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QUANTIZATION OF A MODULI SPACE OF PARABOLIC HIGGS
BUNDLES

INDRANIL BISWAS AND AVIJIT MUKHERJEE

Abstract. Let Ms
H be a moduli space of stable parabolic Higgs bundles of rank two

over a Riemann surface X . It is a smooth variety over C equipped with a holomorphic
symplectic form. Fix a projective structure P on X . Using P , we construct a quantization
of a certain Zariski open dense subset of the symplectic variety Ms

H .

1. Introduction

Let X be a compact connected Riemann surface and S ⊂ X a fixed finite subset.

A parabolic vector bundle E∗ of rank two over X consists of a rank two holomorphic

vector bundle E, a line Fs ⊂ Es and λs ∈ (0 , 1) for each s ∈ S. A Higgs field on

E∗ is a holomorphic section θ of End(E) ⊗KX ⊗OX(S) with θ(s) nilpotent for the flag

0 ⊂ Fs ⊂ Es for each s ∈ S. The pair (E∗ , θ) is called a parabolic Higgs bundle. In [7]

the notion of a Higgs bundle was introduced and stability of a Higgs bundle was defined.

Let Ms
H denote the moduli space of all stable parabolic Higgs bundles of rank two over

X of fixed degree and parabolic weights. The moduli space Ms
H is a smooth irreducible

quasiprojective complex variety. The variety Ms
H has a natural algebraic symplectic

structure, which we will denote by Ω.

The symplectic form Ω defines a Poisson structure on OMs
H
, the sheaf of complex valued

algebraic functions on Ms
H . A quantization of Ω is a one–parameter family of associative

algebra structures on OMs
H

deforming the abelian algebra structure defined by point-

wise multiplication, with the infinitesimal deformations of the pointwise multiplication

structure being governed by the Poisson structure.

Any symplectic structure admits a quantization, but there is no uniqueness of quanti-

zation in the sense that the space of all quantizations of a symplectic structure is infinite

dimensional. The main result here is to produce a canonical quantization of the symplec-

tic form Ω on a Zariski open dense subset U of the moduli space Ms
H once a projective

structure on X has been chosen (Theorem 3.2).

A projective structure on X is defined by giving a covering of X by holomorphic co-

ordinate charts such that all the transition functions are Möbius transformations. The

space of all projective structures on X is nonempty. The Zariski open subset U ⊂ Ms
H

over which the quantization of Ω is constructed does not depend on the choice of the

projective structure needed in the construction.
1
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2. Quantization, parabolic Higgs bundles, and projective structure

2.1. Quantization. Let M be a complex manifold. Its holomorphic tangent bundle will

be denoted by TM . Let Θ be a holomorphic symplectic form onM and τ : T ∗M −→ TM

the holomorphic isomorphism defined by Θ. So τ−1(v)(w) = Θ(w, v), where v, w ∈ TxM

and x ∈M .

Let f and g be any two holomorphic functions defined on some open subset U on M .

Sending the pair (f , g) to the holomorphic function

{f , g} := Θ(τ(df) , τ(dg))

over U defines a holomorphic Poisson structure on the space of all locally defined holo-

morphic functions on M . Let H(M) denote the algebra of all locally defined holomorphic

functions on M . Let A(M) := H(M)[[h]] be the space of all formal Taylor series

f :=

∞∑
j=0

hjfj

where fj ∈ H(M) and h is a formal parameter.

A quantization of the Poisson structure is an associative algebra operation on A(M),

which is denoted by �, satisfying the following conditions; see [9], [1], [4], [5] for the details.

For any element g :=
∑∞

j=0 h
jgj ∈ A(M) the product

f � g =
∞∑

j=0

hjφj

satisfies the following conditions

(1) each φi ∈ H(M) is some polynomial (independent of f and g) in derivatives (of

arbitrary order) of {fj}j≥0 and {gj}j≥0;

(2) φ0 = f0g0;

(3) 1 � f = f � 1 = f for every f ∈ H(M);

(4) f � g − g � f =
√−1h{f0 , g0} + h2β, where β ∈ A(M) depends on f, g.

We will now describe the Moyal–Weyl quantization which will be used here.

Let V be a complex vector space of dimension 2n. Let Θ be a constant symplectic

form on V . In other word, Θ ∈ ∧2 V ∗ defining a nondegenerate skew-symmetric bilinear

form on V . As before, H(V ) is the space of all locally defined holomorphic functions on

V equipped with the Poisson structure.

Let

∆ : V −→ V × V

denote the diagonal homomorphism defined by v �−→ (v , v). There exists a unique

differential operator

(2.1) D : H(V × V ) −→ H(V × V )
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with constant coefficients such that for any pair f, g ∈ H(V ),

{f , g} = ∆∗D(f ⊗ g)

where f ⊗ g is the function on V × V defined by (u , v) �−→ f(u)g(v) [9], [5].

The Moyal–Weyl algebra is defined by

(2.2) f � g = ∆∗ exp(
√−1hD/2)(f ⊗ g) ∈ A(V )

for f, g ∈ H(V ), and it is extended to a multiplication operation on A(V ) using the

bilinearity condition with respect to h. In other words, if f :=
∑∞

j=0 h
jfj and g :=∑∞

j=0 h
jgj are two elements of A(V ), then

f � g =
∞∑

i,j=0

hi+j(fi � gj) ∈ A(V ) .

It is known that this � operation makes A(V ) into an associative algebra that quantizes

the symplectic structure Θ. See [1], [9] for the details.

Let Sp(V ) denote the group of all linear automorphism of V preserving the symplectic

form Θ. The group Sp(V ) acts on A(V ) in an obvious way namely, (
∑∞

j=0 h
jfj) ◦ G =∑∞

j=0 h
j(fj ◦ G), where G ∈ Sp(V ). The differential operator D in (2.1) evidently com-

mutes with the diagonal action of Sp(V ) on V × V . This immediately implies that

(2.3) (f ◦G) � (g ◦G) = (f � g) ◦G .
for any G ∈ Sp(V ) and f, g ∈ A(V ).

2.2. Projective structure. Let P(V ) denote the projective line consisting of all one–

dimensional subspaces of a complex vector space V of dimension two. The group of

all automorphisms of P(V ) coincides with PSL(V ) := SL(V )/(Z/2Z), where Z/2Z is

the center of SL(V ) consisting of ±IdV . Note that choosing a basis of V , the Möbius

group (the group of all fractional linear transformations of Ĉ = CP
1) gets identified with

PSL(V ).

By a holomorphic coordinate function on X we will mean a pair of the form (U , φ),

where U ⊂ X is some open subset and

(2.4) φ : U −→ P(V )

a holomorphic embedding. By a holomorphic atlas on X we will mean a collection of

holomorphic coordinate functions {(Ui , φi)}i∈I such that⋃
i∈I

Ui = X .

Let {(Ui , φi)}i∈I be a holomorphic atlas satisfying the condition that for each pair (i , j) ∈
I × I with Ui ∩ Uj 	= ∅ there is an element Ti,j ∈ Aut(P(V )) such that the transition

function φi ◦ φ−1
j coincides with the restriction of Ti,j to φj(Ui ∩ Uj).
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Another holomorphic atlas {(Uj , φj)}j∈J satisfying this condition on transition func-

tions is called equivalent to {(Ui , φi)}i∈I if the above condition on transition functions

holds also for the union {(Uk , φk)}k∈I∪J . A projective structure on X is an equivalence

class of holomorphic atlases satisfying the above condition on transition functions [6].

Any Riemann surface admits a projective structure. The uniformization theorem says

that the universal cover of X is biholomorphic to either C or CP1 or the upper half

plane H. Since the group of all automorphisms of each of these three Riemann surfaces

is contained in the Möbius group, X has a natural projective structure. The space of

all projective structures on X is an affine space for H0(X, K⊗2
X ), the space of quadratic

differentials.

Let

(2.5) Z := KX \ 0X

be the complement of the zero section of the total space of the holomorphic cotangent

bundle. The total space of KX has a natural algebraic symplectic structure. (We recall

that the total space of KX has a tautological one–form on it; its exterior derivative defines

the symplectic structure.) Let

(2.6) θ0 ∈ H0(Z, Ω2
Z)

be the algebraic symplectic form on Z obtained by restricting the natural symplectic form

on the total space of KX .

Given a projective structure on X, there is a natural quantization of the symplectic

form θ0 on Z [2]. We will briefly recall the construction of the quantization.

First consider the special case X = P(V ). The symplectic surface, defined in (2.5),

corresponding to P(V ) will be denoted by Z0. After fixing a nonzero element in the line

Θ ∈ ∧2 V ∗, we have an isomorphism Z0 = (V \ {0})/σ, where σ is the involution that

sends any v ∈ V to −v. Since the symplectic structure on V defined Θ is preserved by

the involution σ, it descends to a symplectic structure on the quotient (V \ {0})/σ. The

above identification of (V \ {0})/σ with Z0 takes this descended symplectic structure to

θ0 defined in (2.6). Consider the Moyal–Weyl quantization of the symplectic form Θ on V

(see (2.2)). Using the identity (2.3) for σ ∈ Sp(V ) the Moyal–Weyl quantization descends

to a quantization of the symplectic structure θ0 on Z0.

Let X be a Riemann surface equipped with a projective structure P. Let φ be an

embedding as in (2.4) for P. Let p0 (respectively, p) be the projection of Z0 (respectively,

Z) to P(V ) (respectively, X). The differential dφ identifies p−1
0 (φ(U)) with p−1(U), and the

map clearly preserves the symplectic forms. Therefore, the quantization over p−1
0 (φ(U)),

obtained by restricting the above quantization of Z0, gives a quantization of θ0 over

p−1(U).
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For another map φ′ : U ′ −→ P(V ) as in (2.4) for P, we have φ′◦φ−1 =: G ∈ PSL(V ).

Now the identity (2.3) ensures that the two quantizations on p−1(U) and p−1(U ′) coincide

over p−1(U∩U ′). Therefore, we have constructed a quantization of the symplectic manifold

Z. See [2] for more details.

2.3. Parabolic bundles. Let X be a compact connected Riemann surface of genus gX .

Fix a finite subset

S := {s1, s2, · · · , sn} ⊂ X .

Assume that n = #S ≥ 4 if gX = 0, and if gX = 1 then n ≥ 1. If g ≥ 2, then n is

allowed to take any value in N.

A parabolic vector bundle E∗ of rank two over X with parabolic structure over S consists

of the following [8]:

(1) a holomorphic vector bundle E of rank two over X;

(2) for each point s ∈ S, a line Fs ⊂ Es (called the quasiparabolic flag);

(3) real numbers λs ∈ (0 , 1), s ∈ S (called parabolic weights).

A Higgs structure on the parabolic vector bundle E∗ is a holomorphic section

(2.7) θ ∈ H0(X, End(E) ⊗KX ⊗OX(S))

with the property that for each s ∈ S, the image of the homomorphism

θ(s) : Es −→ (E ⊗KX ⊗OX(S))s

is contained in the subspace Fs ⊗ (KX ⊗OX(S))s and θ(s)(Fs) = 0 [7], [3].

For a general rank two parabolic bundle E∗ as in [8], at each point s ∈ S there are

two parabolic weights. However given a general set of weights, say 0 ≤ αs < βs < 1,

if we replace it by the single nonzero weight βs − αs, then the parabolic (semi)stability

condition remains unchanged. So the moduli space of parabolic Higgs bundles remains

unchanged. Hence there is no loss of generality due to our assumption that at each s ∈ S

there is exactly one nonzero parabolic weight.

We fix real numbers {λs}s∈S and an integer d. Unless specified otherwise, henceforth

by a parabolic vector bundle we will always mean a parabolic vector bundle of rank two

and degree d and parabolic weights λs, s ∈ S.

The moduli space of stable parabolic Higgs bundles is an irreducible smooth quasipro-

jective variety of dimension 8gX − 6 + 2n. This moduli space will be denoted by Ms
H .

There is a canonically defined algebraic symplectic form on the moduli space Ms
H , which

we will denote by Ω. The construction of this symplectic form Ω can be found in [7], [3].
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3. Quantization of Ω

Fix one of the points, say s1 ∈ S, over which the parabolic structure is defined. We

start with the following lemma:

Lemma 3.1. There is a nonempty Zariski open dense subset U1 ⊂ Ms
H such that for all

parabolic Higgs bundle (E∗ , θ) in U1

(1) dimH0(X, E ⊗OX((gX − 1/2 − d/2)s1)) = 1 if the degree d of E is odd;

(2) if d = 2d′, d′ ∈ Z, then

dim{β ∈ H0(X, E ⊗OX((gX − d′)s1)) | β(s1) ⊂ Fs1} = 1

where Fs1 ⊂ Es1 is the line defining the quasiparabolic structure over the fixed point s1.

Proof. First consider the case where the degree d is odd. Then

degree(E ⊗OX((gX − 1/2 − d/2)s1)) = 2gX − 1 .

Hence dimH0(X, (E⊗OX((gX−1/2−d/2)s1)−dimH1(X, (E⊗OX((gX−1/2−d/2)s1) =

2gX − 1 − 2gX + 2 = 1. So

(3.1) dimH0(X, (E ⊗OX((gX − 1/2 − d/2)s1) ≥ 1 .

But for the general stable vector bundle V of rank two and degree 2gX − 1 we have

H1(X, V ) = 0. (The general stable bundle W of degree d0 with d0 ≥ rank(W )(gX − 1)

has H1(X, W ) = 0; all W with H1(X, W ) 	= 0 form the generalized theta divisor on

the moduli space when d0 = rank(W )(gX − 1).) Therefore, there are stable parabolic

Higgs bundles (E∗ , θ) with dimH0(X, E) = 1. Now the inequality (3.1) combined

with the semicontinuity of dimH0 shows that there is a nonempty Zariski open subset

U1 ⊂ Ms
H with dimH0(X, E⊗OX((gX − 1/2− d/2)s1)) = 1 for all (E∗ , θ) in U1. (The

semicontinuity of dimH0 says that in a family of vector bundles where dimH0 attains

minimum is Zariski open.) Since Ms
H is irreducible, U1 is Zariski dense as well.

Now consider the case d = 2d′, with d′ ∈ Z. For a parabolic Higgs bundle (E∗ , θ),
with E as the underlying vector bundle, let V be the vector bundle over X that fits in

the following exact sequence of sheaves

0 −→ V −→ E ⊗OX((gX − d′)s1) −→ (Es1/Fs1) ⊗OX((gX − d′)s1)s1 −→ 0 ,

where Fs1 ⊂ Es1 is the flag for the parabolic structure and OX((gX − d′)s1)s1 is the

fiber of the line bundle OX((gX − d′)s1) over s1; the (right–hand side) surjective map in

the above exact sequence is simply the one dimensional quotient of the restriction of the

vector bundle E ⊗OX((gX − d′)s1) to the point s1 ∈ X.

So H0(X, V ) ⊂ H0(X, E ⊗OX((gX − d′)s1)), and from the above exact sequence it is

immediate that

H0(X, V ) ∼= {β ∈ H0(X, E ⊗OX((gX − d′)s1)) | β(s1) ⊂ Fs1} .
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On the other hand, degree(V ) = 2gX−1, and hence dimH0(X, V )−dimH1(X, V ) = 1.

Since for the general V with degree(V ) = 2gX − 1 we have H1(X, V ) = 0, it follows

immediately using the semicontinuity of dimH0 that on a Zariski open dense subset U1 of

Ms
H the condition dimH0(X, V ) = 1 holds. This completes the proof of the lemma. �

Fix a positive integer δ such that 2(δ + gX) − 1 > max{0 , 6(gX − 1) + #S}. Set

δ0 := 2(δ + gX) − 1

if d is odd, and if d is even then set

δ0 := 2(δ + gX) .

Let Mδ0
H denote the moduli space of all rank two stable parabolic Higgs bundles (E∗ , θ),

where E∗ is a parabolic vector bundle of degree δ0 with parabolic weights λs at s ∈ S (same

as the ones fixed in Section 2.3) and θ a Higgs structure on E∗. Let Mδ0
T denote the moduli

space of triples of the form (E∗ , θ , s), where (E∗ , θ) ∈ Mδ0
H and s ∈ H0(X, E) \ {0} a

nonzero section (see [3]). The projection

(3.2) p : Mδ0
T −→ Mδ0

H

that sends any (E∗ , θ , s) to (E∗ , θ) is a smooth projective bundle with the fiber over the

point in Mδ0
H corresponding to (E∗ , θ) being PH0(X, E), the projective space of lines in

H0(X, E); the numerical condition on δ0 ensures that dimH0(X, E) is independent of E

(see [3]).

Given a parabolic vector bundle E∗ and any line bundle L, the tensor product E ⊗ L,

where E is the underlying vector bundle for E∗, has a natural parabolic structure induced

by the parabolic structure of E∗; this parabolic vector bundle will be denoted by E∗ ⊗L.

The parabolic weights remain unchanged and Fs ⊗ Ls ⊂ Es ⊗ Ls is the quasiparabolic

flag for E∗ ⊗ L at the parabolic point s, where Fs ⊂ Es is the flag for E∗. If θ is a

Higgs structure on E∗, then θ defines a Higgs structure on E∗⊗L in an obvious way. The

parabolic Higgs bundle (E∗ ⊗ L , θ) is stable if and only if (E∗ , θ) is so.

For any (E∗ , θ) ∈ Ms
H define

(3.3) E ′
∗ := E∗ ⊗OX((gX − 1/2 − d/2 + δ)s1)

if d is odd, and define

(3.4) E ′
∗ := E∗ ⊗OX((gX − d′ + δ)s1)

if d = 2d′. So (E ′
∗ , θ) ∈ Mδ0

H . The resulting isomorphism

(3.5) ψ0 : Ms
H −→ Mδ0

H

that sends any (E∗ , θ) to (E ′
∗ , θ) preserves the symplectic structures of the two moduli

spaces of stable parabolic Higgs bundles, that is,

ψ∗
0Ω

′ = Ω
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where Ω (respectively, Ω′) is the algebraic symplectic form on Ms
H (respectively, Mδ0

H)

(see Section 2.3).

Take any (E∗ , θ) ∈ U1, where U1 is the open subset in Lemma 3.1. Let β be a

nonzero section of H0(X, E⊗OX((gX −1/2−d/2)s1)) (respectively, a nonzero section of

H0(X, E⊗OX((gX − d/2)s1)) with β(s1) ⊂ Fs1) if d is odd (respectively, even). Lemma

3.1 ensures that there is such a section and any two choices of β differ by the multiplication

with an element in C∗.

Let

(3.6) ψ : U1 −→ Mδ0
T

be the map that sends any (E∗ , θ) to the triple (E ′
∗ , θ , β ⊗ sδ), where sδ is the section

of the line bundle OX(δs1) defined by the constant function 1 (recall that δ > 0); the

parabolic vector bundle E ′
∗ is defined in (3.3) and def.-E-prime-2. Since any two choices

of β differ by a nonzero scalar multiplication, the above map ψ is well defined. Note that

p ◦ ψ = ψ0 over U1, where p and ψ0 are defined in (3.2) and (3.5) respectively.

Let Z denote the total space of the line bundle KX ⊗ OX(S). In [3] we considered a

map from Mδ0
T to the Hilbert scheme Hilbl(Z), where l is 4gX + 2δ + n− 3 (respectively,

4gX + 2δ + n − 2) if d is odd (respectively, even) with n = #S (see Section 3.1 of [3]).

Let

(3.7) ψ1 : U1 −→ Hilbl(Z)

be the composition of this map with ψ defined in (3.6). Using this map ψ1 we will

construct a map from a nonempty Zariski open subset of U1 to Hilb4gX+n−3(Z).

For this first note that the above section sδ of the line bundle OX(δs1) vanishes at the

point s1 of order δ. Let 0s1 ∈ (KX ⊗OX(S))s1 ⊂ Z be the zero vector in the fiber over

s1 of the line bundle KX ⊗OX(S). If d is odd, then for any y ∈ U1 the zero dimensional

subscheme

ψ1(y) ∈ Hilbl(Z)

has the property that 0s1 occurs in ψ1(y) of multiplicity at least 2δ (as sδ vanishes at s1

of order δ); this means that the image of ψ1(y) by the forgetful map from Hilbl(Z) to the

symmetric product Syml(Z) has the property that 0s1 occurs with multiplicity at least 2δ.

If ψ1(y) = (E ′
∗ , θ , β ⊗ sδ), then the spectral curve corresponding to the parabolic Higgs

bundle (E ′
∗ , θ) is (totally) ramified over s1 and it passes through 0s1 ∈ (KX ⊗OX(S))s1

(see [3]). Therefore, as β ⊗ sδ vanishes at the point s1 of order δ, it follows immediately

that 0s1 occurs in ψ1(y) of multiplicity at least 2δ.

If d is even, then 0s1 occurs in ψ1(y) with multiplicity at least 2δ + 1. The extra

multiplicity is due to the condition that if ψ1(y) = (E ′
∗ , θ , β ⊗ sδ), then the evaluation

β ⊗ sδ(s1) lies in the line in the fiber E ′
s1

defining the quasiparabolic structure over s1.
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Let Z ′ := Z \ {0s1} ⊂ Z be the complement of the point. There is a Zariski open

subset U2 ⊂ U1 and a (unique) map

(3.8) ψ2 : U2 −→ Hilb4gX+n−3(Z ′)

satisfying the condition that ψ1(y) ∩ Z ′ = ψ2(y) for all y ∈ U2, where ψ1 is defined

in (3.7). That U2 is a Zariski open subset follows immediately from the fact that Z ′ is

Zariski open dense in Z. To prove that U2 is nonempty first note that if U2 is an empty

set then the above remarks on the multiplicity of ψ1(y) at 0s1 imply that

dim image(ψ1) < 2l − 4δ − 1 − (−1)d = 8gX + 2n− 6 .

On the other hand, dimU1 = 8gX + 2n− 6 and ψ∗
1Θ = Ω, where Θ is the meromorphic

symplectic form on Hilbl(Z) (see [3, Theorem 3.2]). Consequently, dim image(ψ1) =

dimU1.

So we have a map ψ2 as in (3.8) where U2 is a nonempty Zariski open dense subset of

U1. Note that dimU2 = dim Hilb4gX+n−3(Z ′). Also, the map ψ2 is dominant. Indeed,

this is an immediate consequence of the main result of [3] (see [3, Theorem 3.2]) that the

meromorphic symplectic form on Hilb4gX+n−3(Z ′) pulls back to the symplectic form on

U2.

Let U ′′ ⊂ Hilb4gX+n−3(Z ′) be the Zariski open dense subset corresponding to distinct

4gX + n− 3 points of Z ′. Let pX : Z ′ −→ X be the natural projection. Define

U := {y ∈ U ′′ | y ∩ (p−1
X (S) ∪ 0X) = ∅}

where 0X is the image of the zero section of the line bundle KX ⊗ OX(S). So U is a

Zariski open dense subset of Hilb4gX+n−3(Z ′). It is easy to see that the complement of U

is a divisor of Hilb4gX+n−3(Z ′). Set

U := ψ−1
2 (U)

which is a Zariski open dense subset of U2, where ψ2 is defined in (3.8). Let

(3.9) ψ̂ : U −→ U

be the restriction to U of the map ψ2.

Given a projective structure on X, we will show that the above defined Zariski open

dense subset U ⊂ Ms
H equipped with the symplectic form Ω (see Section 2.3) has a

natural quantization.

The meromorphic symplectic form Θ on Hilb4gX+n−3(Z) defines a symplectic form on

the open subset U , as the pole of Θ is supported on the divisor of Hilb4gX+n−3(Z) consisting

of all zero–dimensional subschemes with support intersecting p−1
X (S). We have ψ̂∗Θ = Ω

[3, Theorem 3.2]. Therefore, to quantize Ω over U it suffices to quantize Θ over U , as

using ψ̂ a quantization of Θ over U gives a quantization of Ω over U . We will construct

a quantization of Θ over U .



10 I. BISWAS AND A. MUKHERJEE

Recall the variety Z defined in (2.5). Set

Z0 := Z \ p−1(S) ⊂ Z
where p, as in Section 2.2, is the projection of Z to X. Let

Ẑ ⊂ (Z0)4gX+n−3

be the Zariski open dense subset of the Cartesian product parametrizing all distinct

4gX + n− 3 points of Z0. Let Σ be the permutation group of {1, 2, · · · , 4gX + n− 3}. So

Σ acts freely on Ẑ and the quotient

(3.10) Ẑ/Σ = U .

The identification of U with Ẑ/Σ follows immediately from the definitions of U and Ẑ.

The symplectic structure θ0 on Z (see (2.6)) defines a symplectic structure θm on the

Cartesian product Zm for any m ≥ 1. For any point z := (z1, · · · , zm) ∈ Zm and

vi, wi ∈ Tzi
, i ∈ [1 , m], we have

θm(v , w) :=
m∑

i=1

θ0(zi)(vi , wi)

with v := (v1, · · · , vm) and w := (w1, · · · , wm) in TzZm.

Since the action of Σ preserves the symplectic form on Z4gX+n−3, and Σ acts freely on

Ẑ, the quotient Ẑ/Σ gets a symplectic structure. In other words, the symplectic form on

Ẑ descends to Ẑ/Σ The identification in (3.10) takes this symplectic form on Ẑ/Σ to the

symplectic form Θ on U . Indeed, this follows immediately from the definition of Θ.

Fix a projective structure on P on X. Using P we have a quantization of the sym-

plectic structure θ0 on Z (see Section 2.2). This quantization gives a quantization of the

symplectic structure θm on Zm for all m ≥ 1. The action of the permutation group Σ on

(Z0)4gX+n−3 preserves the quantization. Indeed, this is an immediate consequence of the

identity in (2.3). (Note that for the direct sum of copies of a symplectic vector space, the

induced symplectic form on the direct sum is preserved by the action of the permutation

group that permutes the factors of the direct sum.) Consequently, the quantization of the

symplectic form θ4gX+n−3 on Ẑ descends to a quantization of the symplectic variety Ẑ/Σ
(as the quantization is invariant under the action of Σ).

Thus we have constructed a quantization of the symplectic structure Θ over U . There-

fore, we have proved the following theorem:

Theorem 3.2. Let X be a compact Riemann surface equipped with a projective structure

P. The projective structure P gives a quantization of the Zariski open dense subset U ⊂
Ms

H equipped with the symplectic form Ω.

The map from the space of all projective structures onX to the space of all quantizations

of (Z , θ0) that sends a projective structure to the quantization constructed in Section 2.2

is injective. From this it follows immediately that the map constructed in Theorem 3.2
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from the space of all projective structures on X to the space of all quantizations of (U ,Ω)

is injective.
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