence.
Hence we may combine Proposition 4.2 from the previous subsection with Proposition 5.1
to obtain the following statement on 7" !(y, v).

Proposition 4.3. Let f,u be as in Theorem 2.4. For H" '~a.e. y € J, there exist constants
L,g > 0 and an orthonormal coordinate system w1, ... ,x, (both only depending on y) with
the following property:

For every v™>® € T" Yy, v) with v™ # 0, there exist

e q constant e € R,
e a function w: R"? — R with Lip(w) < L

such that v>®° = g H" L J> for some set J*° of the form
JO={ry=e} or J¥={{x1=ex,>w(xs,...,2,1)}, (28)

see Figure 1.
Furthermore, there exists at least one v>™ € T" Yy, v) with v™° # 0.

II={zy =¢}

FiGURE 1. The set J.

The last statement follows from the definition of J in (12). Now let y € J be as in
Proposition 4.3. Proposition 4.3 does not make full use of the fact that all v>° € T" 1(y, v)
are blow—ups of a single measure v in a single point y. The main contribution of this
subsection is to make use of this fact in order to show

0€ J> forallv™ e T (y,v). (29)
Before establishing (29), let us argue that Proposition 4.3 and (29) imply the rectifiability

of J by well-established arguments from geometric measure theory. Indeed, fix a y € J for
which Proposition 4.3 holds. Now (29) combined with (28) implies that e = 0 and thus

J* C{x; =0} forall v>*eT" Yy,v).
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Hence an indirect argument using the weak™-compactness of {v¥"}, o (see Proposition 3.4),
yields the cone property

1 (G NBiy) 0, (30)

rl0 -l

where, say, C, := {8|z1| > |(z2,...,2,)|}. On the other hand, (29) combined with (28)
implies e = 0 and w(0) < 0. Thus we obtain from the Lipschitz continuity of w that there
exists a cone

{:L‘l = O,an Z C|(:L‘2a s axn—1)|} C J* forall v™ € Tn_l(y’ V).

Again by an indirect argument using the weak™-compactness of the sequence {v¥"}, o we
gather that v has positive lower H"~!-density:
v(B
lim inf 7( ()
r]0 rn—1

> 0. (31)

A set J which has the property that there exists some measure v such that (31) and (30)
holds for H" '-a.e. y € J is rectifiable of dimension n — 1, see Proposition B.1.

We now return to the crucial (29). So, for the following, we fix y € J for which Proposition
4.3 holds. The proof is divided in three steps.

e In Step 1, we introduce a functional F on M(R") with the following property: On
T (y,v), F assumes its maximal value 1 for those v = gH" 'L J> for which 0 € J>.

e In Step 2, we show that on 7" !(y,v), the functional F is monotone w.r.t. rescaling
v>® — (1>)% for s > 0.

e In Step 3, we use a continuity argument in the scaling parameter to show that we either
have F(T" (y,v)) = {1}, or we have F(T" '(y,v)) = {0}. This allows us to conclude
(29).

Step 1 A discriminating functional.

In this step, we define a functional F on M(R") and a number r; > 0 such that for any

v =gH" L J>® e T Yy, v)

F(r) € [0, 1], (32)
F®)=1 < 0eJ>, (33)
Fw)=0 = v®(B,(0))=0. (34)

We proceed as follows: The Lipschitz constants of all functions w which may appear for
v>® € T" !y, v) are bounded by the same constant L. Thus we can find a wedge W := {z,, >
cl(wg, ... x,1)|} with the following property: If v> = gH" 'L J*® and J* C {z; = e},
then

yeJ* = (y+W)n{zy=¢} CJ™.
We fix a radial cut—off function: Let ¢(r) be smooth with

{ig:;ig igi:;i} and {gp’(r)<0 forrE[O,l)}.
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Then the value of the functional F for any 7 € M(R") is given by

F(r) = %/Ww(|x|)d7'(x), where b := g/{ :O}OW(‘O(MDdHn_l("E)

and g is the constant in Proposition 4.3. For v> € T" !(y,v) this gives

Fo) =4 [ e,

On the one hand, (28) implies that J> C {x; = e}. Thus

[ ettt [ lapare

{$1:0}QW

with equality only if J* D {z; =0} N W N By(0). This gives (32) and the = in (33). On
the other hand, (28) implies that

JC D{xy =e,x, >w(0) 4+ c|(xg,... ,x01)|}.
Therefore
0eJ* = (e=0andw(0)<0) = J*D{z;=0}NnW.
This implies the <= in (33). Finally, (28) also yields the existence of an r > 0 with
JNWNB0)=0 = J*NB,0)=0.
This gives (34).

Step 2 Monotonicity under rescaling.
In this step, we show that for any v>*° = gH" 1L J> € T" (y,v)

d

oy F((r™)**) > 0 with equality only if F(v*>) € {0,1}. (35)
S s=1

We have by definition of F and (v>°)%* (cf. Definition 3.3)

F()) = 5om /me“o(%') aH a).

Hence we obtain the representation

a
ds

F(@r) = =4[ (flablal+ 0= Dee) @) (36)

s=1

Passing to polar coordinates we get
1
/ o' (|z))|z| dH" M (z) = / @' (r)r H"2(J° N W NOB,(0)) dr
Jonw 0

— /0 1(<p'(r)r"*1) (ﬁ*“H"*?(JOO NwnN 8Br(0))> dr (37)
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and, with an integration by parts,

| elahar @) = [ ety 0w nos.o) dr
JoenWw 0

1
_ / (@ () ) (P H (7 AW N B0)) ) dr . (38)
0
By definition of the wedge W, (28) yields for p > p >0
(e,pxo, ..., pxy) € JNW = (e, pra,...,pr,) € JT.

This implies the following monotonicity

~2—n a2 ym—2( Joo 2—n 4 m—2( 700

P H (J ﬂWﬂaB\/m(O)) < H (J ﬂWﬂaB\/m(O)) s
which for » > 7 > e can be reformulated as

(7 — ) Z H 2 (I N W NABH0)) < (1 —e2) T H* 2(J® N W NIB,(0)).

Since H"2(J>° N W N dBz(0)) = 0 for 7 < |e|, this implies

PR (I NW N OB (0) < TP HMTA(J® N W NOB(0)) . (39)
for all » > 7 > 0. We integrate (39) in 7 and obtain for all r > 0
(n—=1Dr' " H"H (I NWNB(0) < r* "H(JNWNIB(0)). (40)

This in combination with (37), (38) and (36) yields the > in (35).

Equality in (35) enforces equality in (40) for a.e. 1 > > 0. This in turn implies equality
in (39) for a.e. 1 >r > 7 > 0, which yields

either H" 2(J*NWNOB,(0) >0 forae 1>r>0
or  H"2(J*NWNIB(0)=0 forae 1>r>0.

This entails that
either 0€ J>® or J*NWnNB(0)=0,
which according to Step 1 implies that

either F(v>*)=1 or F(>)=0.

Step 3 Compactness and continuity.
Now we consider the function

1) = F @) =5 [ ellel) (@)

and observe that (see Definition 3.3)

a4
ds

= 1 [ (&bl + (2= Vgl (o). "

) = | Fe))

s=1
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Both expressions are continuous under blow—up. That is, if there exist a sequence r;, | 0 and

v> € T" Yy, v) with v "~ 1> then

fre) — F™), (42)
ri f'(ry) — % 71]:((1/00)0’3). (43)

Indeed, for the interior I/IO/ and the closure W of the wedge W we have

/(p(\.ﬂ)dz/oo < liminf/ o(|x]) dv?"™
W Koo Jw

et = tmswp [ (il av.
w w

kToo
This follows from standard arguments since ¢ > 0. The difference between the two integrals
on the left hand side is just the integral over the boundary dW of W. But for this we can
estimate
[ oelha=<g [ afaharet = 0.
ow {z1=e}NOW
This implies (42), and then (43) follows by a similar argument. We use (42) in (41), and the
fact that —¢'(|z|)|z| > 0 by assumption.
Now we claim that for all § > 0 there exist € > 0, rq > 0 such that

Vr < 7g <f(r) e.1—0 = rf(r)> g). (44)
Indeed, assume that not. Then there exists a 6 > 0 with the following property: we can
find a sequence 71, | 0 with f(rg) € [0,1 — ¢] and rf'(ry) < 1/k for all k € N. By weak™-

compactness we may assume (extracting a subsequence if necessary) that ¥ ™ for
some v>* € T" (y,v). Then, because of (42) and (43), we obtain

d

Fw>*)elo1—-46 d —

()€1 amd o

which is a contradiction to (35). This proves (44).

We will show next that if f(r) does not converge to 1 when r | 0, then necessarily f(r)

converges to zero. So fix some ¢ > 0. Then there exist ¢ and ry such that (44) holds. Assume
now that for some r < 19 we have f(r1) € [0,1 — 6]. Then because of (44)

f(r) < f(r1) —elog(ri/r)
for all r such that f([r,r]) C [6,1 — ¢]. Thus there exists a number 0 < ry < r; with
f(r2) < d. Thanks again to (44) we have f(r) < ¢ for all » < ro. This proves that

limlionff(r) <1—-§ = limsup f(r) <.
r r]0

F ((VOO)QS) = 07

s=1

As 6 > 0 was arbitrary, we have that

either lrlfgl f(r)y=1 or lrlfgl f(r)=0.

In view of (42), this translates into:

either F(T" Yy,v))={1} or F(T" '(y,v))={0}.
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By Step 1, this means
either 0€ J* for all v> € T" !(y,v)

45
or  J®NB,0)=0 forallv>®e T (y,v). (45)

It follows from the definitions, that 7" !(y,v) is invariant under rescaling, i.e. (v>)%" €
T Y(y,v) for any r > 0 and v>* € T" !(y,v). Hence the second alternative in (45) would
yield

J*NB,.(0)=0 forallv® e T" '(y,v)andr >0,
and thus 7" !(y,v) = {0}, which is ruled out by the last part of Proposition 4.3. Therefore
the first alternative in (45) must hold, and this concludes the proof of (29).

4.3. J is the jump set.

In this subsection, we prove that J is indeed the jump set in the sense of Theorem 2.4 (a)
and (b). Next to the rectifiability of .J established in the previous subsection, we will use
the characterization of flat split states from Section 6, namely Propositions 6.1 and 6.2.

We start with Theorem 2.4 (a). By definition of J in (12) we have
v* =0 forall v>*eT" Yy,v)and y & J.

We use Proposition 4.2 and Proposition 6.1 (b) from Section 6 to translate this property of
T" Yy, v) into the following property of B>(y)

[e 9]

u™ = const for all u>® € B>®(y) and y & J .

By an indirect argument based on the strong compactness of {u¥"}, o stated in Proposition
3.4, this implies that u has vanishing mean oscillation (cf. Definition 2.3) for y & J.

We now come to Theorem 2.4 (b). According to the previous subsection J is rectifiable.
That is J = |J, Jk, where each of the countably many .J; is contained in a Lipschitz graph.
We prove first that

v> g H" L, with gi(y) > 0 for H" l-ae. y € Jj. (46)

This gives a closer link between v and J beyond the definition (12). Note that H" 'L Jj is
a locally finite Radon measure. From Lebesgue Decomposition Theorem (cf. Theorem 1 of
Section 1.6.2 in [11]) we obtain

v=gH" 'Ly + s, (47)
where v, is the singular part, and g, is the H" 'L .J,density of v, i.e.
B,
gr(y) = lim V(5 () for H* 1-a.e. y € Jj.

o HY(J, N B (y)

Since J}, is rectifiable

n—1
g 7201 B, (9)
rl0 rn—

Then we can use the fact that by definition of J D J

(B:())

) v
lim sup ———
rl0 r

€ (0,00) for H* 1a.e. y € J.

>0 forallye Jg
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to conclude that
g(y) >0 for H* 1-ae. y € J;.
Throwing away the singular part v in (47) gives (46).

Now we use the rectifiability of J to further characterize T !(y,v) for H" 'a.e. y € J.
According to Proposition 4.3 and to (29), we already know that for H" '-a.e. y € J, there
exists an orthonormal coordinate system w1, ... ,x, such that for all v>* € T" (y,v) we
have

V> =gH" 'L J® with J® C {z; = 0}. (48)

On the other hand, we obtain from (46) and the rectifiability of J that for H" '-a.e. y € Jj
and all v>° € T" (y,v)

v > gi(y) K" 'L {z - me(y) = 0}, (49)

where 7 (y) is the normal to Ji in y. Since gx(y) > 0, (48) and (49) yield J* = {z-nx(y) = 0}
and therefore (48) improves to

v =gH" L{z m(y) = 0}. (50)

We now translate (50), which is a property of T"~!(y, v), into a property of B> (y). Indeed,
Proposition 4.2 and Proposition 6.2 (b) from Section 6 give

+ )
u™ = { ZZ 12 %ZZ ' i z 8{ } for all u™ € B*(y) and H" '-a.e. y € J,
where u;,u; € R only depend on y. Here 7, is the normal to J in y. By an indirect
argument based on the strong compactness of {u¥"}, | stated in Proposition 3.4, this implies
the existence of one-sided traces of u on J in the sense of Definition 2.3.

5. CLASSIFICATION OF SPLIT STATES
In this section we will prove

Proposition 5.1. Assume (u, h,v) is a split state with hv # 0. Then there exist constants
L,g > 0 and an orthonormal coordinate system xi, ... ,x, (both only depending on h) with
the following property:
There exist

e a constant e € R, and

e a function w: R"2 — R with Lip(w) < L
such that v = gH" 'L J for some set J of the form

J={x1=¢} or J={ri=¢e,2, > w(r2, ... ,2h-1)}

Remark 5.2. Note that for n = 2 Proposition 5.1 implies that the set J is either empty, or
a line or a half-line. In higher dimensions our characterization gives many more possibilities.
Hence one might be tempted to conjecture that the situation is less complicated. This is not
the case: Our classification of split-states is optimal and it remains optimal even under much
stronger assumptions. In particular, the situation does not become simpler if we consider
fluxes f which are smoother and are genuinely nonlinear in a stronger sense, or if we consider
split states which are entropy solutions of conservation laws in the classical (Kruzkov’s) sense.
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Indeed one can easily check the following:
- Let a(v) := (1,v,v?) and h(v) := v1_11y(v). If L > 0 is sufficiently small then for any
function w : R — R with Lip (w) < L there exists an u : R* — R such that

a(v) - Vox(v,u(x)) = h(v)H*L{zy = 0,2, > w(x3)}.

Moreover w is a classical entropy solution of
1 1
&Dlu + 58332’&2 -+ §3x3u3 = 0.

Note that f' = a € C*° and satisfies the strongest requirement on genuine nonlinearity:
inf, |a’(v)| > 0.

Proof of Proposition 5.1. The proof is divided into four steps.

e In Subsection 5.1 we prove that v = gH" 'L J for some set .J contained in two Lipschitz
graphs and some Borel function g which is strictly positive on J.

e In Subsection 5.2 we use a blow-up argument in y € J and the results of Section 6 to
show that J is contained in a single Lipschitz graph and that g and the normal 7 are
constant on J.

e In Subsection 5.3 we argue that J is contained in at most countably many parallel
hyperplanes II, and that J NIl is the intersection of 2n Lipschitz supergraphs of
dimension n — 1.

e In Subsection 5.4 we use a blow—up argument around points y in the boundary of
J N 11, relative II, and the results of Section 6 to conclude that .J is contained in a
single hyperplane and that it is a single Lipschitz supergraph.

0

5.1. Rectifiability of J.
Let us define

B
J = {yER” limsup%>0}.
rl0

Then we will prove that .J is contained in two Lipschitz graphs and that v = gH" 'L J for
some positive Borel function g.

Definition 5.3. Let vy,... ,v, be such that h(vy), ..., h(v,) # 0 and a(vy), ..., a(v,) span
R™. Then we call the open set

C:=R,(a/h)(v1) +---+ R (a/h)(vn)
the cone spanned by characteristic directions (a/h)(vy), ..., (a/h)(vy,).

We proceed as follows:

e In Step 1 we prove that there exist two cones C* in the sense of Definition 5.3 such
that for any y € R"

viy+CH)=0 or v(y—C7)=0. (51)

e In Step 2, we argue that there exist two Lipschitz graphs G+, G~ such that J, € GTUG™,
where Jj is the support of v

Jo = {z € R" v(B,(z)) > 0 for every r > 0}. (52)
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e In Step 3, we show that there exists a positive Borel function g such that v = gH" 'L J.

Step 1 Since the BV —function h does not vanish identically, it does not vanish on some
open interval. According to genuine nonlinearity we thus can choose n numbers

v, > >v >0l > >0 >0

so that the two sets {v),... v} and {v;,... v, } satisfy the assumptions of Definition
5.3. We call C'* resp. C~ the corresponding cones, see Fig 2.

C+

(a/h)(v)

(a/mEH\ f/ (@B )

(a/h)(vs)

<a/h><v;N (a/h)(v7)

N\
.

4
vV
N

—C~

FIcURE 2. The cones Ct and —C~.

Since Lebesgue points of u are dense and the cones C* are open, it is enough to prove
(51) for any Lebesgue point of w. In fact, for any y € R"™ we can select a sequence y, — y
such that every y, is a Lebesgue point for u. Extracting a subsequence if necessary, we may
suppose that all y, + CT or all y, — C~ are v—negligible because of (51). In the first case
{(yr. + CT) N (y+ CT)}x is an increasing sequence of open sets converging to y + C*. Since
v is Radon, we then have

vy +C7) = lim v((ye + C7) N (y + C7)) < lim vy, +CT) = 0.
In the second case we use a symmetric argument.

So let y € R™ be a Lebesgue point of u. Recall v; > v{". In case of u(y) > v;” we shall
argue that v(y + CT) = 0; in case of u(y) < v] the same argument yields v(y — C~) = 0.

Hence we assume u(y) > v;". Since y is a Lebesgue point for u with u(y) > v}, we have
y is a Lebesgue point of x(v;, u(-)) (53)
with x (v u(y)) = L

According to the definition of split state (20) with v = v}, x(v;", u(+)) is monotone increasing

in direction (a/h)(vy). On the other hand, x(v;,u(-)) < 1. Hence we may conclude from
(53)

Y, is a Lebesgue point of y(v], u(+))
with x(vi, u(y)) = 1.

Since vy < v we have 1 > y(vy, u(+)) > x(v, u(+)). Hence (54) implies

Yy €y + R (a/h)(v]) (54)

Y, is a Lebesgue point of y(vy, u(+))

Y €Y+ R(/MOT) Gk (o uly) = 1.
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We thus may repeat the previous argument with y replaced by y; and v]" replaced by v, .
The analogue of (54) is

Yo is a Lebesgue point of x(vy , u(+))
with x (037, u(y2)) = 1.

But since y; € y + R, (a/h)(v]) was arbitrary, this means that (55) actually holds for all
b2 € g+ Ry(a/B)(ef) + R (a/h)(uf). Since CF = R, (af)(vf) + - + R (a/R)(u) we

obtain after n steps

Vy2 € y1 + Ry (a/h)(v3) (55)

yn is a Lebesgue point of x (v, u(-))
with x(vy, u(y,)) = 1.

Since y + C" is an open set, (56) in combination with (20) for v = v implies as desired
v(y+CT)=0.

Yy, €y+CT (56)

Step 2 Consider the two closed sets
o ={yeR"|viy+C*) =0} (57)

Since C* is an open cone, A7 is the supergraph of a Lipschitz function. Hence G* := . A*
is a Lipschitz graph. By Step 1 we have

R"=ATUA". (58)
Since C* are open, the interior A* of the two sets satisfy

ATNJy=A"NJy=0, (59)
(cf. (52)). One easily concludes from (58) and (59) that as desired
Jo COATUOA™ =GT UG,

Step 3 As in the previous section, we define J to be the set of points in which v has
positive upper H" !-density:

J::{yGR”

lim sup M > O} (60)

10 rh

Since (u, h,v) is a split state, we have a uniform upper bound on the H" '~density of v:
There exists a constant ¢ with

v(B,(y)) < et forevery y € R", r > 0. (61)

Indeed, fix v € R such that h(v) # 0 and let y € R™ be given. Take a sequence of non—
negative radial test functions with ¢, — 1p () pointwise. Clearly we can choose these
functions in such a way that

lin / Vol = H9B.(y)).
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Testing the kinetic equation (20) with ¢, and letting k& T oo then yields

1 .
VB) € grolimsup / x(v,u(@)) a(v) - Veu(e) dz
a(0)]., s

which proves (61).

By Step 2, J C Jp is contained in the union of the two Lipschitz graphs G* and G~.
Because of (61), a Vitali covering argument implies that v = vL J; is absolutely continuous
with respect to the Radon measure H" 'L(G" U G™). Then the Radon-Nikodym Theorem
yields

v=gH" LG UG), (62)
where the density g is defined H" ! a.e. in GT UG~ by
o)t VB

rlo HP=1((GY UG~ )N B.(y))
Because of the Lipschitz graph property, for H* '-a.e. y € Gt UG~
n—1 + - B
i WAEUEINBOD )

Hence, by definition (60) we have J = {y € GTUG | g(y) > 0} modulo some H"'-negligible
set. Then (62) improves as desired to

v=gH"'LJ with g>0on.J. (63)

5.2. Blow—up to hyperplane.
In this subsection, we perform a blow—up in y € J. We will use the results of Section 6 to
characterize these blow—ups. Recall from the previous subsection that there exist a Borel
function g > 0 and a set J contained in the union of two Lipschitz graphs G* (with unit
normal n*) such that v = gH" 'L J. We proceed in two steps
e In Step 1, we will argue that ¢ is constant along J and that ¥ can be chosen constant
along J. Furthermore, both values only depend on h.
e In Step 2, we will show that J is contained in only one of the two Lipschitz graphs G+,
which we call G.

Step 1 Let Qét C G¥ be the set of points of differentiability of the Lipschitz function
determining G*. By Rademacher Theorem we have
H*HG*/Gq) = 0. (64)
According to Step 2 of Subsection 5.1 one can construct a Borel measurable map «a: Jy —
{£} with
ye G forally e Jp.
Let J, C J denote the set of Lebesgue points for both o and ¢g. Then

H*(J/J.) = 0. (65)
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We now obtain from (63) for all y € (G UG ) N J,
= g(y) L™ (y) @ = 0. (66)
Because of (64) and (65), (66) holds for H" '-a.e. y € J.

Fix some point y € J for which (66) holds. From (66) we gather that 7" !(y,v) consists
of the single element

v = g(y) M L™ (y) -2 = 0}

Thus for any u™ € B>®(y), (u™, h,v>) is a flat split state. In Proposition 6.2 (b) of Section
6 we will prove that

o [ ut = sup{v| h(v) 0} on {n*W(y)-x >0}
= { u” = inf{v| h(v) #0} on {na(y)(y) cx <0} } (67)

(after possibly replacing n%® (y) by —n*® (y)). Moreover, we have
g(h() = 1wt (v)a(v) - n*@(y) for allv € R. (68)

Equation (67) uniquely determines u* in terms of h. Furthermore, (68) determines g(y)
and 7°® (y) in terms of h. Indeed, because of genuine nonlinearity we can find n numbers
V1,... U, € (u,ut] such that a(’ul), ... ,a(v,) span R™. Then n°®(y)/g(y) is the intersec-
tion of n hyperplanes {a(v;) - = = h(v )} This fixes both g(y) and n*W (y), since g(y) > 0
and [7*® (y)| = 1.

Step 2 Now let u™ be the number determined in (67). Recall the notation of Step 1 of
Subsection 5.1. In view of h(vy) # 0, (68) implies u™ > v, > v;". We use this fact to argue

Vye (Grug)NnJ. v(iy+CH)=0. (69)

The compactness result stated in Proposition 3.4 and (67) yield that for y € (GJ UG, )N J.,

1
lim—(/ |u—u+|dx—|—/ |u—u‘|d:p):0.
0T A\ B ) B (y)

Since by assumption u > v}, there exists a sequence g, — y such that for every k
yi, is a Lebesgue point of v with u(y.) > v;".

Now the argument from Step 1 of Subsection 5.1 yields v(y, + C™) = 0, which in the limit
k T oo turns into (69).

Since H™ H(J\ (G UG;)NJ.)) =0, (GF UG, )N J. is dense in J. Hence (69) improves
to

VyedJ v(iy+Ch)=0. (70)
Accordlng to deﬁnltlon (57), (70) implies J C A*. On the other hand, by (59) we have
JN A*C JoN AJF— (. Both yield J C 0AT = G™.
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5.3. Rectifiability of 0.J.

In this subsection we prove that up to an H" !'-negligible set, J is contained in at most
countably many distinct hyperplanes {II;}; normal to n. Furthermore, each J N1l is the
intersection of 2n Lipschitz supergraphs of dimension n— 1. Before proceeding we need some
notation.

Definition 5.4. Let vy,... ,v, be such that h(vy), ..., h(v,) # 0 and a(vq),... ,a(v,) span
R"™. Then we call the open set

W= R(a/h)(v1) + R (a/h)(v2) + --- + R (a/h)(vn)
the wedge with axis (a/h)(v1) spanned by the n — 1 characteristic directions
(a/h)(v2), .., (a/h)(vn).

The proof is divided into three steps.

e In Step 1 we prove that there exist 2n wedges WH%, ... W™ in the sense of Definition
5.4 with the following property:

v(iy+ W7 ) =0 or

VyEQd\J Elje{l’"'>n} I/(y—Wj’_):O-

(71)
e In Step 2 we construct a set J which is open relative G and differs from J only by an
H"'negligible set. Furthermore,

J:ﬂ(y—FWj’Jr):O or

VyEg\j Jje{l,...,n} Jﬂ(y_ij*):(].

(72)
e In Step 3 we show that there exist at most countably many distinct numbers {ey };, such
that

j:Uj"” where J; := J N1, I, :={n-x=e}
k

and 7 is the unit normal defined in Step 1 of Subsection 5.2. Furthermore, we have for
any k
— Ji is open w.r.t. II,
— J is the intersection of 2n Lipschitz supergraphs
A,lﬁ’i, . ,AZ’i of dimension n — 1.

Thus J;. has locally finite perimeter w.r.t. IIj .

Step 1 Since the wedges are open and v is a Radon measure, it is enough to prove (71)
for all y € G4\ J. Let C be the cone with respect to which G is a Lipschitz graph (see Step
2 of Subsection 5.1), and let vy, ... ,v, € (u~,u"] be the numbers generating C' in the sense
of Definition 5.3. Because of y € G4, there exists a hyperplane II,, containing the origin such
that y+1I, is tangent to G in y. Since a(vy), ... ,a(v,) span R", there exists a j € {1,... ,n}
such that

a(v;) € 11y, (73)
Because of genuine nonlinearity, we may pick 2(n — 1) numbers
jot

W > > wyT > > wht > > wlt
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such that the sets {v;, wy ™, ... wi*} and {v;,wy ™, ... wi~} satisfy the conditions of Def-
inition 5.4. We call W7 resp. W7~ the corresponding wedges. We will argue that these 2n
wedges satisfy (71).

The idea is the following: Because of y € G; and (73), the characteristic line ¢ := y +
R(a/h)(v;) crosses G only in y. If we had y ¢ J, instead of just y ¢ J, all of ¢ would
be outside the support Jy of v. Because of (20), x(vj,u(-)) should be constant along ¢,
say, of value 1. Hence we may apply the argument from Step 1 of Subsection 5.1, to every
point of £: The cone spanned by (a/h)(v;), (a/h)(wy™), ..., (a/h)(wiT) and attached to a
point of ¢ is outside the support of v. Then the wedge W%+ with axis (a/h)(v;) spanned
by (a/h)(w}y™), ..., (a/h)(wl*) would be outside the support of v. But since we just have
y € J, we have to give a more careful argument.

We think of j being fixed and introduce orthonormal coordinates x1,... ,x, such that
(a/h)(v;) points in direction of (1,0,...,0). We write 2’ = (x3,... ,2,). Because of (73),
there exists a > 0 such that

I, N {2 < alz]} = 0. (74)

Since y € G, is a point of differentiability of the graph G with tangent plane II,, (74) implies
there exists an ry such that

G0 (y+ ({12'] < alui]} N By(0) ) = 0. (75)

Recall that G is a Lipschitz graph with respect to the cone C. Since (a/h)(v;), that is
(1,0,...,0), is one of the characteristic directions spanning C, (75) improves to

G0 (y+ (112'] < alar} N {Ie') < 12 r0}) ) =0, (76)

cf. Figure 3. In view of v = gH" 'L J with J C G, v vanishes on the open set R™"\ G. Hence

the set of
equation (76)

.

!///
M%/ﬁ/
<

\\\\\\\\\

v

y+Hy

Q
%5;//,
7

|

)/éro (y)

.

(a/h)(v;)

FIGURE 3. A two dimensional slice of G. (79) is obtained integrating over the
set bounded by the thick lines.
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we deduce from (20) putting v = v; that
x(v;,u(+)) is constant in direction z7 in each of the two sets
y+ (2] < +aw} 0 {J2'] < 2= o (77)
y+ ({|2'] < —azi} N {|x’| < =0
We also infer from (20) that
X(vj,u(-)) is monotone non-decreasing in direction ;. (78)

On the other hand, for any r > 0 we have

<—ﬁr, ﬁr) x {|x'| < \/1177“} c B.(0).
Thus we obtain from integrating (20) with v = v; (cf. Figure 3)

/ X(Ujau(yl +x1,y'+x'))
{\x’\<

—X(’Uj, U(yl + 21 — ﬁé—r, y' + .I'/))> dl‘ldl'l

S — T
limi/\/uoﬂ / )X(Uj,u(yl +x1,y'+x'))
{wi< it}

—x(vj,ulyn + 21 — =5,y + ') ’ do'dz; = 0. (80)

Since x(vj, u(-)) € {0, 1}, the integrand in (80) also takes values 1 or 0 only. Hence, for each r
small enough it must vanish on a set with positive measure. Select a sequence {ry}x € (0,79)
with 74 | 0. Then we can pick two sequences {y; }, {y; } of numbers

+ 1
Yp € <\/1+a2 r2k> \/1+o¢2 rk;) {|$'| < m k}a

(81)
Yr € _\/1ioﬂ Tk _\/1ia2 %k> {|$/| < Vv Tk}
such that
y and y, are Lebesgue points of x(v;, u(+)) of same value. (82)
Because of

(v % v ) < {7 < i B} © Al <Famdn {0l < 5 3

and the analogous statement, we gather from (82) and (77) that

the rays y;7 + R, (a/h)(v;) and y, — R (a/h)(v;) consist
of Lebesgue points of x(v;, u(+)) of same value.
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We distinguish between the case that this common value (which depends on k) is 1 resp. 0.
If it is 1, then we may argue as in Step 1 of Subsection 5.1 to prove that

v (y/,:r + R, (a/h)(v;) + Cj’Jr) =v (y’ —k—R_ (a/h)(v;) + Cj’Jr) =0, (83)

where C7F is the cone spanned by (a/h)(v;), (a/R)(w§ ™), ..., (a/h)(wh*). Tf this value is 0
we have

v (v +Re(a/h)(v;) = C77) = v (g —Ri(a/h)(v;) =C?7) =0
where C%~ is the cone spanned by (a/h)(v;), (a/h)(w)™), ... (a/h)(w}~). Let us w.lo.g.
assume that the value is 1 for infinitely many k’s. According to (81), both sequences {y;f }x
and {y, }, converge to y. Since v is Radon, (83) turns into

v (y +Ry(a/h)(v)) + C7F) = v (y = R (a/h)(v;) + CF) = 0.
Since by Definition 5.4,
(R, (a/h)(v;) + CPF) U (=R, (a/h)(vj) + CTF) = W™,
we obtain as desired v(y + W) = 0.
Step 2 We define J as follows:
J = G\ (@ D). (34)

By construction, J is open relative G. We now show that J and J only differ by an Hr
negligible set. We first argue that J is not much larger than J. Indeed, since J C G\(G4\J) =
JU(G\ Gq), we have J\ J C G\ G, and thus

HYT\J) <HHG\ Gy) = 0.

We will now argue that .J is not much smaller than .J. We start with

J\J = JNG;\J

C (J\NL) U (G\Ga) U (JNGaN (Ga\J)). (85)
We claim that the last term does not contribute
J.NGaN(Gg\J)=0. (86)

Indeed, for y € J, N Gy we have according to (66) of Subsection 5.2 that the only element
v>® of T" Yy, v) is given by

v =gH" 'L{n -2 =0} (87)

On the other hand we know by Step 1, that for y € G, \ J there exists j € {1,... ,n} such
that, say, v(y + W71) = 0. This is preserved in the blow—up and thus we obtain

vy + Wity =0 forall v™ € T" Yy, v). (88)

Denote by (a/h)(v;) the axis of the wedge W7T. By definition, we have h(v;) # 0 and

thus by (68) (a/h)(v;) -n = g > 0. Hence the axis of the wedge is transversal to the plane

{n-2 = 0}. Therefore (87) and (88) cannot hold simultaneously. This proves (86). Together
with (85) we conclude J\ J C (J\ J,) U (G \ Gq) and thus

H Y INT) <SHTY I\ L) +HHG\ Gy) = 0.
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It remains to show (72). So pick y € G\ J. By definition (84) of .J we have y € Gy \ J
and thus by Step 1 there exists a j € {1,... ,n} with, say, v(y + W?%) = 0. According
to Subsection 5.1 we have v = gH" 'L J with ¢ > 0. According to Subsection 5.2, g is
constant, and according to the above, J and J only differ by an H" '-negligible set. Hence
v(y+Wit) = 0 means H"~1(J N (y+W7*)) = 0. Now observe that both sets .J and y+ W+
are open relative to the Lipschitz graph G. Hence H"'(J N (y + W) = 0 actually implies
as desired that J N (y + Wit) = (.

Step 3 Since the J constructed in Step 2 is open relative to the Lipschitz graph G, it
disintegrates into at most countably many relatively open and connected subsets Ji. Since
by Subsection 5.2, the normal to G is equal to the constant n on each set Ji, there exists
a number e, such that jk C Iy := {n -2 = ex}. Keeping the same notation, we regroup
the jk’s in such a way that JnN I, = jk. So jk is still open relative Ilg, but not necessarily
connected.

It remains to show that .J, has locally finite perimeter w.r.t. the hyperplane II;. To this
purpose, we consider

COE =Wri*En{n-2=0} forje{l,... ,n}
As we have argued in Step 2, the axis of the wedge W7+ is transversal to the plane {n-z = 0}.
Hence C7* is an (n — 1)—dimensional open cone. Let 3Jk be the boundary of Jk relative II,.

Since Jj, is open, 0., C (G \ Ji) N1I;. According to Step 2, we then have

Jk (y + C] +) @ or

vyeajk Elje{]w’n} Jk (y C]—)_(Z)

(89)

Similar to Step 2 of Subsection 5.1, we consider
AP = {y € | J, N (y = CF) = 0},
Since CY* is an open cone, .Ai’i is the supergraph of a Lipschitz function of dimension n —1

and Q,{;’i = 8A£’i is a Lipschitz graph. Every y € dJy is contained in at least one of the sets
AZ* because of (89). Moreover, since .J, N A?® = ) by the openness of J;, we even have

oJy CGytu---UgGrtuUG T U UGl
Thus Jj, is a set of locally finite perimeter.

5.4. Blow—up to half-hyperplane. ) 3

In this subsection, we perform a blow up in y € 0J := |J,, 0Ji, where 0.Jj is the boundary of
Jy. relative IT. We will use the results from Section 6 to characterize the blow—ups. Recall
that by Subsection 5.3, any J; has an inner normal wy, in the sense of sets of finite perimeter.
We proceed in two steps:

e In Step 1 we show for H" 2-a.c. y € d.J;
v = gH" 'L -2 = 0,wi(y) - = > 0}
for all v> € T" (y,v). We conclude from Proposition 6.3 that
wi(y) € C* for H" 2-a.e. y € dJj,

where the convex cone C* only depends on h.
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e In Step 2 we show that .J is contained in a single hyperplane and that .J is a Lipschitz
supergraph of dimension n — 1. Furthermore, the Lipschitz property is given by the
(non—degenerate) dual of the cone C*.

Step 1 Fix k. According to Subsection 5.3 Step 3, J is a set of finite perimeter w.r.t.
;. By the theory of sets of finite perimeter, see for instance Theorem 1 of Section 5.7 in
[11], we have for H" ?-a.e. y € 0J;

(H' 'L )Y == H' - o = 0,wi(y) - = > 0},
In view of v = gH" 'L J, J, = J N1, this implies
vl 2 =0 =gH" "L {n -1 =0,wi(y) - = > 0} (90)

for any v> € T" !(y,v). By the compactness result in Proposition 3.4, there exists an
u™® € B*>(y) such that (u™, h,v™) is a split state.

We now argue that ©> vanishes outside of {n -z = 0}. Since Ji is open relative G, we
have 0J, C G\ J. Hence we may apply Step 2 of Subsection 5.3 to points y € 0J: There
exists a Borel measurable map j: dJ; — {1,...,n} x {£} such that

v(y + WW) =0 forally € dJ, (91)
where W”E = W%, According to Step 3 of Subsection 5.3, there exists a Borel measurable
map j': 0Jpy — {1,... ,n} x {£} such that

Yy e Qi/(y) for all y € d.Jj.
For H" 2 a.e. y € 0.J;,, we have
y is a Lebesgue point of the functions j and j’,
y is a point of differentiability of g,{(”,
wi(y) is the inner normal of A7 ¥,
For such a y we obtain from (91)
v ({n-z=0,w(y) -z =0} + Wj(y)) =0, Ww*eT"(y,v). (92)

To simplify notation, we denote by (a/h)(v;) the axis of the wedge W’®) and by
(a/h)(v2),...,(a/h)(v,) the characteristic directions, see Definition 5.4.

Since a(v1), ... ,a(v,) span R™ and (a/h)(v1)-n = g > 0, a linear algebra argument shows
that

{n-x=0wpy) =0} + W equals either H~ or H,
where the open half spaces HT and H~ are given by
H* :={n-2=0,4wi(y) -z >0} + R(a/h)(v,).
In view of (90) and (92), the first alternative is ruled out. We retain
V¥ (H™) = 0, (93)

cf. Figure 4.
We now argue that also

v (H "\ {n-z=0,w(y) -z >0}) =0. (94)
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the wedge z + W/ the half space H*

the half-hyperplane
{n-z=0,w(y) =z >0}

Vi /=

the half-space H~
(a/h)(v1)

FIGURE 4. The wedges give v>*°(H ™) = 0.

Indeed, because of (90), (20) applied to the split state (u*°, h,v>) and v = vy yields
(a/)(0r) - V(v u(2)) > gH" {2 = 0,y - > 0}, (95)
On the other hand, x € {0,1}. Hence we conclude from (95)
- 1 ae in{n-z=0,wy) -z >0}+R, (a/h)(v1),
x(vr,u™(-) = .
0 ae in{n-z=0wy(y) >0} -R, (a/h)(v1)
Using (20) once again, we see that v vanishes on these two open sets. Since their union is
Ht\{n-x=0,wi(y) - > 0}, we obtain (94), cf. Figure 5.

The results of Subsection 5.3 applied to the split state (u™,h,v>) yield that v>° =
gH™ 11 J>, where J* is contained in countably many hyperplanes normal to 7, where
n only depends on h. In particular, the hyperplane R™\ (H* U H ™), which is transversal to
J°°, carries no measure

VOO(R”\(H+UH_)) =0 (96)
cf. Figure 5.

the set {n-x =0,wk(y) - >0} + Ry(a/h)(v1)

the hyperplane
R\ (HTUH")

the set {n-x =0,wi(y) - >0} —Ry(a/h)(v1)

FIGURE 5. A line ¢ parallel to (a/h)(v;) cannot “meet” the measure in two points.
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We now collect (93), (94) and (96) and combine this with (90) to obtain
v = gH" 'L -2 = 0,wi(y) - = > 0},

Hence (u™, gh, H" ' L{n -2 = 0,wi(y) -z > 0}) is a flat split state for which Proposition 6.3
applies.

Step 2 Since J is a set of locally finite perimeter, the Gauss Theorem holds: for any
¢ € C°(Ily) and any direction 7 with 7-n7 =0

/ &god?'{"l:/ T wp dH" 2.
jk ajk

Hence we conclude from (93) that the characteristic function 1; is monotone nonincreasing

in any direction 7 dual to the cone C*. This implies that .J, is the entire plane II or a
Lipschitz supergraph with a Lipschitz constant only depending on the cone dual to C*.

Now fix a characteristic direction (a/h)(v1). Like in Step 1 we may argue that v vanishes
on the open sets J, = R, (a/h)(v1):

v(Ji+ R (a/h) (1)) = v(Ji = Ry(a/h)(v1)) = 0.
Since v = gH" 'L J with g > 0, this implies
JN (Js + R (a/h)(v1)) = I N (Jy — R (a/h)(v1)) = 0. (97)

If we now assume that there exists another component Jiw of J lying in a different hyperplane
I}, with k" # k, then again Jy is either the entire hyperplane II;, or a Lipschitz supergraph
in II determined by the same cone C' as Ji. Then (see Figure 6)

Jo 0 ((jk + R, (a/h)(v1)) U (Ji — R+(a/h)(vl))) £0

which contradicts (97). Hence J lies in a single hyperplane.

Ty

. (a/h)(v1)

F1GURE 6. Two connected components would give a contradiction.
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6. CLASSIFICATION OF FLAT SPLIT STATES

In this section we will classify flat split states. Loosely speaking, we call a split state
(u, h,v) flat, if the jump set is empty, half of a hyperplane or an entire hyperplane.

o If v =0, we will prove in Proposition 6.1 that u is constant. This may be considered
as a Liouville result.

o If v =H"'L{5-2 =0} for 5 € S" !, we will show in Proposition 6.2 that u is constant
in either half-space {#7 - x > 0}. Furthermore, these constants and the normal +7
are uniquely determined by h. In the language of conservation laws, these split states
correspond to a single shock.

o Ifv=H"'L{f-2=0,0 -2 >0} for some orthonormal pair of vectors 7 and ©, we
will show in Proposition 6.3 that the codimension—two normal @ is constrained to be in
the dual of an n — 1 dimensional cone C, where C' only depends on h. In the language
of conservation laws, these split states correspond to a combination of a shock with a
rarefaction wave.

Proposition 6.1. Let (u, h,v) be a split state.

a) Assume v() =0 for some open set Q C R"™. Then u is continuous in Q.
b) Assume v(R™) = 0. Then u is constant.

Proposition 6.2. Let (u, h,v) be a split state.

a) Assume h # 0 and v = H" 'L for a set O # Q' C {5 -x = 0}, which is relatively
open in the hyperplane, and some unit vector n. Then h is of the form

h(v) = 1(u*,u+}(v)a(v) -1, (98)

for some u~ < ut and a unit vector n. Because of genwine nonlinearity, u* and n are
uniquely determined by h and a. Furthermore

il = 41, u has one-sided traces u™ on €Y. (99)

b) Assume h # 0 and v = H" ' L{5) - x = 0} for some unit vector j. Then in addition to

(a),
u:{zﬁ in {n-x>0}}. (100)

u™ in {n-x <0}

Proposition 6.3. Let (u,h,v) be a split state. Assume h #0 andv =H" 'L{f-2=0,0-
x > 0} for some pair of orthonormal vectors 1,o. Then we have in addition to Proposition
6.2 (a) @ € C*, where C* is the dual cone of

{ the convexr cone generated by the set of directions }

{(alv) - m) (0) = (@) ) a(0)} ey

with respect to the hyperplane {n-x = 0}. Because of genuine nonlinearity, C' is genuinely
(n — 1)—dimensional.



STRUCTURE OF ENTROPY SOLUTIONS 33

6.1. The case of empty jump set.

In this subsection, we prove Proposition 6.1. Both parts of the proposition are a consequence
of the following property which will be established in the sequel. Let 2 C R™ be an open
set with v(Q2) = 0, y € Q a Lebesgue point of v and R > 0 arbitrary with Bg(y) C Q. Then

Ve>0,up € R 36 only depending on a, € and ug, such that

u(y){ - }uo — (u{ iZg;i } a.e. on BJR(@). (101)

Before establishing (101), let us show how it implies Proposition 6.1. We first notice that
(101) can be improved to

Ve >0 36 only depending on a,e and the L>*~bound on u

) — e 102
such that u{ iugz;ng } a.e. in Bsg(y) (102)

by a standard compactness argument. Indeed, let € > 0 be given. Let M be an L>*-bound
on u. Select finitely many numbers {ug }, with

(=M, M] C |, ue +2/2]. (103)
k
Let 05 be the ¢ of (101) belonging to €/2 and u;. We claim that

d :=min{dy,... .4} >0

works for (102). Indeed, because of (103), there exists a k such that u(y) € [ug, ur + £/2].
In particular u(y) > uy so that by (101)

u>up —e/2 ae. in By, r(y) D Bsr(y). (104)
On the other hand, uy > u(y) — /2 so that (104) turns into
u > u(y) —e a.e. in Bsgr(y).
The other inequality in (102) is proved in a similar way.

Property (102) states that there is a locally uniform modulus of continuity in every
Lebesgue point y of u. Since the Lebesgue points are dense, u admits a continuous rep-
resentative in 2. This proves part (a) of Proposition 6.1. For part (b), we fix a Lebesgue
point y of u and send R in (102) to infinity:

Ve>0 J|u(z)—u(y) <e forae. zinR",
which obviously yields as desired u = u(y) a.e. in R".

Let us now argue in favor of (101). The argument is similar to the one given in Step 1 of
Subsection 5.1. By rescaling and translation, we may assume R =1 and y = 0. Let € > 0
and uy € R be given. By genuine nonlinearity, there exist n numbers

Uy > V1 > -+ > Uy > Uy — €,

such that a(v1),. .. ,a(v,) span R"™. Since 0 is a Lebesgue point of u with, say, u(y) > ug > vy,
we have
0 is a Lebesgue point of x(vq, u(+)) with value 1.
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Now (20) for v = vy and v(B;(0)) = 0 yield

Ra(vy) N By(0) are Lebesgue points of x (v, u(-)) with value 1.
Since vy < w1, this yields

Ra(vy) N By(0) are Lebesgue points of x (v, u(-)) with value 1.
We now apply (20) for v = vy and get

(Ra(v1) N B1(0) + Ra(vs)) N By (0)

105
are Lebesgue points of x(vq, u(-)) with value 1. (105)

A simple geometric consideration shows that there exists a d, > 0, only depending on a and

Ra(v1)
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FIGURE 7. Existence of By, (0).

v1, U9 such that
(Ra(vl) N B1(0) + Ra(vg)) N B1(0) D (Ra(v1) + Ra(vy)) N By, (0),
see Figure 7. Hence (105) implies

(Ra(v1) + Ra(ve)) N By, (0)
are Lebesgue points of y(ve, u(-)) with value 1.

We now iterate this argument. Because of Ra(v) + - - - + Ra(v,) = R", we obtain after n
steps the existence of a ¢ := §,, > 0, only depending on a and vy, ... ,v, (and thus on € and
up) such that

Bs(0) are Lebesgue points of x (v, u(-)) with value 1.
This means
u > v, > uy— e a.e. on Bs(0).

The other inequality in (101) is proved in a similar way.
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6.2. The case of a hyperplane as jump set.
In this subsection, we prove Proposition 6.2. We divide the proof into three steps:

e In Step 1, we prove that u has one-sided traces u® on {n -z = 0}.
e In Step 2, we establish (98) and (99).
e In Step 3, we establish (100).

Step 1 We use the argument from Lemma 3.1 in [13]. For notational convenience, we

choose a coordinate system z1,...,x, in such a way that 7 = (1,0,...,0). We denote by
the prime the projection onto the last (n — 1) components. We consider a v € R with
ai(v) # 0. (106)
Since in particular, v({n -z > 0}) = 0, (20) turns into
o x(v,u(z)) + (a'/ay)(v) - V'x(v,u(x)) =0 in D, (107)

in {77- x> 0}. W.lLo.g. we may assume that
(1,2') is a Lebesgue point of x(v,u(-)) for H" '-a.e. 2’ € R* .
We conclude from (107) that for all ; > 0
X (v, u(zy,2')) = x(v,u(l, 2" + (1 — 21)(d'/a1)(v))) for H" '-a.e. 2’ € R (108)

Introducing
xt(, ') = x(v,u(1,2 + (d'/a1)(v))), (109)
we infer from (108)
lim ’X(U,U(l“ul“/)) —xH (v, ") dz’
w10 J B 0)
= lim ’)g(v,u(l,x' + (1 —21)(d /a1)(v)))
w110 B 0)
—x(v,u(1,2 + (d'/a1)(v))) ‘ dr’ =0 (110)

for all R < oco. Hence (109) is the upper trace of x(v,u(-)) on {z; =0} in L} (R"™1).

loc

Because of genuine nonlinearity, (106) holds for a.e. v € R. Hence also (110) holds for
a.e. v € R. We now introduce

at (2" :z/}{x*(v,x')dv. (111)

Because of u(z) = [ x(v,u(x))dv and (110) (which holds for a.e. v € R), we obtain by
dominated convergence

/ lu(zy,2") —at (2")|dz’ — 0 (112)
B%(0)

for z; | 0 and all R < co. Hence (111) is the upper trace of w on {z; = 0} in L}, (R"!). In
a similar way, we establish the existence of lower traces x~ (v,-) and @ .
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Step 2 We first argue that for all but countably many v’s, (v, @%)

E::{UGR

H' ' ({2 e RV i (o)) = v}) > 0}.

For v € R\ E, we conclude from (112) by dominated convergence
[ utan ) = xto @ @)l — 0
Br(0)

as 1 T 0 resp. 1 | 0 for all R < oo.
By assumption, (20) turns into
a(v) - Vax(v,u(x)) = h(oyH" LS,
which we test with ¢ € C5°(R") of the form
(a1, 2") = 1(z1/2) ().
In the limit € | 0, we obtain from (113) (recall that 77 = (1,0,...,0))

a(v) 7 [go-r [X(v, @) = x(v, 0 (2))]¢' (") da’ = h(v) [ ¢'(2')d

forallve R\ E.

Since ¢’ € C5°(R™!) was arbitrary, we conclude
a(v) -7 [x(v,@*(2")) = x(v, @ (a"))] = h(v)
for H" 'a.e. 2/ € QO and v € R\ F.
Since E is countable, there exist an H" !-negligible set £’ such that
a(v) -7 [x(v,@*(2")) = x(v, @ (a"))] = h(v)
forallv e R\ Fand allz’ € Q' \ E'.
Observe that

K0.) = x(wa) = { e e =0

—1(@0{](1)) fora > f3

is the upper resp.
lower trace of x(v,u(+)), i.e. x*(v,-) = x(v,aF). Indeed, consider the countable set

(113)

(114)

Recall that the BV —function h is continuous from the left, that is, h(v —e) — h(v) fore | 0

(see Definition 4.1). Hence (114) improves to
al0) -1 [x(v. 7 (&) ~ x(0, 7 (@)] = h(o)
for allv € Rand all 2’ € Q' \ E'.
Since h # 0 and '\ E’ # ), (115) proves that h is of the form (98).

(115)

On the other hand, since genuine nonlinearity implies that there exists at most one triple

u” < wut, neR"with (115), we conclude
ta)=uFforalla’ € Y\ F
) =uTforalla’ € U\ E

either 7= +n and
or n=-n and u
This establishes (99).
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Step 3 In this step, we will use that according to Proposition 6.1 (a), u is continuous in
R\ {n -z = 0}. Because of genuine nonlinearity, there exists a sequence v; — u™ with
(a/h)(v;) m#0 and v; <u'.
Let y € {n-x = 0} be arbitrary. According to (99) and v; < u™, there exists a sequence
Y — Yy with
n-yr >0 and u(yg) > v;.

This implies that yj, is a Lebesgue point of x(v;, u(-)) with 1. According to (20) and v({n-z >
0}) = 0 we conclude

yr + R (a/h)(v;) are Lebesgue points of x(v;, u(-)) with value 1.

This means

u>wv; on yx+R(a/h)(v)),
which in the limit & T oo turns into

u>wv; on y+R, (a/h)(v)).

Since y € {n-x = 0} was arbitrary, j 1 oo implies that v > u™ on {-x > 0}. The remaining
three inequalities are proved in a similar way.

6.3. The case of a half-hyperplane as jump set. In this subsection, we prove Propo-
sition 6.3. According to Proposition 6.2 (a), we already know that
n==+n and h(v)=a(v)-n forallve (u,ut].
We proceed in three steps
e Let I C (u™,u™] be an interval such that a(v)-n # 0 for all v € I. In Step 1 we prove
I'>v +— (a/h)(v)-@ is monotone non-decreasing.
e In Step 2, we argue that
@- ((a(v) -n)d(v) = (d'(v)-n)alv)) >0 forallve [u,ufl. (116)
e In Step 3, we argue that
‘ { the convex cone generated by the set of directions }

{(alv) ) a'(v) — (@) m)a(0) o

is genuinely (n — 1)-dimensional.

(117)

Step 1 We argue by contradiction and assume that there exists v~ < v € I such that
(a/h)(v7)-@ > (a/h)(vT) - @. (118)

Recall the argument from Step 1 of Subsection 5.4, which loosely can be formulated as:
X(v,u(+)) has to jump from 0 to 1 along a line which crosses the jump set in a transversal
characteristic direction (a/h)(v). More precisely, we conclude from

a(v¥) - Vox(vF, u(z)) = R H™ ' L{n- 2= 0,& -z > 0}
and x € {0,1} that

X(v*,u() = (119)

{ L oaein{y-o=00-220+R,(a/h)07 }
0 ae in{n-z=0a-2>0}-R, (a/h)(v*) |
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Notice that
{n-2=0,0 2>0}£R,(a/h)(v")
={4n-2>0,0-2 - (a/h)(vF) (n-z) > 0}.
We conclude from Proposition 6.1 (a), that u is continuous in the set R"\{n-x = 0,0-z > 0}.
Then (119) translates to

y { >vE in{n-2>0,0-2—a0-(a/h)(v)(n-z) >0} } (120)
<vF in{n-2<0,0-2—a-(a/h)(v%)(n-z) >0}
According to our assumption (118) and by the mean value theorem, there exists v~ < v <
v with
(a/h)(v7) @ > (a/h)(v) -© > (a/h)(v") - @. (121)
Arbitrarily close to {n-z = 0,&-2 < 0}, we can find a Lebesgue point y of x (v, u(+)). Since y

Sy

I
[

I
[
[
[
[
[
[
|

FIGURE 8. The line y + R(a/h)(v).

is close to {n-x = 0,w-x < 0}, the line y+R(a/h)(v) does not intersect {n-z = 0,0-x > 0},
that is, the support of v, see Figure 8. Hence we conclude from (20):

y+ R(a/h)(v) are Lebesgue points of x (v, u(-)) of same value. (122)

We distinguish two cases. The first case is that this common value is 1. Then (122) yields
by the continuity of u

u>v ony+R(a/h)(v)
which contradicts (120) for v~, since v~ < v and since (121) implies
(y+R(a/R)(v)) N{n-2<0,0-2—&-(a/h)(v") (n-z) >0} # 0.
The second case is that this common value is 0. Then (122) yields by the continuity of w

u<v ony+ R(a/h)(v)
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which contradicts (120) for v™, since v < v and since (121) implies
(y+R(a/R)(v)) N{n-2>0,0-2—&- (a/h)(v") (n-z) >0} # 0.

Step 2 Since a is continuous, the set of v € (u™,u™] with a(v) - n # 0 is open. For these
v, the infinitesimal version of Step 1 reads

(a(v) - n) (d'(v) - @) = (d'(v) - n) (a(v) - @) = 0. (123)
Since a is genuinely nonlinear, we have a(v)-n # 0 for almost all v. By a continuity argument,

(123) improves to (116) then.

Step 3 Obviously, the cone C' defined by (117) is contained in the (n —1)-dimensional set
{n-z = 0}. Assume that C' were contained in a linear subspace of {n-z = 0}. This means that
there exists a unit vector w orthogonal to 1 such that C' is contained in {n-z = 0,w-x = 0}.
By definition (117) this would imply

(a(v)-n) (d (W) w)—(d'(v) n)(alv) -w)=0 forallve[u,u] (124)

By genuine nonlinearity and continuity of a, there exists an open interval I C [u~, u*] such
that a(v) - n does not vanish on I. This allows us to rewrite (124) on I as

A (W)@ o o aver,
dv \ a(v) - n
so that there exists a ¢ € R with

w:c for all v € I.

This contradicts the genuine nonlinearity of a.

APPENDIX A.

The following proposition can be stated in a much more general setting, but in view of our
applications and to avoid cumbersome details we will restrict ourselves to a quite specific
situation.

Proposition A.1. Let v be a non—negative finite Radon measure on R"™ and H : R" —
M(R) a weakly measurable map such that the total variation of H, is 1 v-a.e. Then for
v—a.e. y we have

o (L= amas) ) -
for every ¢ € C°(R x R™).

Proof. Select a countable family of functions & C C§°(R) which is dense in Cj°(R) with
respect to the uniform topology. For every ¢ € S, define a function f, € L'(R™) through

foy) == Jg ¢ dHy(v), and put S := Nyes Se» Where
Sy = {y € R"|y is a v-Lebesgue point for f, } .
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Of course, ¥(R™\ S) = 0. We will prove that every y € S satisfies (125). Indeed, let y € S,
and for every ¢ € Cg°(R x R") let us define

AN = 5557 U
oo (/C< )i (o)) )}

Choose ¢ € C5°(R") and ¢ € S. Then we have

/ry>/ (571) ¢ (v) dHo(v) dv(z) = /Br(y)w(m;y)f@(x) dv(z)

[ wletya, < e = £) [ o0 i),
R xBr(y) Br(z)

IR
Br(y)
< 9] /B L Vo0) = o)l dvta).

Since x is a v-Lebesgue point for f,, we have

i 1 =y — z))dv(x) =
B o, PRI~ o) dvta) = 0.

and we conclude that

>H><1/ x)

Moreover

) (fo(y) = fol@)) dv(2)

lim F (s, 7) = 0.

This proves (125) for any function ¢ € C§°(R x R™) such that there exist ¢1,...,¢, € S,
Y1, 1, € CP(R™) with ¢ = >, 1¢;¢;. These functions are dense in Cg°(R x R™).
Moreover, it is easy to see that

[F(Cr) = F (&) < 2[|¢ = €l
for all ¢,& € Cg°(R x R™). This completes the proof. O

APPENDIX B.

The following proposition is a particular case of the best known and most widely used
criterion for rectifiability, see Theorem 15.19 of [18]. We give here a proof for the reader’s
convenience.

Proposition B.1. Let v be a non—negative locally finite Radon measure on R™. Let J C R"
be a set with the following properties

e For all y € J there ewist orthonormal coordinates x,... ,x, such that with C,
{8|l’1| > I(l‘g, s ’xn)|}

- v((y+Cy) N B (y))

= 0.
rlO rnfl
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o ForallyeJ

Then J is contained in a countable union of Lipschitz graphs.

Proof. We need to show that J can be decomposed into countably many pieces, each of
which is a Lipschitz graph. We proceed as follows. First, fix some orthonormal coordinate
system Xi,...,X, and consider the two-sided cone C' := {4|X;| > |(Xo,...,X,)|}. Then
there exist finitely many cones C1, ... ,Cy all obtained by a suitable rotation of C' around
the origin, such that for any orthonormal coordinate system zi,... ,z, there exists a k €
{1,...,N} with

{8lz1| = [(2, ..., @a)[} D Ci.

This induces a decomposition of J into subsets Ji, ..., JJy such that

v((y+ Cr) N B, (y))

Tnfl

= 0.

Vy € Ji i

Yy e Jk 7}{61
Now we decompose J;, further into countably many subsets J,i’m for [,m € N in such a way
that
v((y+ Ch) N By (y)) < ot
v(Br(y)) >
We consider one such J,i’m and assume that in a suitable coordinate system Cj = {4|x;| >
||} with 2/ := (z2,... ,x,). Then we have (see Figure 9)

w € 2|z > 2|}, lw| =5r = B.(w)C {4|x] > |2'|}. (127)

weyan%{ (126)

x1

FIGURE 9. Explanation of (127).

The proof is straightforward. Choose ¢ € B,(w). Then

4G A(lwr] = [ = wi]) = 4(Jwr| = [¢ = w])
A(Jwi| = 7) = 2w| —4r = |w| +r
¢l = w—=Cl+r =1l

(A\VARAVARLY]
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Now we claim that
Yy e o™ I (y + {2]z1| = |2']}) N Bss(y) = 0. (128)

Indeed, assume not. Let z be a point in that intersection. Then we put r := é|z —y| <9,
and since z —y € {2|z1]| > |2'|} and |z — y| = 5r, we have by (127) that

B,(2) Cy+ {dlz] = 2]}
Obviously, B,(z) C Bg-(y) so that
B.(2) C (y+ {4lz1| = [2']}) N Bor(y)

This contradicts (126). Hence (128) is proved. We split Ji"™ into countably many subsets
which are contained in a ball of radius 26. After relabeling, we obtain a decomposition of Jj
into countably many pieces Ji ; such that

Vj ‘v’y S Jkyj Jkyj N (y + {2|l’1| > |1',|}) :®

because of (128). Hence, every Ji; is contained in a Lipschitz graph. This proves the
proposition. 0
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